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Abstract. Social urban sensing is a new paradigm which exploits human-
carried or vehicle-mounted sensors to ubiquitously collect data for large-scale
urban sensing. A challenge of such scenario is how to transmit sensed data in
situations where the networking infrastructure is intermittent or unavailable. In
this context, this paper outlines our researches on an engine that uses Oppor-
tunistic Networks paradigm to underlie the data transmission of social urban
sensing applications. It also applies Situation awareness, Fuzzy Logic and Neu-
ral Networks to perform routing, adaptation and decision-making process. We
carried out simulations using a simulator environment, achieving positive re-
sults. As we know, this is the first paper to use such approaches in Smart Cities
area with focus on social sensing application.

1. Introduction

Smart Cities are urban systems that use Information and Communication Technologies
(ICT) to provide an infrastructure and public services within a more interactive, accessi-
ble and efficient city[Pellicer et al. 2013]. In such context, researchers are seeking alter-
natives to serve citizens with new services to improve their quality of life and to fulfill
the criteria of energy efficiency and sustainability. In this way, urban sensing applications
emerges as a promising way to “feel the pulse” of the city, improving the comprehension
of such urban ecosystems in order to assist the decision-makers in the organization of the
city and the welfare of its residents.

A challenge for social urban sensing applications is how to transmit sensed data
in situations where the networking infrastructure is intermittent or unavailable. We argue
that Opportunistic Networks is an alternative to overcoming such limitations. Opportu-
nistic Network is a recent and promising mobile networking paradigm that stem from re-
search into conventional Mobile Ad Hoc NET-works (MANET) and uses contact between
mobile nodes to transmit data.

In this paper, we outline our research on an engine that uses Opportunistic
Networks paradigm to underlie the data transmission of social urban sensing applicati-
ons. Moreover, it also applies Situation awareness, Fuzzy Logic and Neural Networks to
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perform routing, adaptation and decision-making process. This engine will be used as a
internal Communication component in our Ubiquitous Service-Oriented Architecture for
Urban Sensing called UrboSenti [Rolim et al. 2015].

In summary, the main contributions made by this paper are the architecture of the
engine and the conceptual models used as guidance for its development. As we know, this
is the first paper to use such approaches in Smart Cities area with focus on social sensing
application. As well as being original, signals the way that further research can be carried
out in this area.

The rest of this paper is structured as follows: The next section describes the mo-
tivational scenario and raises some of the current computational challenges; Section 3
provides a brief outline of some background concepts and related initiatives; Section 4
describes the proposed architecture; Section 5 describes our experiments and analyzes
the results; and, finally, in Section 6 some conclusions are reached, together with recom-
mendations for future research.

2. PROBLEM SCENARIO

Our research has been driven by the problem-scenario of a city with several data sources
that are being used for sensing. Human-carried, fixed or vehicle-mounted sensors are
applied for obtaining sensing maps of transits, air quality, noise levels, temperature, C'O,
concentration, etc. Moreover, data from social networks in conjunction with sensors data
are crucial to understand the behavior of the city and to provide a holistic view about
it. To collect, analyze and give feedback of sensed data acquired from several sources
scattered along the city, we are using our Ubiquitous Service-Oriented Architecture for
Urban Sensing called UrboSenti. The main function of UrboSenti is to provide support
for overall process of urban sensing. It splits into two key modules: the Backend module
and Sensing module.

The Backend module runs in a data center infrastructure and, in short, is responsi-
ble for receiving sensed data, processing it and giving feedback to the citizens and other
systems.

The Sensing module is responsible for social and traditional sensing and encom-
passes activities of intentional and non-intentional sensing. It runs in mobile devices (e.g.
mobile phones, embedded in vehicles, etc) and in fixed sensors scattered around the city.
It has a several components that could be plugged “on demand” and a micro-kernel with
a set of components that are responsible for essential features. Our focus is the internal
micro-kernel component namely Communication. It provides methods to send and receive
data by means of the available network infrastructure, such as IEEE 802.11b/g/n (struc-
tured and ad-hoc), GPRS/EDGE/3G and Ethernet as the underlying system for TCP/UDP
communications. When the network infra-structure is intermittent or unavailable, it sup-
ports data communication using alternative ways, not based in end-to-end paths (like used
in [P communications). The selection of best method for transmission is made by engine
itself, without interaction of user. In summary, the Communication component is the
“power-horse” of all communications tasks in the Sensing module. Hence, we are seeking
for a self-adaptive engine to be used as underlying for such component with following re-
quirements: (1) use a non “IP-Centric” paradigm for communication; (i) provide support
for buffer management; (iii) adapts itself the transmission parameters according to device
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used for sensing and the current context; (iv) made adaptation decisions proactively; (v)
concerns with processing and power restrictions of devices.

