XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

DG2CEP: A Density-Grid Stream Clustering Algorithm based
on Complex Event Processing for Cluster Detection

Marcos Roriz, and Markus Endler

Department of Informatics
Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
Rio de Janeiro — RJ — Brazil

{mroriz, endler}@inf.puc-rio.br

Abstract. Applications such as fleet and mobile task force management, or
traffic control can largely benefit from the on-line detection of collective mo-
bility patterns of vehicles, goods or persons. A common mobility pattern is a
cluster, a concentration of mobile nodes in a certain region, e.g., a mass pro-
test, a rock concert, or a traffic jam. Current approaches require previous
knowledge of the locations where the cluster might happen. In this paper, we
propose DG2CEP, an algorithm inspired by data mining algorithms and based
on Complex Event Processing, for on-line detection of such clusters. It can de-
tect the formation and dispersion of clusters from streams of position data
without the need of specifying the possible locations of clusters in advance.

1. Introduction

Several distributed applications [Amini et al. 2014], such as fleet and mobile task force
management, air/road traffic control, can benefit from an on-line detection of collective
mobility patterns of their mobile nodes, i.e., the ability to detect when a given set of
mobile nodes are collectively moving according to a certain pattern. A common collec-
tive mobility pattern is a cluster, a concentration of mobile nodes in a certain region,
e.g., a mass protest, a rock concert, or a traffic jam. The detection of this pattern is mo-
tivated by reasons such as ensuring safety of the mobile nodes, identifying suspicious or
hazardous behaviors, ensuring availability of resources, or optimizing global operation
of the mobile entities. In road traffic control, for example, it is important to early detect
some traffic jam caused by a complete or partial obstruction of a street/road. Moreover,
in some cases it may be important also to detect the fast dispersion of a cluster, e.g. a
crowd rushing away from some specific spot in an environmental disaster scenario. This
information can be useful for dispatching additional rescue staff to the place.

As can be seen from these examples, unexpected clustering of mobile nodes is a
recurrent pattern in several applications. However, detecting such pattern poses several
challenges to those applications [Silva et al. 2013]. First, it has to process the high vol-
ume of position data sent by mobile nodes in a timely manner. Secondly, it has to design
efficient pattern detection algorithms to cope with the complexity of the position data
comparisons. Third, it has to consider evolving data streams, i.e., that the set of moni-
tored mobile nodes is open and variant, with new elements joining and other leaving the
stream (e.g. new vehicles entering or leaving a city perimeter), making the cluster
boundary difficult to detect. Finally, it must be able to detect arbitrary clusters shapes,
i.e., for example, a traffic jam that ranges over several streets or neighborhoods.

887

SBCUP - VI Simpésio Brasileiro de Computagao Ubiqua e Pervasiva

The majority of solutions found in the literature only address partially these
problems. For example, a series of data stream clustering algorithms [Aggarwal et al.
2003; Cao et al. 2006; Tu and Chen 2009] do find clusters in position data streams, but
do not consider that the set of monitored node is variant. Thus, they are restricted to a
static data stream, i.e., a fixed mobile nodes set. Solutions that do consider open/variable
node sets [Barouni and Moulin 2012; Kim et al. 2011], require developers to specify the
possible location of clusters in advance. Precisely, they can only detect clusters in a re-
gion previously specified. This fact restricts the cluster boundary to pre-defined regions.

To address these issues, in this paper, we propose DG2CEP, (Density-Grid Clus-
tering using Complex Event Processing) an on-line algorithm that combines data mining
clustering algorithms [Han et al. 2011] with Complex Event Processing (CEP) concepts
[Luckham 2001], to detect the formation and dispersion of clusters based on position
data streams. DG2CEP, expressed as a set of simple CEP rules, taking advantage of CEP
stream-oriented concepts. The main contributions of our paper are twofold:

e Proposal of an on-line cluster detection algorithm, described as a set of CEP rules,
that analyses streams of position data streams;

e Description of the cluster dispersion pattern, through alternative CEP rules, but
using the same algorithm. Surprisingly, so far, cluster dispersion detection based
on position data streams has not been explored and described in literature.

