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Abstract. The Internet of Things (IoT) is emerging as a multi-purpose 

technology with enormous potential for improving the quality of life in several 

areas. In particular, IoT has been applied in agriculture to make it more 

sustainable ecologically. For instance, electronic traps have the potential to 

perform pest control without any pesticide. In this paper, a smart trap with IoT 

capabilities that uses computer vision to identify the insect of interest is 

proposed. The solution includes 1) an embedded system with camera, GPS 

sensor and motor actuators; 2) an IoT middleware as database service 

provider, and 3) a Web application to present data by a configurable heat 

map. The demonstration of proposed solution is exposed and the main 

conclusions are the perception about pest concentration at the plantation and 

the viability as alternative pest control against traditional control based on 

pesticides. 

1. Introduction 

It is unquestionable the importance of agriculture for humanity, since it provides foods 

and medical products. However, some types of insects (called pests) are undesirable in 

agriculture as they decrease productivity as well as cause considerable financial losses.  

Taking the example of coffee culture, according to [Damon 2015], one of the most 

problematic pests is known as Coffee-Berry-Borer - CBB (Hypothenemus hampei). 

They are small black beetles, have small wings and the adult’s females measure 1.7 mm 

in length. The females are responsible for piercing the coffee fruit and putting their 

eggs. The larvae live inside the fruit, usually feeding only one seed (the fruit has two 

seeds) partially or totally destroying the fruit – as seen in Figure 1. As [Carvalho 2016] 

mentions, these beetle attacks the green fruits, mature and dry ones. 

According to [Pereira 2006], [De Souza et al. 2016] and [Medeiros and Lima 2016], the 

CBB in coffee-growing may causes the following damages: 1) premature loss of fruit; 

2) reduction of grain weight (quantitative loss); 3) reduction of coffee beverage category 

(qualitative loss). 

 

 



  

 

Figure 1: The coffee-berry-borer (CBB): (1) its body shape; (2) in a coffee fruit 
and their larvae growing inside (right side). 

As [Carvalho 2016] describes, there are some strategies for CBB control: 1) Chemical: 

use of insecticides with active ingredients; 2) Homemade traps: made from plastic bottle 

using attractive substance formulated to coffee powder and ethanol; 3) Biological: use 

of fungi and insects, naturally enemies; 4) Cultural: harvest well done and eradicate 

abandoned plantations. 

According to [Bustillo and Villalba 2004], the chemical control is the most widely 

applied for efficiency and practicability reasons. However, all insecticides available in 

market are extremely toxic and may cause health problem in humans and damage in 

nature life. These insecticides are also expensive and require several applications in the 

plantations during the year. 

Based on survey published at [Martineau and Conte 2017], new solutions have been 

attempted motivated by the evolution of a series of technologies such IoT, cloud 

computing, electronic traps, and advanced insect’s identification techniques. The Digital 

Agriculture is emerging as a trend offering technological artifacts to face the problems 

related to plantations on farms. [Connolly 2018] mentions that plenty of these artifacts 

can be combined to build an end-to-end solution and provides an innovative strategy for 

CBB population control. The key objective is protecting the human health and natural 

life. Secondary objectives are decrease economic cost pest control, the possibility to 

monitor the trapping operation and to receive the effectivity feedback in real-time. 

This paper is organized as follows. Section 2 describes the related works. Section 3 

presents the proposal, details the solution, and describes the software and hardware 

elements. Section 4 presents and analyses the obtained results. Section 5 concludes the 

paper and suggests future works.  

2. Related Works 

In order to compose this paper, two main subjects were researched: insect identification 

sensors and trap construction technique. According to [Santos et al. 2019], [Wang 2012] 

and  [Potamitis and Rigakis 2016], the most common sensors are shown in Table 1: 



  

Table 1: Common sensor types for insect identification 

Sensor type Description Suitable for 

Acoustic sensor 

[Santos et al. 2019] 

Microphone reads the sound emitted by 

insect´s wing beat. Ideal for insect with 

large wing insects. 