In this way, we are based on the hypothesis that Opportunistic, Situational and
Smart Approaches could fulfill such requisites. For “Opportunistic”” we are talking about
Opportunistic Networks, a non “IP-Centric” paradigm, that could be used for data car-
rying, satisfying requisite (1); For “Situational” we are referencing to Situation awareness
that could be applied to deal with context adaptations, satisfying requisite (i1); For “Smart”
we are talking about machine learning approaches as Fuzzy Logic and Neural Networks.
Neural Networks could make predictions to support adaptations proactively, satisfying
requisite (iii) and; Fuzzy Logic could be used for decision-making about routing and in-
ternal adjusts, satisfying requisite (iv). We highlight that all approaches are suitable to
run in low powered devices, satisfying requisite (V).

3. Background and related works

Opportunistic Networks is a new emergent network paradigm. It seeks to simplify the
complexity at the network layer by removing the assumption of physical end-to-end con-
nectivity while providing connectivity opportunities for mobile devices when networking
infrastructure is intermittent or unavailable. In Opportunistic Networks, the forwarding
of messages is based on the Store-Carry and Forward concept. In such way, different
initiatives have been employed to route messages from their source to their destination in
a suitable way, since end-to-end paths might be absent for the whole life-time of the mes-
sage. We could cite: Epidemic, Spray&Wait (and the Spray variants like Spray&Focus,
Fuzzy-Spray and others), Prophet, BubbleRap, MobySpace, AFRON, Cartoon, CAR, Hi-
BOp, CiPRO, Propicman and the most recent Prophet improvement called DRAFT. Due
to space limitation and paper scope we will not present more information about these ini-
tiatives — for further information see [Jedari et al. 2013]. We argue that none of then could
fulfill the requirements present in section 2 and cannot be used “as is” in our scenario. We
have used some concepts of context information for routing decisions like Cartoon, but
instead of just relying on instantaneous information, we have base our decision-making
on the probable future situation. Moreover, our work is sited in the same Artificial In-
telligence area of CAR protocol. However instead of depending on Kalman Filters for
prediction and multi-criteria decision theory when choosing the best next hop for the mes-
sage, in our work we have applied fuzzy logic for decision making and neural networks
as underlying technique for prediction.

Echo State Networks (ESN)[Jaeger 2001] are a kind of three-layered recurrent
network with sparse, random, and (crucially), untrained connections within the recurrent
hidden layer. As seminal paper makes clear, ESN has the prospect of offering significant
performance benefits. The main structural element of ESN is a reservoir rather than a
layered structure. The weights between the connected neurons within the reservoir are
fixed and are not trained during the training process but are randomly generated. This ap-
proach significantly reduces the learning process when compared with other algorithms
(e.g. back propagation through time) resulting in low computational cost to implement it.
Such appointment motivated us to use ESN as underlying technique for forecasting. ESN
have been applied to solve practical problems in various domains. With regard to forecas-
ting by means of ESN, the following can be cited [Yu et al. 2011] [Rabin et al. 2013]. At
this time, we cannot find any work that applies ESN in social urban sensing applications.
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Figura 1. Conceptual models

The fuzzy set theory was proposed by Zadeh in 1965 as an extension of
multivalued logic. It has been described as a precise logic of imprecision and ap-
proximate reasoning. In the area of ubiquitous computing, it has been used for
different purposes, like location prediction[Anagnostopoulos et al. 2011] and context
inference[Perttunen et al. 2009]. We are using fuzzy logic because it is able to support
real-time decisions in situations where there is some degree of uncertainty and vagueness
with regard to the context determination. We cannot find any work that uses Fuzzy Logic
in social urban sensing area. The nearest initiatives found was in Opportunistic Networks
field. Fuzzy Logic already was used by AFRON to find the destination node in shortest
time with less buffer usage and Adaptive Fuzzy Spray and Wait that is concentrated on
optimizing the number of message copies to be disseminated in the network. However,
none of these works provide support for all of our requirements.