The remainder of the paper is structured as follows. Section 2 gives an overview
of the fundamental concepts used in the paper. Section 3 presents our algorithm,
DG2CEP, for clustering position data streams. Section 4 presents a proposed evaluation
of our work. Section 5 reviews and compares related works our approach. Finally,
Section 6 presents some concluding remarks and future works towards this work.

2. Fundamentals

We use the same definition of a cluster that is adopted in DBSCAN [Ester et al. 1996], a
classic data mining clustering algorithm. Thus, in this section we briefly review the
DBScCAN cluster definition and algorithm. After that, we briefly explain CEP concepts,
such as events and rules, that are used throughout the paper to express our algorithm.

2.1 Clustering Algorithms

Clustering is the process of grouping data into one or more sets. In essence, a cluster is a
collection of data objects that are similar, to each other [Han et al. 2011], for example,
group mobile nodes based in their mutual Euclidean distance. The majority of clustering
algorithms are based on K-MEANS [Jain 2010], which divides the data into k sets. Since
we do not know the number & of clusters ahead, we need to use a different approach.

DBScAN [Ester et al. 1996] is a clustering algorithm based on the concept of
node density. The algorithm assigns a density value, called e-Neighborhood, to each
node. It defines the set of nodes that are within distance ¢ of a given node. Thus, in
DBScAN a cluster is found when a mobile node core consists of a minimum number
(minPts) of neighbors in its e-Neighborhood. Both, the core mobile node and its
neighbors are added to the cluster. The main idea of DBSCAN is to recursively check
each neighbor so as to expand the cluster, i.e. for each neighbor added, if it also contains

888

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

minPts neighbors, its neighbors are also added to the cluster, which in turn are
recursively visited. Thus, DBSCAN recursively processes, visits, adds, and expands the
cluster using the nodes’ neighbors.

The bottleneck of DBSCAN is the e-Neighborhood function [Han et al. 2011].
During the algorithm, this function is recursively called to retrieve the mobile node den-
sity. The problem with this function is that it has to compare all pairs of nodes, to identi-
fy those that are within the ¢ distance. This pairwise mutual comparison take O(n) per
node, turning the algorithm quadratic O(#?). Since the DBSCAN algorithm was designed
for static datasets, it can optimize this process, by storing the nodes’ position data in a
spatial index (e.g., R-Tree or Quad-Tree). These data structures can reduce the neighbor
finding function to O(log n) per node, thus reducing the total complexity of the DBSCAN
algorithm to O(n log n). However, when we consider online cluster detection based on
position data (data streams) this primary premises becomes troublesome. It is well
known that is practically impossible to maintain a spatial index for online data, both due
to its size - each node may have many neighbors - and because it is very costly to con-
tinuous update and maintain the spatial data structure [Garofalakis et al. 2002]. As
fallback, in data stream, DBSCAN goes back to the strategy of comparing pairwise the
node’s location updates, returning to the high cost of O(n°).

On the other hand, grid-based clustering algorithms [Chen and Tu 2007] can be
used to scale the detection process, as grids provide static references (i.e., the grid cells)
for the clustering problem. In this approach, the mobile nodes are mapped to grid cells,
and the cost is proportional to the number of cells rather than the number of nodes
[Amini et al. 2014]. Each grid cell thus only “holds” the mobiles nodes that are within
the cell’s geographic area. The density of each cell is calculated as the number of mobile
nodes mapped to the cell divided by the mean density of the grid, i.e., of all cells. Note
that this view provides a different density semantics than DBSCAN’s notion of density.
Here, clusters are detected based on the density of all cells rather than the density of the
neighborhood of a node, as in DBSCAN. This semantics requires that the algorithm must
store and calculate the density of the entire grid at every location update, which is quite
costly when processing streams of position data. In addition, grid based algorithms usu-
ally divide the space in a small number of cells to reduce the cost of recalculating the
grid density, thus reducing the cluster precision. To complicate even further, these algo-
rithms need to manage each cell, e.g., to store and retrieve the nodes in the grid cells.

