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Abstract. In a scenario with increasingly mobile devices connected to the In-
ternet, data-intensive applications and energy consumption limited by battery
capacity, we propose a cost minimization model for IoT devices in a Mobile
Edge Computing (MEC) architecture with the main objective of reducing total
energy consumption and total elapsed times from task creation to conclusion.
The cost model is implemented using the TEMS (Time and Energy Minimiza-
tion Scheduler) scheduling algorithm and validated with simulation. The results
show that it is possible to reduce the energy consumed in the system by up to
51.61% and the total elapsed time by up to 86.65% in the simulated cases with
the parameters and characteristics defined in each experiment.

1. Introduction
Billions of smart devices can now connect to the Internet in the form of Internet of Things
(IoT) due to advances in information technologies communication [Al-Fuqaha et al. 2015].
According to an IDC report, by 2025, there will be 41.6 billion IoT devices generating
79.4 ZB of data [IDC 2019]. Mobile Edge Computing (MEC) is a network architecture
designed to provide low latency and better QoS [Haouari et al. 2018] to end-users. It is
focused on mobile networks such as 5G, ideal to the connectivity of current mobile de-
vices. Most applications today tend to offload task processing and data storage to remote
servers, usually to Data Centers in the Cloud, geographically located away from the end-
user and the IoT device, adding too much communication latency [Aijaz 2016]. MEC
allows provisioning of Cloud Computing (CC) services close to mobile devices, bringing
processing and storage closer to cellular base stations [Yu 2016].

However, energy consumption is still an open issue on mobile device networks,
such as MEC environments [Sarangi et al. 2018]. Most IoT sensors and actuators are
small and run on batteries, having huge energy limits. Given the fact that IoT devices
handle many data, and require much energy to process them, reducing energy consump-
tion in networks with IoT devices is a goal worth exploring. To solve this problem, a
cost-minimization model was developed for IoT devices in a MEC environment that does
communicate with the Cloud and has as its main objective minimize the total energy con-
sumed by the system and the total elapsed time from task creation to conclusion. Also, we
propose the TEMS scheduling algorithm that implements the cost minimization model,
calculating the cost associated with the allocation options in the system and choosing
one that yields the lesser cost for the task’s execution. The experiments show that our
approach is energy and time effective in different test case scenarios.

The remainder of this paper is organized as follows. Section 2 presents some of
the previous related work found in the literature. Section 3 presents the cost minimization



model for the system with three different allocation policies, (1) local processing in the
IoT device, (2) local processing in the MEC server and, (3) remote processing in the
Cloud. Section 4 introduces the heuristic TEMS scheduling algorithm designed to solve
the system cost minimization model. Section 5 details the implementation and shows
the results of the experiments using the TEMS scheduling algorithm. Finally, Section 6
concludes the paper.

2. Related Work
The development of cost models that aim to reduce energy consumption and response la-
tency to applications in IoT systems is a topic discussed since the creation of the first Edge
Computing architectures [Satyanarayanan et al. 2009]. The use of CC as the only option
to offload tasks adds greater latencies to IoT applications. However, it can be used as an
alternative if the resources of the local network are exhausted. There are few works that
use CC as an option to download tasks [Sarangi et al. 2018] [Yu et al. 2018]. Others, such
as in [Wan et al. 2018], [Wu and Lee 2018], and [Gedawy et al. 2018], use Fog Comput-
ing to offer local processing to IoT devices, but without using CC. The use of MEC occurs
in [Sarangi et al. 2018], [Zhang et al. 2018], [Wang et al. 2018], and [Yu et al. 2018]. In
contrast, our model has a three-layer architecture altogether, which includes MEC and CC
services in addition to local IoT computation. Thus, this approach enables a more detailed
cost model, including not only energy and time consumed during processing but also the
cost of data transmissions.

As for the variables used by the cost minimization model, the energy consumption
of task processing is unanimous, used by all works mentioned. However, the energy con-
sumption for data transmissions is restricted to [Zhang et al. 2018], [Gedawy et al. 2018],
and [Wang et al. 2018]. The processing time of tasks is also used by the majority, with the
exception of [Wan et al. 2018] and [Wu and Lee 2018], while the time spent on data trans-
missions is restricted to [Sarangi et al. 2018], [Zhang et al. 2018], [Gedawy et al. 2018],
[Wang et al. 2018], and [Yu et al. 2018]. Energy consumption when there is no pro-
cessing, that is, with the equipment in idle state, is used only in [Wan et al. 2018] and
[Wu and Lee 2018]. Our model also includes the battery level of the IoT devices, used
only in [Zhang et al. 2018], [Gedawy et al. 2018], and [Wang et al. 2018].

