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Abstract. The ADMITS project aims to develop algorithms, protocols and archi-
tectures to enable a distributed computing environment to provide support for
monitoring, failure detection, and analytics in IoT disaster scenarios. We face
a context where, every year, millions of people are affected by natural and man-
made disasters, whereby governments all around the world spend huge amounts
of resources on preparation, immediate response, and reconstruction. Recently,
the Internet of Things (IoT) paradigm has been extensively used for efficiently
managing disaster scenarios, such as volcanic disasters, floods, forest fire, land-
slides, earthquakes, urban disasters, industrial and terrorists attacks, and so on.
However, in a disaster scenario the communication/processing infrastructure
and the devices themselves may fail, producing either temporary or permanent
network partitions and loss of information. Moreover, it is expected that in the
years to come, IoT will generate large amounts of data, making processing and
analysis challenging in time-critical applications. Considering such challenges,
ADMITS targets the development of a architecture in which IoT, Fog, and Cloud
computing technologies participate to provide required capabilities for IoT data
analytics, real-time stream processing, and failure monitoring for environments
potentially subject to disasters. In this positional paper, we discuss the motiva-
tion, objectives, architecture, research challenges (and how to overcome them)
and initial efforts for the ADMITS project.



1. Introduction
Every year, millions of people are affected by natural disasters such as earthquakes,
tsunamis, volcano eruptions, hurricanes, tornadoes and floods, and governments all
around the world spend huge amounts of resources on the reconstruction and the prepara-
tion for such calamities [Rosas et al. 2016]. Only in 2016, the number of natural hazards
that hit the world was of 342, affecting a number of 564 million people and producing
an economic damage of US$154 billion [Guha-Sapir et al. 2016]. Moreover, man-made
disasters may lead to huge destruction in cases of terrorist attacks or war related events.

Recently, the Internet of Things (IoT) paradigm has been proposed to man-
age disaster scenarios. IoT refers to the seamless communication, monitoring, and
management of smart embedded devices with its counterpart, i.e. analog objects or
things. In the coming years, IoT is expected to bridge diverse technologies to enable
new applications by connecting physical objects together in support of intelligent deci-
sion making [Al-Fuqaha et al. 2015]. In disasters, IoT provides value to emergency re-
sponse operations in terms of improving cooperation, forecasting, and situation awareness
[Yang et al. 2013]. They have been proposed to localize victims in post disaster environ-
ments, achieve situation awareness, and monitor the environment [Ray et al. 2017].

In a disaster scenario the communication/processing infrastructure may fail, pro-
ducing temporary or permanent network partitions and loss of information. The IoT
infrastructure may involve wireless sensor networks communicating with Cloud infras-
tructure where data is analyzed, for example. Moreover, IoT potentially produces a large
amount of data to analyze (It is expected that IoT will generate 4.4 trillion GB by 2020
[Siozios et al. 2018]). In order to cope with large amounts of data, the Kappa architecture
is proposed for the processing and visualization of data streams [Kreps 2014]. Although
such an architecture can support the scalable processing and the deployment of several
data analytic algorithms on wireless sensor networks (WSN) and IoT data, they lack
robust and cost-communication effective approaches for the deployment of large scale
platforms.

Therefore, other architectures where data is analyzed at the edge of the network
have been proposed recently [Chiang and Zhang 2016][Cisco 2015]. In this big data con-
text, it is a great advantage to avoid the movement of a large volume of data towards
the Internet core, so that using Fog Computing, which provides computational resources
placed in the edge of the network and near to the sensors and IoT devices is an inter-
esting paradigm to study. Traditional data analysis however, has not yet addressed the
constraints of such distributed environment: to execute in a distributed fashion over de-
vices with limited energy and computational resources, in a context of possible failure,
and real-time requirements that a pre/post disaster scenario imposes. In this scenario, a
new generation of distributed analysis methods are required [Stolpe 2016].