2.2 Complex Event Processing (CEP)

To efficiently handle and process position data streams, we explored Complex Event
Processing (CEP) [Luckham 2001] concepts. CEP provides a set of stream-oriented
concepts that facilitates the processing of events. It defines the data stream as a sequence
of events, where each event is an occurrence in a domain. In our case, an event is a loca-
tion update of a mobile node, which contains the new coordinate of the node’s position.

CEP provides concepts for processing events, which includes the consumption,
manipulation (aggregation, filtering, transformation, etc.) and production of events. The
CEP workflow continuously process the events received, which are then manipulated
and sent to event consumers (e.g. online monitoring applications), that are interested in
receiving notifications about detected situations.

889

SBCUP - VI Simpésio Brasileiro de Computagao Ubiqua e Pervasiva

The manipulations of events are described by CEP rules. CEP rules are Event-
Condition-Action functions that use operators (e.g. logical, quantifying, counting, tem-
poral, and spatial) on received events, checking for correlations among these events, and
generating complex (or composite) events that summarize the correlation of the input
events. Most CEP systems have the concept of Event Processing Agents (EPAs), which
are software modules that implement an event processing logic between event producers
and event consumers, encapsulating some operators and CEP rules. The type of an EPA
is defined by the behavior of the CEP rules it implements, such as filtering, transfor-
mation or specific event pattern detection. In addition, CEP rules can manipulate direct-
ly the event stream by adding, removing or updating the raw events. Event streams that
enable their raw events to be manipulated are called named window [Codehaus 2014].

An Event Processing Network (EPN) is a network of interconnected EPAs that
implements the global processing logic for pattern detection through event processing
[Luckham 2001]. In an EPN the EPAs are conceptually connected to each other (i.e.
output events from one EPA are forwarded and further processed by other EPA) without
regard to the particular kind of underlying communication mechanism between them.

Before we insert events into our EPN, we group them into a specific partition
using CEP’s context. A context takes a set of events and classifies it in one or more par-
titions [Etzion and Niblett 2010]. For example, it may group all events whose coordinate
fall inside a latitude interval into a CEP context partition. The CEP context concept re-
sembles grid cells, mentioned previously. However, the primary difference between
them is on abstraction level. While a grid cell just stores data, a CEP context partition
does the same, but in addition also represents an isolated CEP runtime within that con-
text partition, i.e., EPAs operators will apply to events associated with a same partition,
thus immensely reducing the processing load. In addition, they are auto-managed “grid
cells" in the CEP engine [Codehaus 2014], that can be dynamically activated and deac-
tivated based on EPAs that refer to them. For example, a context partition is created
when it becomes active, i.e., an event is mapped to it. As soon as there is no active EPA,
i.e., it is not processing or storing an event window, the partition becomes inactive.

Finally, we also use the CEP concept of sliding time windows. The idea of
sliding time windows is to consider only recent data within a time interval (fNnow — 0,
fNow) [Amini et al. 2014]. For example, suppose that an EPA operates on a data stream
that is using a sliding window of 0 = 30 seconds. When the EPA receives an event, its
rules will correlate only events received within the past 30 seconds. We use this concept
to ensure that we are comparing only the latest location updates in the data stream.

3. DG2CEP: A CEP-Based Position Clustering Algorithm.

To detect the formation and dispersion of clusters, we now present DG2CEP, a density-
grid data stream clustering algorithm expressed as a set of CEP rules. DG2CEP provides a
DBscaN-like density-based clustering semantic, being able to approximately identify
DBScCAN cluster shapes using CEP context partitions. The main idea of our algorithm is
to mitigate the clustering process by first mapping the location update to CEP context
partitions, and then clustering the partitions rather than the nodes. Instead of clustering
each node, we map them to context partitions and cluster the partitions using a DBSCAN-
like semantic. The overall processing flow is illustrated in Figure 1.