All these variables are condensed in our model, including a monitor for battery
levels from IoT devices and two types of tasks, critical and non-critical, the former
having to deal with deadline constraints. Finally, we use the DVFS technique, allow-
ing dynamic minimization of energy and time during task processing [Chen et al. 2018]
[Jin and Goto 2012]. These combined characteristics enable a more refined approach aim-
ing to reduce both energy and time consumed for task allocation.

3. System Cost Minimization Model
In this section we present the detailed proposed cost minimization model with three task
allocation policies, (1) local processing in the IoT device, (2) local processing in the MEC
server, and (3) remote processing in the Cloud.

3.1. Network Model
The system network has a finite set D = {1, 2, 3, ..., d} of mobile IoT devices, S =
{1, 2, 3, ..., s} local MEC servers and W = {1, 2, 3, ..., w} wireless communication chan-
nels. Each local device or MEC server can have zero or more tasks. The system has a total
of A = {1, 2, 3, ..., a} tasks. Each task Ai is represented by a tuple Ai = (Ci, si, di, ti),
for i ∈ A.



For each taskAi,Ci represents the number of CPU cycles required for its complete
execution, si and di represent, respectively, the source code size and data entry and ti
represents the tasks deadline, that is, the maximum time to complete the task. Tasks with
deadline equal to zero are not critical tasks. Also, if a task i has a communication channel
associated to it, then hi = w, otherwise hi = 0. Thus, hi ∈ W ∪ 0 and hi is an element of
set H , where H = {1, 2, 3, ..., a}.

3.2. Local Computing in the IoT Device
Each j ∈ D mobile device on the network has one or more CPU cores. Thus, the process-
ing cores available on network for the j device are given by PLj = {plj,1, plj,2, plj,3, ..., plj,n}.
Every core plj,k ∈ PLj has a value of 0 or 1, 0 if it is vacant and 1 if it is busy. For vacant
CPU cores idle energy is counted and for occupied CPU cores dynamic energy (Ei,local).
Each core has an operating frequency (flocal,j,k), i.e. processing capacity, an effective
commutative capacitance (Clocal,j,k), depending on the chip architecture [Yu et al. 2018],
and a voltage supply (Vlocal,j,k). In addition, each task i has a total number of CPU cycles
(CTi) for its execution.

So it is possible to calculate the total execution time of task i ∈ A by a CPU
core j ∈ PL using CTi [Tanenbaum and Austin 2012], as well as the dynamic energy
consumed during the execution which is ∝ CV 2f [Liu et al. 2007].

Ti,local =
CTi

flocal,j,k
(1)

Pi,local = Clocal,j,k ∗ V 2
local,j,k ∗ flocal,j,k (2)

Ei,local = Pi,local ∗ Ti,local (3)

Considering battery level and latency as model constraints, a Dj device must de-
cide whether it is more appropriate to perform the task locally or remotely. As the battery
level is a critical factor in the decision, the system will appreciate a policy that reduces
energy consumption. The local cost of one task i can be expressed by:

Costi,local = ulocalT ∗ Ti,local,total + ulocalE ∗ Ei,local (4)

In Equation 4 ulocalT and ulocalE ∈ [0, 1] and are used to represent the weight of
time and energy, respectively. As mentioned in [Wang et al. 2018] these coefficients work
as a trade-off between execution time and energy consumption, being used to prioritize
minimizing one of the costs.

3.3. Local Computing in the MEC Server
Local MEC servers, as in IoT devices, are expected to have multiple CPU cores. Thus, the
CPU cores available on a local server Sj are given by PSj = {psj,1, psj,2, psj,3, ..., psj,n}.
Each core psj,k has an operating frequency (fserver,j,k), an energy capacitance coefficient
of the chip architecture (Cserver,j,k) and a supply voltage (Vserver,j,k).

Communications that take place between the IoT device and the local server and
use the same wireless channel cause mutual interference between the each other, ex-
pressed as Ii. In this case, the data transfer rate ri(hi) for offloading the task i in the
corresponding channel hi is attenuated according to Shannon’s formula [Yu et al. 2018]:



ri(hi) = W ∗ log2
(
1 +

pm ∗ gj,m
N + Ii

)
(5)

Ii =
∑

n∈A|{i}:hn=hi

pm′ ∗ gj′,m′ (6)

For Equation 5, W is the channel bandwidth in Hz, gj,m represents the channel
gain between the mobile device m and a server local, represented by j. The variable pm
represents the transmission power of the mobile device m when offloading the task i to
the local server. N represents the power of the thermal noise of the wireless channel,
hn represents the wireless channel associated to task n and Ii is the mutual interference
between transmission on the same channel.