Large wings insects 

such Aedes aegypti 

Optical sensor 

[Santos et al., 2019] 

[Potamitis and 

Rigakis 2016] 

A photodiode reads the flying insect 

light beam reflection and a 

microprocessor performs the wing beat 

frequency analysis. 

Large wings insects 

such Aedes aegypti 

Camera sensor 

[Wang 2012] 

Captured images are analyzed by a 

software searching insect body patterns 

Large body insect 

and small wings 

such beetles 

 Both acoustic and optical sensors are based on wing beat frequency analysis and, 

therefore, suitable for insects with noising large wings. Whereas the camera sensors 

work better when the insect has large and dense body. For this reason, camera sensor is 

more suitable for CBB identification and it was utilized in this work. 

The trap construction technique was inspired by the paper [Santos et al. 2019] where 

describes the fan-based traps. 

3. Proposal and Prototyping 

The Figure 2 illustrates the end-to-end solution overview that is composed by 1) the 

smart trap structure, including the embedded hardware (GPS sensor, batteries, relays, 

microprocessor board); 2) an IoT middleware deployed on a cloud computing 

environment; 3) an Web application built over geo-analytic framework for data 

visualization. 

 

Figure 2: End-to-end solution overview. 

Briefly, whenever a CBB is captured, the embedded software reads the geo localization 

(latitude and longitude), builds a message and sends it to an IoT middleware. The IoT 

middleware uses its internal database to store the message. On the other side, the web 



  

application requests the data from IoT middleware and render the heat map representing 

the captured pest concentration.  

3.1. Smart Trap 

Figure 3 shows the smart trap main components. The embedded hardware is composed 

by a Raspberry version 3 – [RPF  2020], a Raspian Buster version September 2019 as 

Operation System (a Linux system flavor). The embedded hardware container also 

includes a GPS sensor, two-channel relays - to actuate the DC (Direct Current) fans, 

two batteries (5V pack to supply the Raspberry and 12V pack to supply the fans). In 

total, four fans are used, one fan for capture actions and three fans for eject actions.  

A specific attractive substance must be used to attract the CBB. According to [Medeiros 

and Lima 2016], this attractive substance can be formulated by mixing methanol, 

ethanol and coffee powder. In order to spread the substance smell, there is a software 

component responsible for actuate all Eject DC Fans every 180 seconds. 

The camera keeps taking pictures all the time. When any insect enters by the trap 

entrance, the sequential pictures are delivered to a specific software component 

responsible for the image processing which search for CBB size body pattern. This 

software component extends a computer vision library. 

As soon this software component (based on image processing results) decides that the 

insect(s) must be captured, the Capture DC Fan is actuated pushing the CBB(s) against 

the trap cage where is(are) trapped and killed. The trap cage is filled by water and 

detergent. Such mixing has arresting function. Additionally, a software component 

reads current geo localization from the GPS sensor, creates a specific message (with 

latitude, longitude, and the number of captured CBBs) and send it to an IoT 

Middleware. The connectivity from Raspberry Pi to the IoT Middleware is based on 

Wi-Fi 802.11ac standard, specified by [Wi-Fi Alliance 2020]. Otherwise (the 

component decides that all insects must be ejected), Eject DC Fans are actuated and 

expels the beetle out of the trap. The software internal logic is further explained in next 

section. 

 

Figure 3: Illustration of Smart Trap components. 

Figure 4 shows some prototyped trap pictures. By the front view (Figure 4-a), it is 

possible to see the entrance, the capture DC fan, and the embedded hardware container. 



  

By the back view (Figure 4-b), the 3 DC fans for eject can be seen. Finally, the camera 

and the cage are seen by the internal view (Figure 4-c). 

As explained by [Damon 2015], given the little capacity of flight of CBB, the trapping 

operation includes to move slowly the smart trap structure through coffee plantation 

while CBB specimens are going to be attracted and captured. 

 

 

Figure 4: Photos of the Smart trap prototype:  
(a) front view; (b) back view; (c) internal view. 

