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Abstract. With computer networks everywhere, managing them is becoming in-
creasingly complex, leading to higher costs, longer response times, and more
human errors in decision making. Given that, the search for a Smart Network
Management, with less human intervention and more automation, becomes in-
dispensable. Several technologies have been proposed to enable “Smart Man-
agement,” including machine learning, notably for more complex cases. The
Software-Defined Networking (SDN) paradigm is one of the most promising.
Literature shows, however, that there are still several research challenges and
opportunities for the automation of many network management tasks. This pa-
per proposes to combine context awareness with SDN in a lightweight approach
to Smart Management, or Adaptive Networking, to handle in a simplified way ev-
eryday events such as link-down and traffic congestion. A comparative analysis
shows that the management approach combining context awareness with SDN
is between 40% and 73% faster than the support of SDN to a human-driven
management.

1. Introduction
In the last decades, computer networks have become more and more ubiquitous, being
used in an increasingly intense and diversified way. Advanced network services are essen-
tial to enable some of today’s most varied and dominant topics such as cloud computing,
the Internet of Things (IoT), complex streams processing, high-definition multimedia ser-
vices, among many others. In this sense, network management requirements are increas-
ingly complex and can lead to higher costs, higher response times and more human errors
in decision making. These and other problems require less human intervention and more
automation. Several technologies have emerged to enable self-management or “Smart
Management”, such as SDN (Software-Defined Networking) [Kim and Feamster 2013],
integration of solutions based on machine learning [Ayoubi et al. 2018], and context-
awareness [Bui et al. 2017]. However, according to [Ayoubi et al. 2018], the automation
of many network management tasks has not yet been sufficiently explored, and there-
fore there are several open research opportunities and challenges. For [Rojas 2018], the
Software-Defined Networking paradigm is still at the beginning of its development, and
considering total automation and effortless management as the primary goal of these net-
works, a number of challenges are to be addressed, so there is still a long way to go for a
fully autonomous network management vision [Khan et al. 2018].



In this paper, we propose to join the SDN paradigm with context-awareness
to make network management more adaptive and, consequently, to reduce human in-
tervention. Such a combination focuses on common network events, such as a ‘link
down’ problem and network congestion, for example. SDN promises flexible, dynamic,
programmable, and manufacturer-independent network management. The adoption of
context-aware computing together with SDN to handle well-known events such as those
mentioned above is efficient, in the sense of executing tasks usually performed by hu-
man resources in network management more quickly, transparently and with few or no
errors, and yet simple, i.e., without the need to apply more sophisticated solutions based
on machine learning, for example. This work defines four use cases by considering situ-
ations that commonly happen in networks. Three of them were emulated in a portion of
ICONE (Infraestrutura de Comunicação Óptica para eNsino e pEsquisa, in Portuguese),
the metropolitan education and research network of Recife, Brazil. The results of tests
performed in the virtualized network show that the combined use of SDN technology
with context-awareness, based on simple and intuitive rules or policies, allows the man-
aged network to behave as expected, both adaptively and with satisfactory response times.
This work helps to give back the network manager time to carry out other management
activities, including designing new and improved advanced network services.

The remainder of this paper is organized as follows: next section (2) discusses
Smart Management based on SDN, Machine Learning and Context-Awareness, as well
as related works. Section 3 presents the proposal of the joint SDN-Context Awareness
approach for Adaptive Network Management, followed by an implementation based on
the ICONE network (section 4), where results are presented with a brief statistical analysis
of them. Finally, conclusions and suggestions for future work are drawn in section 5.

2. Smart Management: Background and Related Works

In the area of computer network management, [Shu et al. 2016] ratify the general ob-
jective of maintaining availability and improving network performance, which has been
pursued since traditional management, based on Network Management Systems (NMS),
Simple Network Management Protocol (SNMP) and Management Information Base
(MIB). Traditionally, network management requires actions that are heavily dependent
on human administrators. To change this reality, research efforts have focused on ag-
ile and adaptive management architectures that support self-managing networks or Smart
Management.