Unlike processing in the device, processing in the local server requires data (di)
and code (si) from the application to be transmitted to the server and the generated results
(d′i) must be transmitted back to the origin. Thus, the time required for a j ∈ D mobile
device to transmit data and download results from the server is given by:

Ti,mec−up(hi) =
si + di
ri(hi)

(7)

Ti,mec−down(hi) =
d′i

ri(hi)
(8)

The total time required to complete the task execution in the local server considers
Ti,mec−up(hi) and Ti,mec−up(hi) and the task execution time Ti,mec, calculated the same
way as for the IoT devices. The total time is given by:

Ti,mec,total = Ti,mec−up(hi) + Ti,mec + Ti,mec−down(hi) (9)

The energy consumed for the transmission of data from the IoT device to the local
server and from the local server to the IoT device, are calculated by the power consumed
in the data transfers (pwireless) times the elapsed time (Ti,mec−up(hi) or Ti,mec−down(hi)).
Finally, the dynamic energy consumed is calculated the same way as for the IoT device,
Pi,mec ∗ Ti,mec, and the total dynamic consumption is given by:

Ei,mec,total = Ei,mec−up(hi) + Ei,mec + Ei,mec−down(hi) (10)

The cost equation for the local server is expressed as follows:

Costi,mec = umecT ∗ Ti,mec,total + umecE ∗ Ei,mec,total (11)

3.4. Remote Computing in the Cloud
The Cloud is assumed to have unlimited resources, which is why cores are not distin-
guished. Its equations are very similar to those of the local MEC server with some more
components such as time spent and energy consumed during data transmission between
MEC server and the Cloud, added to those of the transmission from IoT devices to MEC
servers. The total elapsed time and total energy consumption for the Cloud are as follows:



Ti,cloud,total = Ti,mec−up(hi) + Ti,mec−cloud−up + Ti,cloud +

Ti,mec−cloud−down + Ti,mec−down(hi)
(12)

Ei,cloud,total = Ei,mec−up(hi) + Ei,mec−cloud−up + Ei,cloud +

Ei,mec−cloud−down + Ei,mec−down(hi)
(13)

Finally, the cost to run a single task i in the Cloud is given by:

Costi,cloud = ucloudT ∗ Ti,cloud,total + ucloudE ∗ Ei,cloud,total (14)

The idle state of the Cloud is not considered, since the CPU offer is virtually
infinite. Therefore it does not make sense to account for this cost, which would cause the
system to have equally infinite cost if considering energy consumption for CPU cores in
idle state.

3.5. System Minimization Cost Equation
The system minimization cost equation is developed as an Integer Linear Problem (ILP).
For each of the system’s scheduling policies there is a specific cost equation. The cost
of each task i is given by a minimizing equation and the total system cost is given by the
sum of all tasks costs and idle energy costs, calculated for the hardware that is waiting for
processing load.

Costi = min(α ∗ Costi, local,
β ∗ Costi,mec,

γ ∗ Costi,cloud)
(15)

Costsystem =
A∑

i=1

Costi + α ∗ Elocal,idle + β ∗ Emec,idle (16)

3.6. Constrains on Battery Level for IoT Devices
A healthy battery level is essential for the proper functioning of IoT devices. If the bat-
tery level Bi,local of a battery from device i is below a Lower Safety Limit (LSL), task
allocation on the device is disabled, to preserve the functioning of the equipment with
the remaining battery. If Bi,local reaches zero, all tasks generated by the device i are can-
celed. Therefore, all cost equations for allocating tasks on the IoT device are subject to
the following constrains: Bi,local > Ei,local, Bi,local > Ei,mec−up(h) and Bi,local > LSL.

4. Time and Energy Minimization Scheduler (TEMS)
The TEMS heuristic scheduling algorithm was developed in order to execute the system
cost minimization model with reduced computational cost. It has complexity O(n2).

In Algorithm 1 step 1 defines the data sets of the IoT devices, MEC servers and
communication channels. The battery level of the IoT devices is collected and the LSL is
set. The algorithm collects the number of CPUs available in each IoT device and in the
MEC servers, their operating frequencies and supply voltages.