Figure 5 illustrates the state machine diagram implemented by the main software 

component. When the state DETECTION MODE is current, the software component 

continually performs the image processing (detailed in Section 3.2) whose result is how 

many CBB´s and unknown insects were found. If only CBB´s were found (one or 

many), the state goes to CAPTURE MODE. Otherwise (i.e. some unknown insect 

found), the state changes to EJECT MODE. During the CAPTURE MODE, the capture 

fan is actuated in order to push the CBB(s) to trap cage where it is captured and killed. 

Then the geo-localization is retrieved from GPS sensor, a message containing the 

latitude, longitude and number of CBBs is built and it is sent to IoT middleware where 

the message is stored. On the other hand, in EJECT MODE, all three eject fans are 

actuated in order to expel the unknown insect(s) (one or many). 

 

Figure 5: State machine diagram. 



  

3.2. Image Processing 

As mentioned previously, the image processing is performed during the DETECTION 

MODE and its goal is count how many CBBs were found as well how many unknows 

insects were found. The image processing considers four sub-processes, as follows:  

1) Image taking 

The camera is strategically positioned in front to a white background and, every second, 

a color photo with 640x480 resolution is taken and RGB (Red Green Blue) channels 

model. The Figure 6-a shows the original image taken.   Then, it is converted into two 

in-memory pixel array: RGB and grayscale pixel arrays. Working with grayscale arrays 

is pre-condition for binarization process. It is worth mentioned that a color of a pixel is 

represented by 3 numbers (from 0 until 255) where each number defines channel 

intensity. For example, the notation RGB(255, 100, 50) means that the red channel (R) 

intensity is 255, the green channel (G) intensity is 100 and the blue channel (B) intensity 

is 50. For grayscale pixel representation, the 3 channel intensity are equals, where 

RGB(0, 0, 0) is a black pixel, RGB(127, 127, 127) is the mid-gray pixel and RGB(255, 

255, 255) is the white pixel. Therefore, the grayscale has 255 possible gray colors. 

2) Binarization 

The binarization process consists in convert each grayscale pixel to a black or white 

pixel. It is important to turn the image processing simpler and faster. So, in order to 

performs the pixel binarization, it had to be defined one of 255 possible gray color that 

will be the threshold color. In other words, if a gray pixel is lighter than the threshold 

color, the pixel is binarized to white. And if a pixel is darker than the threshold, the 

pixel is binarized to black. Empirically, (considering the CBB body color), the optimal 

found threshold color was RGB(45, 45, 45). Once whole image is binarized, the image 

must be inverted, where the background (originally in white) is inverted to black area 

and insect body area is inverted to white area. This inversion process is useful to 

optimize the contour searching (explained later). The Figure 6-b shows the image as 

result after binarization and inversion. Note that some noises are present in both black 

and white in the image.  

3) Morphological operations 

The remaining noises in inverted image must be removed and, for this, two 

morphological operations are applied: a) the open morphological operation eliminates 

small white points inside background image (black area); b) the close morphological 

operation removes black noises inside the white area. The Figure 6-c demonstrates the 

morphological operations result. 

4) Contour searching 

This process consists in searching for contour around the white areas (possible insect 

body areas). For each contour found, a rectangle is drawn around it. If its width and 

height are inside a predefined values range, the contour is considered the CBB and a 

green rectangle is drawn around it. Empirically, the defined width and height is from 10 

until 60 pixels range. Otherwise, the contour is unknown and a red rectangle is drawn 

around it. Once all the contours are found and analyzed, the number of CBB specimens 

is computed as well as the number of unknown insects. Figure 6-d demonstrates the 



  

generated rectangles (both green and red ones) are overlaid on the original image and it 

is possible count the CBB and unknown insects. In this example, it shows 11 CBB 

samples and 3 unknown insects were found. 

As already mentioned, if only CBBs were found, the state changes to CAPTURE 

MODE, as seen in Figure 5. However, if some unknown insects were found (even if 

some CBB was found), the state changes to EJECT MODE. 