The authors in [Ray et al. 2017] provide a good survey of IoT supported protocols
for disaster management, IoT cost-effective available market solutions for disaster man-
agement and IoT-based applications for disaster management systems. Moreover, IoT has
been used to provide services related to these disaster scenarios, such as crowd-sourced
IoT framework and real-time stream processing [Rauniyar et al. 2016]. IoT-based disas-
ter management usually includes sensor and/or smart devices networks used to monitor a
disaster sensible region (e.g., forest fire, flood, landslide disaster management, etc.). On



the other hand, devices/sensors may fail, messages can be lost and the network can be
disrupted. Hence, the detection of such failures and malfunctioning is crucial for warn-
ings of critical states, forecasting of disaster scenarios, or preventive measures aiming at
avoiding potential disasters, managing crisis or disaster situations.

The main goal of ADMITS is to develop or adapt algorithms, protocols and archi-
tectures to enable a decentralized distributed computing environment to provide support
for monitoring, failure detection, and analytics in IoT disaster scenarios, considering the
characteristics of IoT such as limitation of bandwidth, battery consumption of mobile
devices and smart sensors, which impose constraints to communication and dynamics
of communication due to mobility of the devices. Specifically, ADMITS research chal-
lenges include: (i) To design and evaluate data analytic methods that can be executed
over constrained environments in real-time; (ii) To design and evaluate distributed adap-
tive failure detectors for IoT environments considering communication and battery con-
straints, the dynamics of the network as well as the relevance (relative importance) of the
devices/sensors and the margin of failures that disaster scenarios in question can tolerate;
(iii) To design and evaluate an autonomic mechanism for provisioning heterogeneous pro-
cessing resources for IoT data processing in disaster scenarios; (iv) To design and evaluate
a distributed architecture to integrate the previous features including: (1) failure detection,
(2) data analytics, and (3) and real-time data stream processing.

The remainder of this paper is structured as follows: Section 2 introduces key
concepts of ADMITS. Section 3 describes the proposed methodology. Section 4 briefly
discusses related work. Section 5 concludes this paper.

2. Outlook of the ADMITS Proposal
ADMITS is based on the expertise of the teams in several complementary areas, including
large scale and mobile distributed computing and algorithms, fault tolerance (e.g. adap-
tive failure detection, replication), dynamic and heterogeneous systems, real-time stream
processing and data analytics, large scale data management, self-organized systems, and
post-disaster geo-location information gathering. Figure 1 depicts an ADMITS-enabled
ecosystem, highlighting underlying infrastructure along with participating technologies.

Distributed failure detection in IoT environments

IoT’s distributed and dynamic nature as well as energy, bandwidth and communication
constraints of sensors and devices present new challenges for the conception of an unreli-
able failure detector. Hence, inspired on the Impact FD, we intend to propose an adaptive
failure detector whose implementation is communication-cost efficient, since sending and
receiving data is one of the most energy consuming operations on mobile devices and sen-
sors, tackles with mobility of devices and network partition, and dynamically adapts to
the changes in relation to failure suspicions and environment.

For instance, approaches such as message combining or inclusion of detection
information in application messages should be considered. Moreover, in the current con-
ception of Impact FD, the node relevance (i.e., their impact) and the threshold values
are statically assigned in the beginning of the monitoring process and do not change. In
IoT context, the former should be dynamically re-evaluated based on network instabil-
ity, node energy consumption or another parameter of the environment that changes over



Figure 1. A prospecting ADMITS-enabled ecosystem.

time, while the latter should change based on the necessity of stronger or more relaxed
monitoring which can vary over time in disaster monitoring management.

Another point is that edge nodes are more stable, robust, and powerful than mobile
devices and sensors. Then, instead of a single monitoring node, several edge nodes could
have this role and exchange their trust level output providing, therefore, a more scalable
and robust failure detection. We can also consider, even if edge nodes are more reliable
than IoT, to have a second failure detector (a traditional one [Chandra and Toueg 1996])
in order to monitor edge nodes. In the case of an edge node failure, the tasks performed
by the faulty node would be replaced by another edge node.