890

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

Context Partitions (CP) DBSCAN (Partitions)
Data Stream (DS) N X
T I T[]
L

Figure 1. Overall description of DG2CEP processing flow.
3.1. Stream Receiver

First, we need to handle and map the position data stream to a context partition.
Consider that the domain we want to monitor is delimited by [minLat, maxLat] and
[minLng, maxLng], the respective latitude and longitude interval. To provide a precision
similar to DBSCAN, we divide this interval into partitions of size ¢ x €. Thus, our space is
segmented into the following context partitions:

o [minLat, OFFSETLAT(minLat, €), OFFSETLAT(minLat, 2¢), ..., maxLat] and
e [minLng, OFFSETLNG(minlLng, ¢), OFFSETLNG(minlLng, 2¢), ..., minLng]

for latitude and longitude respectively. The functions' OFFSETLAT and OFFSETLNG
combines an angle with an ¢ offset (in meters) to return the offset value in angle for the
latitude or longitude respectively. The one-line Code 1, written in the Event Processing
Language (EPL) [Codehaus 2014; Etzion and Niblett 2010], a language to express CEP
rules, creates a context PARTITIONCLUSTER that segments LOCATIONUPDATE events into
a specific partition according to the latitude and longitude attribute of the event.

Code 1. Context Partition Creation (in EPL).

CREATE context PARTITIONCLUSTER partition by lat and Ing from LOCATIONUPDATE

We map the mobile node location update to a context partition (x, y) using the
combination of its latitude and longitude attribute, as described in Algorithm 1. Since
we need to map each location update from the position data stream to a context
partition, we store the monitoring intervals in a static data structure, such as segment
tree, binary tree or a vector, which allow us to quickly identify the location update
partition using binary search. Note that, we need to calculate only once the interval data-
structure, since all mobile location updates use the same static structure to identify their
partition. Finally, we emit an LOCATIONUPDATE event in our EPN.

Algorithm 1. Stream Receiver Function.

Input:
DS Data Stream

¢ Distance Threshold
[MinLat, MaxLat] Latitude Interval
[MinLng, MaxLng] Longitude Interval

Output: Location Update Event

!'See Ed. Willlians (http://williams.best.vwh.net/avform.htm) for an implementation of these functions.

891

SBCUP - VI Simpésio Brasileiro de Computagao Ubiqua e Pervasiva

latPosition < Initialize a Static Structure for Latitude (MinLat, MaxLat, €)
IngPosition « Initialize a Static Structure for Longitude (MinLng, MaxLng, €)

while data stream DS is active do
x « read record from DS

partitionX « BINARYSEARCH(x.lat, latPosition)
partitionY « BINARYSEARCH(x.Ing, IngPosition)
emit EVENT(node, (partitionX, partitionY))

1
2
3
4
5
6.
7
8
9
10.end

3.2. Context Partition Cluster

The events assigned to a context partition are all within dis-
tance ¢ (precisely at maximum eV2 apart), which is approxi- ')
mately the e-Neighborhood defined by the DBSCAN algorithm,
as shown by Figure 2. To compensate the normalization of
DBSCAN e-Neighborhood - that is a circle of radius € - to a

context partition of size ¢ X & in DG2CEP, we have to consider e
more nodes to be there for a cluster, as some nodes might be Figure 2. Context Partition
outside the DBSCAN g-neighborhood (i.e., in the gray area). The and DBSCAN circle.

minimum number of points to form a cluster in the square ¢ x ¢, considering an uniform
distribution of points, is the ratio between the area of the circle and of the square, i.e.:
m(e/2)?/ e* = m(e*/ 4)/ e =m /4 ~=127. Thus, to provide a DBSCAN cluster semantic
in context partition we have to consider at least 1.27minPoints nodes to form a cluster.

Since events in the partition are already close to each other (considering ¢), to
identify a cluster in our algorithm we just need to count the number of events received,
as described by Algorithm 2. If the number of events received in the context partition
over a period of A seconds (window period) is larger than 1.27minPts, then the partition
forms a cluster and emits a complex event named PARTITIONCLUSTEREVENT. If it is not,
it will store that event for A seconds.

Algorithm 2. Context Partition Cluster Detection EPA.

Input:
A Sliding window period (in seconds).
MinPts Minimum number of nodes (neighbors in DBSCAN) to form a cluster.