The OpenCV (Open Source Computer Vision) library version 4.0 was elected to be used 

in the project. The main reason is its maturity, performance, and popularity within the 

developer community. Further information about OpenCV can be found in [OpenCV 

Team, 2020]. 

 

Figure 6: Image processing samples: (a) original color image; (b) binarized 
image; (c) after morphological operations applied; (d) final image contoured by 
green rectangles (CBB detected) and red rectangles (unknown insect). 

3.3. IoT Middleware 

An IoT middleware has two main roles: 1) it stores data pushed from the smart trap 

software component; and 2) it provides data to the Web application component. This 

project uses the In.IoT, created by [Cruz et al. 2018]. The In.IoT is a mature IoT 

middleware platform and it was already well used in other projects. The In.IoT platform 

is a state-of-the-art IoT middleware, including the needed security requirements, 

reporting and charting, offers a Web interface and modern communication models 

support. 



  

3.3. Data Visualization 

A web application was developed over a geo-analytic framework. A software 

component retrieves data (containing an array of latitude, longitude and number of 

captured beetles) from the IoT middleware and render it as a heat map to the end-user. 

The web application also provides configurable settings like refresh screen rate, 

blur/opacity adjustment and map layers (terrain, satellite and hybrid). 

The Leaflet (described in [Agafonkin 2020]) is the geo-analytic library and its plugins: 

1) Leaflet.heat: for heat map support; and 2) Leaflet.GoogleMutant: for satellite images 

support. The Web application was developed in Java Enterprise Edition version 7 and 

deployed on Google Cloud Platform. 

4. Demonstration and Validation of the Proposed Solution 

The methodology for obtaining the results consisted of moving the entire trap across the 

plantation, stopping every 3 meters for 30 minutes. The experiments in field were 

performed in a coffee plantation with high infestation history. The elected farm is 

located in Santana da Vargem municipality, Minas Gerais State, Brazil. The Figure 7 

shows the results obtained in field. The first heat map (Figure 7-a) is the closest image 

where each red point represents a CBB captured and its geo-location. As the zoom 

moves away (Figure 7-b, c, d), the red points are merged providing distinct perceptions 

about pest concentration. 

Analyzing Figure 7, it is perceptible that, for the particular coffee plantation, the pest 

concentration is uniformly distributed for whole area. To completely eliminate the pest, 

successive trap rounds across the plantation must be performed. At the end of every 

round, it is expected the pest concentration would be dispersed. 

 

Figure 7: Heat map superimposed on coffee plantation in different zoom levels 
(in Google Maps scale): (a) zoom level 16; (b) zoom level 15;  

(c) zoom level 14; (d) zoom level 13. 



  

5. Conclusion and Future Works 

Analyzing all information gathered, it is possible to conclude the proposed solution 

presents the following aspects: 1) the heat map resource represents an intuitive way to 

view the pest concentration at a particular plantation. The configurable zoom level helps 

to improve the user experience; 2) the proposed smart trap represents a viable 

alternative pest control over traditional control based on pesticides. It is safety for the 

human health and sustainable natural life since they are not affected by any prejudicial 

product.  

Considering the present smart trap must be moved manually, many ideas have been 

emerged to make the process more automatic and remotely managed. Therefore, it is 

possible to mention some future works as follows: 1) development of an autonomous 

rover capable to move inside the coffee plantation guided by the geo-processing and 

computer vision combination. The rover might use electric motors and recharge its 

batteries using solar energy. The smart trap would be transported by the rover; 2) 

adapting the smart trap to be multi-insect. In others words, the image processing 

software component might be configurable to detect several types of pest (considering 

their body sizes and colors) and across others cultures such orange, soy, and corn; 3) 

alternative connectivity strategies also must be experimented. The present solution was 

based only on Wi-Fi connectivity. Technologies such LoRA, specified in [Lora Alliance 

2020], and 5G, specified in [ITU 2019], might be suitable for farm environment. 
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