2.1. Smart Management and SDN

Reference [Ayoubi et al. 2018] follows this trend, placing Machine Learning (ML) as an
option to provide cognitive management in SDN. Reference [Khan et al. 2018], on the
other hand, considering the evolution of the mobile networks, conclude that the task of
management dependent on human actions is increasingly complex. New dynamic adap-
tation requirements arise as a result of the increasing heterogeneity and complexity of
mobile devices and applications, and the need for resilient networks, among others. Ac-
cording to [Lee et al. 2018], a “zero-touch network” [Koley 2016] is a network that mini-
mizes service downtime and operating costs thanks to the removal of human intervention.
It is built using cloud and SDN technologies [Van Rossem et al. 2017].



The SDN controller maintains a global view of the network and pro-
vides unified applications and policies. The instructions are provided by the
controller, independently of vendors. Currently, the OpenFlow (OF) protocol
[OPEN NETWORKING FOUNDATION 2015] is one of the most used for communi-
cation between the control and data planes, enabling SDN in network switches. The con-
troller is the SDN network element that provides a programmable interface to the network,
which enables the implementation of management tasks and new functionalities. Appli-
cations can be written in multiple languages, allowing interaction through a REST API
[Nunes et al. 2014]. Examples of SDN controllers are OpenDaylight1, Ryu2 and ONOS3.

2.2. Policy-Based Network Management, Machine Learning and SDN

In [Khan et al. 2018] the authors believed that Policy Based Network Management
(PBNM) could be one of the key concepts towards self-x4 NM. The motivation is to offer
the network providers a set of abstractions for dealing with the associated complexity,
decreasing the gap between business and NM levels. The ideia is to combine top-level
networking policies and low-level network configuration [Shirmarz and Ghaffari 2020].
Policies separate the rules that govern the system’s behavior from their functionality.
They present a simple way to decouple the implementation and behavior of a network
entity by allowing the manipulation of operational constraints during runtime without
interfering with the source code. Reference [Hadjiantonis 2012] mentions, however, that
the complexity of realizing policy-based NM solutions in practice limits self-management
capabilities in large-scale networks.

Moving on to network management (NM) based on Machine Learning (ML),
[Ayoubi et al. 2018] remarked that ML is a powerful technique for extracting knowledge
from data, but its potential is still seldomly used for practical solutions in adaptative net-
working. However, with the programmability of SDN, the large amounts of current data
sources and the high availability of computing power delivered by cloud computing, it be-
comes feasible the emergence of ML-based NM. Reference [Liu and Xu 2019] describes
the use of ML techniques combined with the paradigm of SDN. The separation of the data
and control planes allows the administrator to manage and control the network through
programming techniques, which allows incorporating machine learning. The ML tech-
niques involve some tasks, such as collection and training (algorithms) to classify data,
and security issues, increasing the level of computational complexity.

2.3. Context Awareness

Context awareness would be the ability of the computer system to observe characteris-
tics and identify changes in the environment around it and, in addition, be able to react
to such changes. Therefore, current context-aware systems operate in three stages: (1)
Data Collection, which can occur via sensors, historical system information, or other
applications; (2) in the Context Inference (or reasoning) stage, rules are defined and the
system interprets the occurrence of different situations of interest. In general, an approach
based on the static and prior definition of rules by administrators can be used, or based on

1https://www.opendaylight.org/
2https://ryu-sdn.org/
3http://www.onosproject.org/
4Self-configuration, Self-healing, etc.



automatic decisions using machine learning algorithms, for example; (3) in the Context
Adaptation step, the system can make decisions and perform customized actions.

Contrary to what one might imagine, Context Awareness and Machine Learning
are not rival technologies, but rather complementary, just like Context-Aware and Policy-
Based Network Management can be combined. In fact, they can be used separately in
various application domains that aim to minimize the role of the human in the control
loop [Ayoubi et al. 2018, Bui et al. 2017], but also together [Bui et al. 2017], with im-
proved results, in general [e Silva 2016].