Qutput: Partition Cluster Event

CONTEXT PARTITIONCLUSTER

INSERT INTO PARTITIONCLUSTEREVENT

SELECT PartitionNodes.x, PartitionNodes.y, win(PartitionNodes.*)
FROM LOCATIONUPDATE.win.time(2A sec) as PartitionNodes
HAVING count(*) = 1.27minPts

v W

As mentioned in Section 1, it is also important to detect when a detected cluster
disperses, i.e., when the context partition cluster is not valid anymore. We can now

892

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

build an EPA to expresses this relationship, as shown in Algorithm 3. We define a CEP
rule that fires if a PARTITIONCLUSTEREVENT is not followed by a PARTITIONCLUS-
TEREVENT another one within 2A seconds (see lines 5 and 6 in Algorithm 3). If the con-
text partition does not generate a following cluster event within 2A, this means that the
number of location updates mapped to the context partition is no longer larger than
1.27minPts, and, thus, no longer constitutes a cluster. We consider a time period of 2A,
instead of just A, in order to tolerate the situation where the location updates mapped to
the partition are generated out of sync by the corresponding mobile nodes.

Algorithm 3. Context Partition Dispersion Detection EPA.

Input:
A Sliding window period (in seconds).

Output: Partition Disperse Event

1. CONTEXT PARTITIONCLUSTER

2. INSERT INTO PARTITIONDISPERSEEVENT

3. SELECT PARTITIONCLUSTEREVENT.lat, PARTITIONCLUSTEREVENT.Ing
4. FROM PATTERN

5. [EVERY PARTITIONCLUSTEREVENT 2>

6 (TiMER:INTERVAL(2A sec) AND NOT PARTITIONCLUSTEREVENT) |

3.3. Cluster Detection

Currently, in our EPN flow, we are detecting the formation and dispersion of context
partitions clusters. To provide a DBSCAN-like cluster semantics, of finding arbitrary
shapes, we must be able to aggregate partition clusters. Thus, we define a named win-
dow, CLUSTERS, to merge context partitions events. A named window is an event
stream, but with the distinctive feature that it allows manipulation of its raw events.
CLUSTERS events are composed of a single field, an array of PARTITIONDISPERSEEVENT,
that refers to the context partitions that form the cluster. We manipulate the events in the
named window to group/merge and divide/split clusters, e.g., we merge a PARTI-
TIONCLUSTEREVENT event with a cluster when the partition is a neighbor of the cluster,
or split a cluster when we receive a PARTITIONDISPERSEEVENT event.

Now, we define an EPA to add or merge partition clusters with the CLUSTERS
named window using an extraction query, as shown in Algorithm 4. When we receive a
PARTITIONCLUSTEREVENT we check if there is any neighbor cluster in CLUSTERS. The
ISNEIGHBOR routine does this verification by comparing the cluster’s boundaries. If the
cluster partitions is an adjacent with respect to the PARTITIONCLUSTEREVENT, i.e., if
difference between their x, and y indexes are both less than one.

Algorithm 4. Add or Merge Cluster EPA.

Input:
A Sliding window period (in seconds).

Qutput: PartitionCluster

1. ON PARTITIONCLUSTEREVENT as PARTITIONCLUSTER

2. SELECT AND DELETE PARTITIONCLUSTER, win(CLUSTER.*) as Neighbors
3. FROM CLUSTERS.win.time(A sec) as CLUSTER

4. WHERE 1SNEIGHBOR(PARTITIONCLUSTER, CLUSTER)

893

SBCUP - VI Simpésio Brasileiro de Computagao Ubiqua e Pervasiva

The past EPA extracts clusters that are neighbors of the PARTITIONCLUS-
TEREVENT event. If the EPA returns an empty set for Neighbors, that is, if there are no
cluster that are neighbors of that context partition cluster, then the rule creates and in-
serts a new cluster in CLUSTERS, that is composed by a single PARTITIONCLUSTEREVENT
event. If the Neighbors set is non-empty, i.e., the EPA identified clusters that are neigh-
bors with the partition cluster, we need to merge them with the partition. The resulting
cluster is formed by the combination of all neighbors’ with the PARTITIONCLUS-
TEREVENT, since the event will serve as a link to connect the neighbors’ clusters. Thus,
the resulting cluster is formed by the union of all cluster partitions from Neighbors with
PARTITIONCLUSTEREVENT, which is reinserted in CLUSTERS, as shown in Algorithm 6.