4. PROPOSED SOLUTION

4.1. Conceptual models

The conceptual models used in our engine are depicted in Fig. 3. The Decision-making
model (Fig. 1a) deals with decisions of routing and about adaptation of our engine. It
encompasses precise and non precise context data (from current and projected future situ-
ation). So, conventional logic may produce completely wrong decisions due to uncertain
of such data. An alternative to handle imprecise data is Fuzzy Logic. Fuzzy Logic is
a viable alternative to reason and make rational decisions in an environment of impre-
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cision, uncertainty, incompleteness of information, conflicting information, partiality of
truth and partiality of possibility. Thus, to perform decision-making process, a Fuzzy
Inference System (FIS) is used.

The Prediction model (Fig. 1b) is used to project future situations. A recurrent
Neural Network (NN) is used for this purpose. We have chosen NN due to its capacity
to solve non-linear problems, it are universal functions aproximators being suitable for
prediction. Each node is responsible to train and runs its own instance of NN. With this
approach we ensure that each node have a suitable NN to its needs. The current and
past low-level context data are used as input for NN. It starts the Training phase, testing
several configurations from a configuration repository trying to find the optimal Network
(with lower Root Mean Squared Error — RMSE). When a optimal Network is found, it is
used for prediction in Exploitation phase. The outputs of this process are new predicted
low-level context data that probably characterize a future situation of node. These data
are used in decision-making process. An essential requirement for NN in this case, is a
low computational cost due to power and processing constraints of mobile nodes.

The Situation awareness model (Fig. 1c) is used to deal with context adaptation
in a proactive fashion. It is based in 3-tier model proposed by [Endsley 1995]. This
model uses internal and external context about node to derive the low-level context that
characterizes current situation. A set of rules and past situations are used to project future
situations that will be used for routing decisions.

4.2. Engine architecture

The above presented models are used by our engine. Its internal architecture features are
outlined in Fig. 2 and its behavior is explained below.
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Figura 2. Engine architecture

It starts with the Contextual Information that representing information about the
context of node. At a constant time interval, Context Collector collects the data and stores
them in a layered structure called Contextual Graph, thus creating a new Layer 2 vertex.
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The Contextual Graph component underlies all the data storage. Neo4j' graph
database was used as the underlying mechanism for this purpose. Its main function is to
store instantaneous and predicted context information. In Contextual Graph, the vertexes
of the graph are structured in layers: Layer 1 stores basic information about the node (i.e.
node name, address, network interfaces). Layer 2 stores instantaneous context informa-
tion about the node (i.e. node power, current position, buffer usage, number of messages,
etc.) that will be used as historical values to prime the Forecaster. Layer 3 stores pre-
dicted context values from Forecaster. Moreover, we used edges to represent the contacts
between the nodes.

The Situation Manager component, implements our Situation awareness model.
It draws on data from Contextual Graph to build, analyze, project and create a repository
of situations. The information generated by this module will be used later by the Decision
Maker. It also runs maintenance routines like pruning old data and invoking Forecaster
for prediction. At time intervals Situation Manager retrieve context data from Contextual
Graph and using a set of rules stored in its internal situation repository it tries to identify
(build) the current node’s situation. The identified situation (e.g. “node is sensing with
low battery power and high buffer usage”) is analyzed, and if it indicates that some action
needs to be done it is reported to Decision Maker. If a situation could not be identified,
an unknown situation is found. Thus, a new set of rules that characterize this situation is
created “on the fly” and stored in repository for future use. When the Situation Manager
component detects a sufficient amount of context information, it could project a future
situation. For this purpose, the Forecaster component is invoked.

Forecaster component implements our prediction model, in order to predict the
probable values that will characterize a future situation. For such task, it uses context
values stored as Layer 2 in Contextual Graph as historical data to train ESN (i.e. node
power, current position, etc.). Due to its low computation cost to train the neural network,
we are able to make each node of the network to builds its own ESN with the most
appropriate configuration for its context. This is carried out by testing different internal
parameters of ESN (i.e. size of reservoir, sparsity of the reservoir, spectral radius and
leaking rate) with different values until the best one (i.e. the one with minimal MSE)
is found. When optimal neural network is found, its configuration is stored. At this
point, optimal network is ready to predict future values in the exploitation phase. During
exploitation phase, the structure with historical data is used to “pump” the best network
(found and saved in previous phase) with some data steps and thus to activate the internal
reservoir. Some stages later, the input from the historical data is switched off to allow
the network to predict values in a self-recurrent way. The predicted values are stored
at Contextual Graph as Layer 3 vertices. At this point, the component sets an internal
variable to indicate that the node is now running in smart mode. In smart mode, all
decisions done by Decision Maker are made using past, current and predicted data in
order to improve data transmission. In “dummy” mode, just current situation is used in
decisions.