This paper focuses on the use of context awareness based on simple rules or poli-
cies in network management. These rules are considered simple because they are based
on the network manager’s intuition (knowledge, experience) [Rojas 2018] – eg., if data
throughput is greater than 80% of the bandwidth, then the network is considered con-
gested. Simple context-awareness techniques, such as key-value pair, are used in every-
day events of today’s networks (eg., link down, network congestion), which in general do
not justify the use of more complex techniques, such as machine learning.

3. SDN and Context for Adaptive Network Management
This work proposes the combined use of SDN and context awareness, based on simple
rules or policies for adaptive network management. The following describes the im-
plementation, based the software-defined networking (SDN) paradigm, of the steps for
achieving context awareness (data capture, context inference, and adaptation).

3.1. Data capture

Capturing data involves sensing and collecting specific stored information that
can define a particular situation. To identify a link down, we capture an
event related to a port status. We implemented in Python the decorator
@set ev cls() defined by the ryu.controller.handler module, pointing to
the ryu.controller.dpset.EventPortModify class. In addition, to detect a
heavy congestion event, we implemented the traffic monitor described in the Ryu docu-
mentation. At every 1 second, we make an analysis of the contextual element throughput
in Mbps, then we perform a simple bandwidth calculation on each port of the emulated
network switches as seen in Listing 1 [Megyesi et al. 2017] [Shu et al. 2016].

1 throughput = (Byte_fin - Byte_ini)*8
2 result = throughput/1048576

Listing 1. Capture Contextual Information (Throughput)

3.2. Context Inference and Adaptation

This stage treats the information regarding the events link down and heavy congestion.
These data are processed by rules that are described below. After a link down event
is captured, the inference stage analyzes the link state of the switch port through the
EventPortModify class (Listing 2). The EventPortModify class of the Ryu con-
troller has an attribute structure in Python that returns information about the link. We can



access this attribute through ev.msg. We process this message to retrieve information
about the link. If the Link is DOWN, the adaptation process involves the modification of
the traffic direction to the port that was not affected by the event.

1 if ev_list[2] == 'DOWN':

Listing 2. Context Inference Link Down

The rule for a heavy congestion inference, which checks if throughput ≥ 80% of
the link bandwidth, is seen in Listing 3 - note that throughput (result) is calculated
as in Listing 1.

1 if (result >= MAX_BAND*0.8):

Listing 3. Context inference for Heavy Congestion

The adaptation approach involves the modification of the flow entry of the dat-
apath. On the statement above, we show that, if the result (throughput) is equal or
greater than 80% of the maximum bandwidth, we will change the traffic direction. The
change implies in deleting and adding new flow entries on the affected switches. We
could achieve this defining 2 simple rules (Listing 4), where out ports represents the
port affected by the link down or the heavy congestion, which shows: if the affected port
(out ports) is 3, change the traffic to port 2, or if the affected port is 2, change the traffic
to port 3.

1 if out_ports == 3: out_ports = out_ports - 1
2 elif out_ports == 2: out_ports = out_ports + 1
3 else: pass

Listing 4. Context Adaptation for Link Down and Heavy Congestion

4. Experimental Methodology and Analysis
We defined the methodology for the execution of the project based on the use of emula-
tion and experimentation in the field. Emulation, in a software context refers to the use of
an application or tool to mimic the behaviour of other software or device (hardware). In
this work, Mininet (http://mininet.org/) has been used to emulate the behavior of a part of
the ICONE5 network (Figure 1) for management purposes associated with SDN technol-
ogy, using the Ryu controller. In a next step, controlled experiments should be carried
out in the ICONE network itself, to verify the adequacy of the combined use of SDN with
context in network management (verification of the cause-effect relation).

Besides the PoP-PE node (the Point of Presence in Pernambuco of the National
Research and Education Network – RNP) that serves as the connection point of the
ICONE Network with RNP/Internet, the selection criteria for the other three nodes of
the virtualized network (a small portion of ICONE) were:

5ICONE stands for Infraestrutura de Comunicacão Óptica para eNsino e pEsquisa.