Algorithm 5. Add or Merge Routine.

Input:
PARTITIONCLUSTER Partition Cluster

NEIGHBORS List of neighboring clusters
Output: Partition Cluster

partitionArray < [PARTITIONCLUSTER]
if NEIGHBORS is not empty then
foreach cluster from NEIGHBORS do
partitionArray < partitionArray U NEIGHBORS.partition
end
end
clusterEvent « Event(partitionArray)
emit clusterEvent

O N W

When a partition cluster disperses, we need to reflect the change in CLUSTERS.
Thus, we describe an EPA that when receives a PARTITIONDISPERSEEVENT, that will
split, if necessary, the cluster that hold the partition into one or more clusters, as shown
by Algorithm 6. The only difference between this EPA and Algorithm 4 is the CONTAINS
function, which checks if a cluster contains the PARTITIONDISPERSEEVENT. After ex-
tracting the cluster that contains the cluster partition that dispersed, one needs to identify
the remaining clusters after we remove that partition. This is done, by first removing the
dispersed partition and then executing a classic DBSCAN on the remaining set. The sepa-
rated clusters, if they exist, are then re-inserted in CLUSTERS.

Algorithm 6. Split if Necessary Routine (Disperse EPA output).

Input:
PARTITIONCLUSTER Partition Cluster

CLUSTERLIST Cluster Entry
Output: Set of Partition Cluster

1. ClusterList « CLUSTERLIST - PartitionCluster
2. SplitClusters « DBSCAN(ClusterList)

3. foreach cluster from SplitClusters do

4. clusterEvent « Event(partitionArray)

5

6

emit clusterEvent
. end

894

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

4. Proposed Evaluation

We are still implementing and testing DG2CEP. To evaluate our work, we intend to use
synthetic and real position data streams from mobile nodes. For real position data, we
intend to use the T-Drive dataset [Yuan et al. 2011], which contains a one-week trajec-
tory of 10,357 taxis in Beijing, China. The primary characteristic we want to discover is
the percentage of clusters found in DG2CEP compared to those found by running DBSCAN
in the dataset, i.e., how close are our clusters from the original algorithm. In addition,
we intend to identify the elapsed delay for the on-line cluster pattern detection and how
our algorithm can scale with the number of nodes and the frequency of location updates.

5. Related Work
In this section, we briefly discuss some ongoing efforts to address data stream clustering.

Both, D-Stream [Chen and Tu 2007] and DENGRIS-Stream [Amini and Ying
2012] proposes a similar grid-based clustering algorithm for data streams. However,
while the nodes position is mapped continuously to the grid cells, their algorithm oper-
ates in a bulk scheme. Their cluster algorithm runs at every specific periods, e.g., every
minute, thus, clusters formed during this period are not detected until the algorithm is
re-executed. The clustering function performs a global search for dense cells on the grid,
a high cost for streaming data. In addition, this function also update and remove sporad-
ic cells. This extra cost eventually increases the detection period. We believe the man-
agement cost is the reason why the clustering function is only executed at certain
periods. Finally, both algorithms cannot identify clusters dispersions.

Considering CEP-based solutions, as mentioned previously, the majority of
works encountered [Barouni and Moulin 2012; Kim et al. 2011], requires developers to
specify the possible cluster locations in advance, which is not feasible in many systems.
In addition, it does not detect clusters with arbitrary shapes, such as a traffic jam in a
long avenue. Previously, we proposed a CEP-based clustering approach [Baptista et al.
2013], that does a pairwise comparison between each nodes’ location updates. While we
successfully detected clusters, we had scaling problems due to the pairwise comparison.