In step 2 tasks are classified between critical and normal tasks. The time and
energy consumption for task processing on the different CPU cores of the network are



Algorithm 1: Time and Energy Minimization Scheduler (TEMS)
Result: Task mapping to the processing nodes

1 execute Step 1 - Collection of system information and initialization
2 repeat
3 execute Step 2 - Task allocation
4 execute Step 3 - Task conclusion monitor
5 execute Step 4 - New tasks and device battery level monitor
6 until user decides to keep running;

calculated, as well as the time and energy consumption of the data transmissions, for
MEC servers and for the Cloud. Critical tasks are ordered by deadline, and allocated by
lowest total time. Then normal tasks ordered by creation time and allocated by minimum
total cost. Critical tasks are the first to be allocated due to the sensitivity of the deadline.

In step 3 tasks are monitored for their completion status, and when completed, the
CPU core resources are released and made available for other allocations in step 2. Tasks
being executed in the Cloud don’t need to release resources since the Cloud is supposed
to have unlimited resources, absorbing any number of tasks. The battery level check is
performed only for mobile IoT devices, since the local servers are not mobile and have
external power that allows them to operate uninterrupted. Task cancellation may occur if
the elapsed time is higher then the deadline or if the IoT device’s battery level runs out.

Finally, in step 4, the battery level from each IoT device is collected, as well as
newly created tasks. Execution continues as long as there are tasks being created.

5. Implementation and Evaluation
This section explains the simulation details and the different experiment scenarios used.

5.1. Simulated hardware architecture and application parameters
The simulated network considered as IoT devices Arduino Mega 2560 boards, with op-
erating frequencies of 16 MHz, 8 MHz, 4 MHz, 2 MHz and 1 MHz and corresponding
supply voltages of 5 V, 4 V, 2.7 V, 2.3 V and 1.8 V. MEC servers were composed of 5
Raspberry Pi 4 Model B boards, each board with a Quad-core Cortex-A72 1.5GHZ (ARM
v8) 64-bit, summing a total of 20 CPU cores per server. The CPU cores have operating
frequencies of 1500 MHz, 1000 MHz, 750 MHz and 600 MHz and corresponding supply
voltages of 1.2 V, 1 V, 0.825 V and 0.8 V. The capacitance of the CPU cores is set to 1.8
nF. For the Cloud it was chosen Data Centers with Intel Xeon Cascade Lake processors
of 2.8 GHz per CPU core, reaching up to 3.9 GHz with Turbo Boost on1.

For data transmissions, it was established that both 5G and fiber optics communi-
cations could reach speeds of up to 1 Gbps and latency was set at 5ms [Gupta and Jha 2015]
[Brogi et al. 2018]. Also two vehicular applications were defined [Jansson 2005] for the
experiments as shown in Table 1.

5.2. Experiments and Results
The scenarios tested in the experiments varied parameters such as computational load of
each task, coefficients for energy consumption and elapsed time, size of data entry and
results, task generation rate, critical task deadline, level of batteries for IoT devices and

1Technical can be found in the electronic components datasheets.



Table 1. Characteristics of the chosen applications.

Characteristics Application 1 Application 2
Task generation rate (seconds) 10 0,1
Data entry (mega bytes - MB) 36,3 4
Results (bytes) 1250 625
Computational load (millions
of CPU cycles) 2000 20

Critical Tasks (%) 10 50
Deadline for critical tasks (ms) 500 100

use of DVFS to see how the TEMS algorithm would respond to task allocation and energy
and time reduction. Some of the results are discussed below.

5.2.1. Varying the tasks computational load

For this experiment, a scenario with 500 tasks and 100 IoT devices was chosen so that
each IoT device could create five tasks. Two different cases were designed, (1) with 1
MEC server and (2) with 2 MEC servers. In Figure 1 it is shown the results for the load
of Application 1, that is specified in Table 1.

Figure 1. Processing load for Application 1 defined to 2.000 ∗ 106 CPU cycles.

The energy and time coefficients were set, respectively, at 4/5 and 1/5, that is, a
high weight was given to the energy consumed, so that it could be minimized. In Figure 1
from 1.a to 2.a the increase in the number of MEC servers made fewer tasks to allocated
in the Cloud. This positively impacts the total energy consumed. Compared to a scenario



with 500 tasks and 100 IoT devices, but without the use of MEC servers, the reduction in
energy consumption for case 1 was 42.51%, while for case 2 it reached 44.71%. Thus,
the use of MEC servers helps the system to lower the total energy consumed.