Figure 1. Emulated portion of the ICONE network.

• CPOR (Centro de Preparação de Oficiais da Reserva – Brazilian Army): a small
traffic generator, located halfway to PoP-PE in both directions on the ring network;

• FUNDAJ (Fundação Joaquim Nabuco/CGF – Gilberto Freyre Campus): poten-
tially large traffic generator, located to the west of both PoP-PE and CPOR;

• IFPE (Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco): fre-
quent large traffic generator, located to the east of PoP-PE and CPOR.

4.1. Architecture

The system architecture is shown in Figure 2. Initially, an emulation and analysis envi-
ronment was created to emulate a virtual network using the OpenFlow protocol and the
Software-Defined Networking (SDN) approach to manage network behavior dynamically
(aware of context).

Figure 2. System Architecture.

A Context-Aware Network Management Application, implemented in Python, re-
ceives, through the Northbound API of the Ryu Controller, data related to the traffic of the
virtualized network, infers context (e.g., “Heavy congestion on IFPE → POP-PE link”)



and adapts to such a context (e.g., redirect traffic to an alternative link), enabling the adap-
tation of the performance of the network. This way, it contributes to reduce the human
intervention in the management activities of the network.

Network performance testing requires a multi-rate traffic generation and measure-
ments of network throughput, packet loss, latency, jitter, and so on. IPerf3 (http://iperf.fr/)
was the tool chosen to perform network throughput measurements in the experiments.
For the purpose of visual analyses and alerts, we used Grafana (https://grafana.com/) for
dealing with graphics. Besides that, R (http://www.r-project.org/) was used for statistical
analyzes.

4.2. Use cases

To test the combined use of context-awareness and SDN in the ICONE network man-
agement, we have designed four scenarios that commonly occur: (1) “Normal” traffic
situation; (2) “Link-down” situation; (3) “Heavy” traffic/congestion situation; (4) “Mod-
erate” traffic/congestion situation.

Intuitively, we have configured the traffic parameters as exemplified in Figure 3.
Since the “Moderate” traffic situation (4) has not yet been implemented, it is not going to
be dealt with in this article. Also, regarding the ‘Normal” traffic situation (1), which is
observed while the throughput ≤ 60% of the bandwidth (Figure 3), the management
application simply sets the FLAG traffic context to NORMAL and goes on running
without the need to adapt. Thus, only the scenarios (2) and (3) are discussed in the
following.

Figure 3. Example of traffic parameters configuration. Based on intuition, a net-
work manager can configure them at will.

4.2.1. Link-down

In this case, the SDN controller captures the event when the link between two switches is
unavailable (down). In (1) the rule that infers the context simply checks the state of the
link and, if it is DOWN, immediately adapts to it by changing (inverting) the flow in the
ring network that emulates ICONE.

If Link State = Link Down then Change F low (1)

We emulated the link-down scenario according to the following steps:

1. a host (h3) in CPOR was prepared to send data, initially, in the
CPOR → IFPE → POP-PE direction with throughput of ≈200 Mbps – see Fig-
ure 4(a-b) (Inbound interface s1 POP-eth3);

2. a host (h4) in IFPE was prepared to send data≈400 Mbps in the IFPE→ POP-PE
direction (output ≈ 200+400 Mbps – Figure 4(b-c));



Figure 4. Inbound traffic changes due to link-down.

Figure 5. Outbound traffic changes due to link-down.

3. the CPOR↔ IFPE link was dropped – Figure 4(c) to represent the “link-down”
situation;

4. quickly (see response times in section 4.3) after time c, the flow coming out from
CPOR changes the route, moving the traffic to the CPOR→ FUNDAJ→ POP-PE
direction (interface s1 POP-eth2 – Inbound).

In the graphics (Figure 5) that shows the interface s1 POP-eth1 (Outbound), it
is possible to observe (highlight arrow) a drop in the data output at time c, and right after
that the traffic returns to normal (step (4) above).