Data analytics in IoT and disaster scenarios
On the basis of the dynamic nature of environments subject to disasters, any architectural
design must consider that any type of failures is feasible. When it comes to data analytics,
key aspects are required in order to make the system robust to failures, such as tolerating
cuts in the data pipeline in which sensed attributes are flowing, and seasonality that has
potential to modify the set of possible disasters. ADMITS considers investigations from
the two above challenges, seeking efficient and robust models that can be placed closer
to the disaster areas. By developing a hierarchical architecture, in which data analytics
occur at two levels, distributed Fog and centralized Cloud, ADMITS can take advantage
of the processing capacities located in each place.

When collecting data from the sensors, ADMITS applies feature selection meth-
ods that efficiently run at Fog (reduced processing capacity), not only reducing the amount
of data pushed towards the Cloud (network capacity constraints), but mainly provid-



ing fault resilience to such data. For example, under non-disaster conditions we might
have several sensors in a given area, producing hundreds of metrics every adjustable
time-interval that are fed to our analytic models, but suddenly, a considerable set of
sensors are lost due to a disaster, breaking the flow of data produced by them. In or-
der to detect such a scenario, the data analytics software invokes the failure detector
(FD) described above. Based on a threshold value and the trust level rendered by the
FD, it can take decisions about the confidence degree of IoT and collected data. AD-
MITS investigates alternatives to amend such effects, maintaining the representativeness
of collected data under disaster conditions in order to keep the computed models usable
[Shcherbakov et al. 2017, Bacciu 2016].

Another important aspect is related to the maintenance of analytic models, so the
accuracy of the models are kept at high levels. In this context, ADMITS investigates
incremental methods for handling seasonality of the disaster scenarios, removing some
learned concepts from the models in order to improve its accuracy. For example, during
the year, we might remove the rainy season feature from the model to include another
feature such as dry season, as fires are more susceptible to it.

Real-time stream processing system

IoT has experienced a large expansion in the last years due to the miniaturization and
cost reduction on the sensors and smart devices such as smartphones enabling continuous
sensing on the most diverse environments. Middleware for data analytics is considered
a key element in a IoT architecture and stream processing systems is one approach to
implement this middleware layer [Buddhika and Pallickara 2016].

Stream processing systems with time-critical requirements and which are also sub-
ject to infrastructure failures are two key challenges that the disaster scenario imposes to
stream processing systems. In this project, we propose to move processing towards the
edge of the network so as to avoid data movement towards the Internet backbone and im-
prove timely response. However, in this context, the stream processing system has to run
over constrained devices, prohibiting the use of costly models for supporting adaptation
to failures. We expect to use a hierarchical model to approach these issues.

In previous work [Morales et al. 2014], we have tolerated failures using check-
point techniques, taking into account device mobility and signal strength. In this project,
we propose to integrate the failure detection models specially designed for this context
to the monitoring phase of the adaptive stream processing system in order to plan the
execution of tasks over the available resources in the edge.

Distributed integrated architecture

Dealing with failures is a must for any disaster management system. Another requirement
is to be able to integrate wireless sensor networks (WSN), IoT, Fog and Cloud computing
infrastructures even in presence of failures and communication disruption. Data stream
collected and processed from WSN and IoT devices are then processed by data analytic
models using available resources in the Fog, aiming at decreasing the volume of data
sent to the Cloud. Thus, it is necessary to develop a distributed platform capable of
supporting an integrated view of the whole life cycle of a disaster management system
and supporting better decision support for people in charge of acting on disaster situations.



Such architecture will integrate the above three system components (data analytics, stream
processing, and failure monitor nodes) that will run in Fog nodes. The data analytics
software will also communicate with the Cloud.