6. Conclusion and Future Works

Cluster is a mobility pattern that appears in several distributed applications [Amini et al.
2014]. Nevertheless, cluster detection is a challenging task to those applications, since it
requires efficient and complex algorithms to handle the high volume of position data in
a timely manner. To address this issue, we proposed DG2CEP, an on-line algorithm that
combines data mining clustering algorithms with CEP concepts, to detect the formation
and dispersion of clusters from position data streams. DG2CEP, uses CEP stream-oriented
concepts to provide a DBSCAN-like clustering as a simple sequence of CEP rules. Our
algorithm is able to detect the formation and dispersion of cluster. As a weakness, we
are still implementing and testing our approach, and we show no testing results. In
addition, our algorithm also requires more nodes to inform a cluster than DBSCAN.

As future work, we plan to finish the implementation of our algorithm, and test
with synthetic and real position data. We are also interested on exploring others stream-
processing concepts, such as FGPA and GPU programming. Finally, we intend to ex-
plore others collective mobility patterns that can be expressed as a set of CEP-rules.

895

SBCUP - VI Simpésio Brasileiro de Computagao Ubiqua e Pervasiva

References

Aggarwal, C., Han, J., Wang, J. and Yu, P. (2003). A framework for clustering evolving
data streams. In Proc. of the 29th Intl. Conf. on Very Large Data Bases - Volume 29.

Amini, A., Wah, T. and Saboohi, H. (2014). On Density-Based Data Streams Clustering
Algorithms: A Survey. Journal of Computer Science and Technology, v. 29, n. 1.

Amini, A. and Ying, W. (2012). DENGRIS-Stream: A density-grid based clustering
algorithm for evolving data streams over sliding window. In Proc. International
Conference on Data Mining and Computer Engineering.

Baptista, G. L. B., Roriz, M., Vasconcelos, R., et al. (2013). On-line Detection of
Collective Mobility Patterns through Distributed Complex Event Processing.
Monografias em Ciéncia da Computagdo 12/2013, PUC-Rio, ISSN 0103-9741.

Barouni, F. and Moulin, B. (2012). An extended complex event processing engine to
qualitatively determine spatiotemporal patterns. In Proc. of Global Geospatial Conf-

Cao, F., Ester, M., Qian, W. and Zhou, A. (2006). Density-Based Clustering over an
Evolving Data Stream with Noise. In Proc. of the 2006 SIAM Conf. on Data Mining.

Chen, Y. and Tu, L. (2007). Density-based Clustering for Real-time Stream Data. In
Proc. of the 13th Intl. Conf. on Knowledge Discovery and Data Mining.

Codehaus (2014). Esper - Complex Event Processing. http://esper.codehaus.org/,

Ester, M., Kriegel, H., Sander, J. and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining.

Etzion, O. and Niblett, P. (2010). Event Processing in Action. 1st. ed. Greenwich, CT,
USA: Manning Publications Co.

Garofalakis, M., Gehrke, J. and Rastogi, R. (2002). Querying and Mining Data Streams:
You Only Get One Look a Tutorial. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data. , SIGMOD °02. ACM.

Han, J., Kamber, M. and Pei, J. (2011). Data Mining: Concepts and Techniques. 3rd.
ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition
Letters, v. 31, n. 8, p. 651-666.

Kim, B., Lee, S., Lee, Y., et al. (2011). Mobiiscape: Middleware support for scalable
mobility pattern monitoring of moving objects in a large-scale city. Journal of
Systems and Software, v. 84, n. 11, p. 1852—1870.

Luckham, D. C. (2001). The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. USA: Addison-Wesley., Inc.

Silva, J. A., Faria, E. R., Barros, R. C., et al. (2013). Data Stream Clustering: A Survey.
ACM Comput. Surv.,v.46,n. 1, p. 13:1-13:31.

Tu, L. and Chen, Y. (2009). Stream data clustering based on grid density and attraction.
ACM Transactions on Knowledge Discovery from Data, v. 3, n. 3.

Yuan, J., Zheng, Y., Xie, X. and Sun, G. (2011). Driving with Knowledge from the
Physical World. In Proc. of the 17th Intl. Conf. on Knowledge Discovery and Data
Mining.

896