Decision Maker implements our Decision-making model. It runs at constant time
intervals to decide if some internal parameters needs to be adjusted (such as buffer sche-
duling policy, maximum size of messages, time to live of new messages, etc.) or if a

Thttp://www.neodj.org/
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“trap” should be triggered to require attention of an external component of micro-kernel
(e.g to change configuration of network interface, to perform some adaptation action,
etc.). Decision Maker is also invoke when current node contact another node to decide if
some buffered message should be forwarded, delivered or remain at the local buffer. In
simple terms, Decision Maker decides if the encountered node is a good “data mule”. We
used the term “potential” to represent the capacity of the node to be a good data mule.
The strategy used is quite simple: if the potential of the contacted node is greater than
the potential of the current node, then the message is forwarded; otherwise, the message
remains at the local buffer (obviously the message is delivered if the encountered node is
its destination). The question arising from this approach is: how to calculate the potential
of each nodes? For this task, all context values (current, past and predicted) of the cur-
rent and contacted node from Contextual Graph are used as input for the Fuzzy Inference
System (FIS). FIS uses its internal components and rules to calculate the potential of each
node.

S. SIMULATION AND EXPERIMENTAL RESULTS

5.1. Simulation setup

To verify the functionality and performance of proposed engine we implemented the main
modules and carried out some simulations using ONE (Opportunistic Network Environ-
ment) Simulator. For simulation setup we adopted 6 hours for all scenarios with a dif-
ferent number of nodes (10 for the first, 25 for the second, and 50, 75 and 100 for each
consecutive group). We used two groups: pedestrians and cars with ShortestPathMapBa-
sedMovement as mobility model. Pedestrian nodes moved between 0.5 and 1.5 Km/h,
and had a Bluetooth device with a radio range of 20 meters and transmission speed of 2
Mbit/s. The Car nodes moved between 10 and 50 Km/h and had a Wi-Fi interface with
a range of 50 meters and transmission speed of 10 Mbit/s. On average, the nodes gene-
rated about one message of sensing data every 25 to 35 seconds (total of 711) and the
message lifetime was set at 24 minutes (1440 seconds). We used message sizes that were
uniformly distributed between 100 KB and 2 MB.

The ESN used in Forecaster was built using ESNJava software®. As each node
executes their own neural network, resulting in specific configuration, we have not shown
configuration results for each node, but only the results from the average of all the nodes.
On average, around 104 steps were used in the training phase and 54 steps in the exploi-
tation phase. The MSE in the training phase ranged from 4.01e-08 to 4.55e-10 and in
the exploitation phase ranged from 1.21e-7 to 7.67e-8. The internal size of the network
ranged from 10 to 20 nodes and the spectral radius from 0.77 to 0.85. The only value that
was fixed for all the nodes was the sparsity of the reservoir = 1 and leaking rate = 0.

The Fuzzy Inference System (FIS) used in Decision Maker was implemented
using JFuzzyLogic library?. The following context data was used: current power, current
speed, total distance traveled from last point, overall distance traveled, current coordi-
nates, last coordinates, current buffer usage, current number of carried messages, total
number of forwarded messages, current number of neighboring nodes, and total number
of connections. To calculate the variable “potential” which is used as the output of FIS,

http://www.wsi.uni-tuebingen.de/lehrstuehle/cognitive-modeling/code/overview.html
3http://jfuzzylogic.sourceforge.net/
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three Triangular membership function are used. The COG (Center Of Gravity) was used
as a defuzzification method. The fuzzy inference rules were defined in compliance with
Fuzzy control language (FCL).

We highlight that currently we are working in Situation Manager. So, the fol-
lowing experiments was done just with a basic situation set, without incorporating new
situations in repository.

5.2. Experimental results

We conducted a set of experiments using simulation setup presented above with different
scenarios. The results are displayed in Fig. 3a. This shows that in general, there is an
increment in the number of delivered messages that corresponds to the increment of the
number of nodes.

The scenario with 100 nodes had a increment of 310% in number of delivered
messages in relation to scenario with 10 nodes, but with just 49% of more overhead (an
assessment of bandwidth efficiency in relation of the number of relayed and delivered
messages). We can note that this overhead percentage is less than in scenario with 50
and 75 nodes. We believe that this ratio can be attributed to our strategy of just relaying
messages to data mules with a good potential to delivery the message. However, it could
be improved with tunning of strategy used in buffer management. Furthermore, we can
note that with increment of number of nodes, each one could store more historical context
data to be used by Forecaster for prediction. With this, the predictions becomes more
accurate over the time. In other words, the engine becomes smarter when run longer and
with more neighbors nodes. We need to investigate why with 50 nodes the number of
delivered messages was less than with 25 nodes. One factor not reported in the chart
is the computational cost of ESN. Even when each node used in the simulation testing
several different configurations to find the best network, the impact of the processor load
was minimal. This lightweight feature was the main finding of application of ESN in our
engine.