3. Research Methodology
The ADMITS project has as general goal the design of efficient distributed information
systems, which support technologies atop IoT and WSN device infrastructures to afford
detecting, forecasting, and managing disasters. In order to achieve the main goal of the
ADMITS project, we defined a set of specific goals, which are elicited in the following:

1. Failure detection in IoT, where disaster can take place, is crucial since it allows
early warning of environment changes, notification of critical situation and fore-
casting of possible disaster. The failure detector should be adaptive and tailored to
the dynamic nature of IoT, its constraints in terms of hardware (e.g. low battery,
memory restriction, etc.), communication dynamics, heterogeneity of nodes, and
failure tolerance flexibility, also exploiting edge nodes which are more stable.

2. Data analytics algorithms using real-time processing systems should be designed
to execute efficiently over restrained IoT devices to provide fast answer in critical
pre and post disaster scenario tasks. We propose to explore efficient and robust
analytic models that can be placed closer to the disaster areas tolerating break-
ages on data monitoring due to disasters, and adapting along the year to different
seasons while keeping high accuracy operating levels.

3. We propose to explore real-time stream processing systems which are capable of
adapting themselves as a middleware to support data analytic in disaster scenar-
ios or environments prone to it. The deployment of processing tasks at the edge
of the network may improve response times in IoT-based applications. We pro-
pose to integrate a failure detection model in the monitoring phase of the adaptive
processing system in order to plan the execution of the tasks over the available
resources in the edge.

4. In light of the dynamic nature of the environment, energy power of the devices,
the amount of data produced by the IoT, and large scale issues, the development
of a distributed architecture to support the integration of the multiple underlying
enabling technologies to afford disasters forecasting or managing is a great chal-
lenge. Furthermore, the deployment of data analytics models should be optimized
according to the capabilities and limitations of the Fog (data streams) and commu-
nication with the Cloud (intensive batch processing) computing infrastructures.

We will validate our approach by conducting experiments on the FIT IoT-LAB
[Adjih et al. 2015], a large-scale experimental testbed allowing design, development, de-
ployment and testing of innovative IoT applications. We will also adopt the Brazilian
DOJOT [Platform 2018] platform for the development of testbeds which allow the moni-
toring of IoT devices and connecting them to Fog and Cloud platforms for analytics. IoT
connectivity within the partners’ countries can be achieved using SigFox [SigFox 2018],
a networking service provider specialized in IoT connectivity which can support the de-
ployment of our testbeds, integrating the solutions with the DOJOT platform, for example.

A different approach for modeling large-scale IoT systems and exploring fault-
tolerance strategies is relying on an Agent based Model (AbM) simulator. Specifically,



each agent can be treated as an individual and independent entity in the environment,
accounting for each individual IoT device, Fog machine or Cloud server. Communication
is also accounted for by means of local connection (wired/LAN) or long-distance signals.
Also, since each entity in the simulation is independently programmable, behaviour of
each of the agents can be made to simulate device actions. The UDP team will test this
approach using gro [Jang et al. 2012, Gutiérrez et al. 2017], a bacterial colony simulator
able to handle large amounts of bacteria simultaneously.

4. Related Work
Due to the large scope of the project, we group related work in four main categories.

Distributed failure detection in IoT environments

In distributed systems, detection of crashed devices and network disruptions does not
occur in real-time and is not always reliable since, sometimes, it is not possible to
know whether a device has really failed, a message has been lost or if the device
and/or the network communication are just slow. Proposed by Chandra and Toueg in
[Chandra and Toueg 1996], unreliable failure detection (FD) can be seen as an oracle that
gives (not always correct) information about node failures (either trusted or suspected).
It usually provides a list of nodes suspected of having crashed. It can make mistakes
by erroneously suspecting a not crashed process (false suspicion), or by not suspecting a
process that has actually crashed. If the FD detects its mistake later, it corrects it.