4.2.2. Heavy congestion

In this case, the traffic practically does not flow as it is heavily congested, leading to the
need for a route change. The rule defined to infer this scenario is as follows.

If Throughput ≥ 80% of the bandwidth then traffic context = Heavy (2)



Here the inference rule has its contextual analysis based on the statistical informa-
tion of the throughput and bandwidth. In this scenario, it is inferred that the traffic is very
congested when throughput ≥ 0, 8 × bandwidth (e.g., if the available bandwidth on
a given link is equal to 1 Gbps, the congestion is considered “heavy” if its throughput is
greater than or equal to 800 Mbps).

4.3. Evaluation

To verify the efficiency of this proposal, we performed two experimental statistical anal-
yses. In the first experiment we collected samples regarding scenario heavy congestion
with size greater than 30 (repetitions) based on the Central Limit Theorem as described
by [Larson and Farber 2010, p. 221]. Such samples refer to the capture of data relating
to the Response Time (RT) at the steps: (a) Capture – collect network metrics (RTa), (b)
Inference – apply specific rule and become aware of the context (RTb), and (c) Adapta-
tion – adapt to the context (RTc). In the descriptive analysis of the Response Times (RTa,
RTb, RTc), median values were 8.48, 6.90, 1.78 milliseconds (with a standard deviation
of 2.18, 1.92, 0.56 ms), respectively. This time difference is justified because step (a)
takes longer to calculate the throughput in real time based on Openflow flows, while (b)
takes a little less time to be aware of the context and infer a congestion situation, and
adaptation (c) is a simpler process in which output ports are inverted (Listing 4).

In the second analysis, we compare the approaches called SDNC – experiments
conducted in an SDN environment with context-based network management, and SDNH
– experiments conducted in an SDN environment supporting a traditional human-driven
management. Comparing the two approaches regarding the descriptive statistics analyses
of the two samples (SDNC and SDNH), we observed that in the SDNC approach, which
involves only the Capture (a) and Inference (b) steps, the median of the sampled values
equals to 15.007 ms, slightly shorter than the median of the sampled values in the SDNH
approach, as for a human manager a step (d) of generating a display alarm is needed, so
it slightly increases the response time to 15.082 ms. Considering [Nicolaou 1990], which
indicates that the human perception threshold time in user interfaces (UI) should be on the
order of 10–40 ms (note the additional sequence of steps: (d) Alarm – alarm generation
to appear on the management UI (RTd), and (e) Human Perception of the alarm (RTe), to
come before the Adaptation (c) step), in the SDNH approach a response time is between
25.082 ms to 55.082 ms, much higher than the 15.007 ms of the SDNC approach, as
SDNC = RTa + RTb > SDNH = RTa + RTb + RTd + RTe (between 40% and
73% faster). Therefore, our lightweight (context-aware) approach to adaptive network
management can be considered to be feasible. We compared SDNC and SDNH without
RTc, as the adaptation process would be significantly different in both approaches. The
previous analysis showed that RTc is very short (1.78 ms) in SDNC, whereas for SDNH,
one naturally expects that the human adaptation to a network situation is on the order of a
few seconds.

5. Conclusions
This work took advantage of the software-defined networking paradigm (SDN) to imple-
ment a context-aware approach to adaptive networking. Context awareness uses relatively
simple and intuitive rules to infer a situation (e.g., heavy congestion) and make the net-
work automatically adapt to the established context. Context-awareness comprises three



stages: (1) data capture, (2) context inference, and (3) adaptation to the inferred context.
The results shown in this paper, regarding the response times of the system for sensing the
network and inferring the context (stages 1 and 2), show that in common scenarios, such
as link down and traffic congestion, the use of context-awareness is sufficiently adequate
and less complex than using machine learning, for example. Considering total adapta-
tion and effortless management as the primary goal of software-defined networking, this
work gives a simple but important contribution to the vision of fully autonomous network
management. It helps to give back the network manager time to carry out other activities,
including designing new and improved advanced network services.
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