We also compared our engine with some approaches used “as is”” from Opportu-
nistic Networks area. We used the same scenario setup of previous experiments. The pro-
tocols used for comparison were Prophet, DRAFT, Spray&Wait and BubbleRap. These
were chosen because they represent the different classes of “intelligent” protocols and
have been extensively studied by researchers[Orlinski and Filer 2013]. We used the fol-
lowing configuration parameters: for Prophet we set secondsInTimeUnit = 30. For
DRAFT we set familiarThreshold = 120, degrade = 0.5 and frame size = 3600. For
Bubblerap we set K = 5, familiarThreshold = 700, centralityTimeWindow = 3600 and
epoch_count = 6 (i.e. simulation time of 21600 seconds centralityTimeWindow 3600
= 6). The comparison results of selected approaches in a scenario with 100 nodes are
presented in Fig. 3b

As can be seen, Spray&Wait and Prophet have results similar to our engine in
number of delivered messages. Our approach is just worse than Spray&Wait. However,
we highlight that in the number of started and relayed messages and the overhead ratio
of bandwidth we are almost 12% better. This result comes from low number of star-
tedrelayed messages and witness that our strategy to just relay messages to better data
mules is saving computational resources. We recall that to relay messages, mobile de-

198



Proposed engine .
Comparative Performance Graph
1000
1000000

100000
™ 10000
1000
g I I II
mstarted

10

10 | [ | -

W relayed 1 Proposed

I I delivered Bubble Draft Spray Prophet engine
1 | | | moverhead m started 56325 18 6660 106655 577
10

25 50 75 100 W relayed 25103 18 1978 70993 260
W started 139 258 362 482 577

mrelayed 49 142 178 285 260
delivered 20 43 42 68 82
moverhead 1,45 2,30 3,24 3,19 2,17 mstarted ®relayed delivered ®overhead

delivered 52 8 90 72 82
moverhead 481,75 1,25 20,98 985,01 2,17

(a) Performance in scenarios with different (b) Comparison with Opportunistic Networks
number of nodes approaches

Figura 3. Comparison performance

vices use battery power for processing and data transmission; thus, a high value of this
overhead indicator could influence the battery life of these devices. Draft had the lowest
number of delivered messages. Despite of acceptable number of delivered messages of
BubbleRap and Prophet the generated overhead was huge in comparison with our engine.
These initiatives have a good performance in some Opportunistic Networks scenarios, but
as we suspected when it was used in social sensing scenario they are not suitable.

Thus, the results indicates that our engine had a satisfactory performance in terms
of the number of delivered messages and overhead ratio and could be used in wide-scale
urban scenarios where network infrastructure is intermittent or unavailable, such as Smart
Cities.

6. Conclusion and Future work

In this paper, we have described our attempt to build an engine that applies Opportunistic
Networks paradigm to transmit sensed data in situations where the networking infrastruc-
ture is intermittent or unavailable. It runs in an internal component of a wide architecture
called UrboSenti and provides support for communication of urban sensing applications
running atop of it. We have also outlined our initial design models for the software modu-
les and their internal components. Currently we are mainly working to implement Situa-
tion awareness model. The preliminary results, with a basic situation set, are acceptable.
The low computational cost to run it with satisfactory number of delivered messages has
shown that it works and have a good potential to be used in UrboSenti. We believe that its
performance will be improved when implementation of Situation Manager is done. The
experiments also made clear that ESN is a good technique for prediction. It achieved an
impressive predictive performance and has a low computational cost compared with all
the other approaches that we already applied. In addition, the results depicted that some
popular Opportunistic Networks initiatives could not be used “as is” in urban sensing
applications area.

As final remark, we claim that the proposed engine is able to fill the gap of data
transmission presented in our initial problem-scenario. Moreover, this should encourage
us to conduct further research into the multidisciplinary area of Smart Cities with the aim
of improving services and applications for urban sensing.

For future work, we are seeking alternative means of constructing fuzzy sets and
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rules “on the fly”, depending on the situation in which the node is immersed and to ex-
plore the application of a Deep Belief Network (DBN) or Restricted Boltzmann machines
(RBMs) as underlying for prediction.
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