However, disaster management systems are usually interested in information
about the reliability of the IoT monitoring network as a whole and not each individual
device (sensor), and can often tolerate a certain degree of failures due, for instance, to
redundancy of sensors that perform the same task. Furthermore, devices may be het-
erogeneous having different importance (relevance) or roles and, thus, their failures may
have distinct impact on the system. In [Rossetto et al. 2018], we propose an unreliable
failure detector, the Impact FD, where a node monitors a set of nodes (sensors, devices,
processes), and the FD oracle of the monitor node outputs its trust with regard to the set
of the monitored nodes as a whole and not for each of these nodes. The set is considered
“trusted” if it behaves correctly for a specific purpose even in the face of failures, i.e., the
current set of monitored nodes that the FD consider not failed are able to maintain the
normal monitoring functionality. Furthermore, the Impact FD allows to assign different
relevance values (relative importance) to nodes and define a lower bound (threshold) over
which the confidence degree on the set of monitored nodes is ensured, offering, therefore,
a degree of flexibility for failure and false suspicions.

Data analytics in IoT and disaster scenarios

The disaster scenarios represent a typical non-stationary data stream [Gama 2010] envi-
ronment in which the concepts are not static, but they evolve over time. In this scenario, an
important phenomenon called concept drift [Gama et al. 2014, Webb et al. 2016] may oc-
cur. It can be described as a significant change in the data distribution. This phenomenon
is especially challenging when noise is present within the data. In addition, models trained
using data from non-disaster scenarios must be able to detect novel occurrences of disas-
ters and update the model in order to incorporate this knowledge. In machine learning,
this task is referred to as novelty detection [Faria et al. 2016]. Another related technique



is progressive learning, in which data classification is carried out, and further addition
of data is then either associated to existing classes or assigned to an entirely new class
[Venkatesan and Er 2016].

Real-time stream processing system

Previous work [Hidalgo et al. 2017] has shown that autonomic stream processing systems
are able to deal with burst of traffic that can be generated in the context of disaster scenar-
ios, adjusting the internals of the systems to the current traffic. This process may enable
our system to deal with the complexity of managing data analytics algorithms over envi-
ronments subject to failures and integrate monitoring, planning, and execution capabilities
so as to satisfy some utility goals (e.g., maximize performance, optimize resource usage,
guarantees on processing reliability, etc.). In order to achieve good QoS for time-critical
applications, such as data analytics for disaster scenarios, several works have been pro-
posed without putting the focus on failure [Cardellini et al. 2018][Cardellini et al. 2017].

Distributed integrated architecture

The two works closest to our proposal are [Uddin et al. 2016] and [Furquim et al. 2018].
In [Uddin et al. 2016], Uddin et al. propose SCALE2 which engages a multi-network
approach to drive data flow from IoT devices to cloud platforms where the analytics are
executed. The system is organized in a hierarchical approach for managing a community
of IoT devices while focusing on resilience methods that can be employed at different
tiers in the hierarchical architecture. The article [Furquim et al. 2018] presents a fault-
tolerant three-tier (IoT, Fog, and Cloud) system with data analytics, for the detection
and forecasting of flood disasters and the issuing of alerts. Contrary to our approach,
that provides a flexible failure detection that tolerates a margin of failures, in those sys-
tems fault-tolerance is embedded in the system by anticipating the risk of communication
breakdowns and/or the destruction of the nodes. Dynamics of the environment are not
taken into account, and data are collected by the fog nodes and analyzed by the Cloud
nodes, while in our approach data analytics are performed at fog nodes for communica-
tion effectiveness sake.

5. Conclusions and Future Work

In this paper, we present the ADMITS proposal and discuss several issues related to the
current IoT-based disaster management solutions. With that in mind, the goal of the
project is to design and evaluate a distributed architecture to integrate failure detection,
data analytics, and real-time data stream processing in IoT disaster scenarios. In future
work, we will present results from the architecture implementation which includes exper-
imental validation to demonstrate the feasibility and potential benefits of ADMITS.
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