With Application 2, that has lower load compared to Application 1, the allocation
profile changed. Most allocations took place on the device itself, regardless of the num-
ber MEC servers. The cause of this phenomenon is due to the low processing load of
Application 2. The hardware of the IoT devices presents higher energy consumption per
CPU cycle, however, it does not require data transmissions, which add energy cost and
elapsed time to the system. Therefore, for a low processing load, IoT devices are the first
allocation option.

5.2.2. Varying coefficients for energy consumption and elapsed time

This experiment used Application 2 with 2∗106 CPU cycles, instead of 20∗106. Each case
has 500 tasks, 100 IoT devices, and one MEC server. The coefficients used for energy
were 1/5, 2/5, 3/5, 4/5, and the time coefficients were respectively 4/5, 3/5, 2/5 and
1/5. These pairs of coefficients were chosen to observe how prioritizing the minimization
of energy or time could impact the results.

Table 2. Costs for Application 2 with a load of 2∗106 CPU cycles, varying the cost
coefficients for energy and time. ETotal in W*s and TTotal in seconds.

Case Cost ETotal TTotal f (MHz) T (V) Policy
CE1.0 0,01859 0,14550 0,03336 1.500 1,200 MEC
CE2.0 0,02597 0,14276 0,03469 750 0,825 MEC
CE3.0 0,03318 0,14276 0,03469 750 0,825 MEC
CE4.0 0,03544 0,07040 0,25000 8 4,000 IoT

Table 2 lists minimum costs perceived by the system task scheduler for each case.
Cases 2 and 3 had its lowest cost in the same allocation option. In Case 1 the lowest cost
occurred for the MEC server, with DVFS configured to 1500 MHz and 1.2 V. As for Case
4, with 4/5 for energy and 1/5 for time coefficients the allocation took place on the IoT
device itself, with DVFS configured at 8 MHz and 4 V.

To reduce energy consumption the best option is 4/5 and 1/5 for energy and time
coefficients, reducing energy consumption up to 51.61% for normal tasks compared to the
other cases. If the focus is on reducing task completion time, setting energy coefficients to
1/5, 2/5 and 3/5, with their corresponding time coefficients, one can achieve a reduction
of up to 86.65% in the completion of normal tasks compared to the most costly case.

5.2.3. Other experiments and Findings

Varying the size of the application data entry had a huge impact on energy consumption
and elapsed times. Big data entry consumes a lot of energy and take to long to transfer
data. An approach with more tasks and less data per task had 23.92% and 29% cost
decreases for energy and time in the simulated scenarios.

For critical task deadline it was observed that very low deadlines presented prob-
lems for the simulated applications, since the available allocation policies had difficulty
in completing the critical tasks in an adequate time. This caused several tasks to be can-
celled.



Experiments for battery level showed that very low battery levels quickly reach
LSL and make IoT devices unavailable for processing. Very high computational loads
also impacts battery level negatively. Therefore, a battery with a healthy energy level and
adequate task processing loads, allows the allocation to be carried out on the IoT device,
without making it unavailable due to lack of battery.

Finally, experiments with DVFS activated had total energy consumption decreased
by 13.736%, while the total time increased by 28.32%, while compared to DVFS off. This
demonstrates the effectiveness of the system model, as well as the scheduling algorithm,
in minimizing total energy consumption. The total time may have been longer in the ap-
proach with DVFS, but it is not problematic because the application tasks were completed
within the time limit imposed by the deadline.

6. Conclusion
In an environment with an accelerated generation of large volumes of data and mobile
devices connected to the Internet with restricted QoS requirements and battery limita-
tions, energy and time reduction are mostly needed. The TEMS scheduler could choose
the best allocation options in the system, reducing both energy consumption and elapsed
time. Experiments show that the adequate adjustment of the cost coefficients was essential
for the final cost perceived by the scheduling algorithm. Adequate coefficients allowed
the system’s energy to be reduced by up to 51.61% or the total times to be reduced by
up to 86.65%, ending critical tasks before the deadline. The system has become more
sustainable, and the user experience has not been affected.

The use of MEC servers helped extend the battery life of the IoT devices and made
task execution more agile. Also, using the DVFS technique brought interesting results,
helping to reduce the overall energy consumption. Major contributions are the TEMS al-
gorithm, the addition of transmissions to the model, accounting for idle costs, calculating
transmission rate interference, use of the DVFS technique, and also the interaction with
CC to provide resources whenever the local network becomes saturated. Further analysis
will be made for new cost variables to the model, such as financial and storage costs,
which can help make more assertive task allocations.
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