
Monitoring and Smart Decision Architecture for
DRONE-FOG Integrated Environment

Wendel Serra1, Warley Junior1, Isaac Barros1, Hugo Kuribayashi 1, João Carmona 1

1College of Computer and Electrical Engineering
Federal University of Southern and Southeastern Para, Maraba, PA - Brazil

{wendel.barros, wmvj, isaacx, hugo, jvictor}@unifesspa.edu.br

Abstract. Due to the limited computing resources of drones, it is difficult to
handle computation-intensive tasks locally, hence, fog-based computation of-
floading has been widely adopted. The effectiveness of an offloading operation,
however, is determined by its ability to infer where the execution of code/data
represents less computational effort for the drone, so that, by deciding where
to offload correctly, the device benefits. Thus, this paper proposes MonDrone-
Fog, a novel fog-based architecture that supports image offloading, as well as
monitoring and storing the performance metrics related to the drone, wireless
network, and cloudlet. It takes advantage of the main machine-learning al-
gorithms to provide offloading decisions with high levels of accuracy, F1, and
G-mean. We evaluate the main classification algorithms under our database
and the results show that Multi-Layer Perceptron (MLP) and Logistic Regres-
sion classifiers achieve 99.64% and 99.20% accuracy, respectively. Under these
conditions, MonDrone-Fog works well in dense forests when weather conditions
are favorable and can be useful as a support system for SAR missions by pro-
viding a shorter runtime for image operations.

1. Introduction
Unmanned Aerial Vehicles (UAVs), sometimes known as Unmanned Aircraft Systems,
are flying machines, typically equipped with small-sized motors, batteries, and hardware
computing platforms that provide overall command and control. This is supposed to be
highly beneficial and game-changing, not only in military applications, but also in other
civilian and strategic applications [Mukherjee et al. 2020]. They can be used in many
civil applications due to their ease of deployment, high-mobility, ability to hover, and low
maintenance cost. Such vehicles are being utilized to provide wireless coverage, monitor
road traffic in real time, perform remote sensing, assist in search-and-rescue (SAR) oper-
ations, in addition to uses in surveillance and security, civil infrastructure inspection, and
precision agriculture [Shakhatreh et al. 2019].

In most search-and-rescue scenarios using a tactical drone, a single UAV system
works according to a series of steps. In the first step, the rescue team defines the area of
interest, then the search operation begins with the remote sensing of the target area to find
the victim, using a single UAV equipped with vision cameras. After that, real-time aerial
images from the targeted area are sent to the Ground Control System (GCS) to collect
evidence of the presence of a victim. These images are analyzed by the rescue team to
direct the SAR operations optimally. In such a use case, cameras are mounted on the drone
and, by applying face recognition and detection methods on the offloaded images, lost



persons can be detected in real time in an efficient manner [Waharte and Trigoni 2010].
Due to the computational overhead required by such a use case and given some inherent
limitations concerning hardware and energy supply of drones, the time is critical and any
delay can result in dramatic consequences (e.g., human losses). Therefore, the image
processing time collected by a drone is a challenging issue [Shakhatreh et al. 2019].

The problem of insufficient energy and computing resources can be addressed
using computation offloading, i.e., processing-heavy tasks are sent for execution in the
cloud, which, in turn, sends the results back to the device. Offloading computation from
devices has several benefits. For instance, the battery life of resource-constrained end
devices can be extended by avoiding complex local processing [Junior et al. 2019].

Clearly, offloading can involve edge computing platforms instead of (or, in ad-
dition to) the centralized cloud [Shahidinejad and Ghobaei-Arani ]. For these reasons,
in recent years, various novel paradigms have emerged, such as fog computing, mobile
edge computing and mobile cloud computing [Premsankar et al. 2018]. Fog computing
bridges the gap between the cloud and mobile devices by enabling computing, network-
ing, storage, and data management on network nodes within the close vicinity of resource-
constrained IoT devices [Giang et al. 2020]. In addition, fog computing facilitates mobil-
ity support, real-time interactions, location awareness, interoperability, scalability, ultra-
low latency, high bandwidth, and agility [Yousefpour et al. 2019]. Its infrastructure can
provide resources for IoT services at the network edge, which are called fog nodes. They
can be resource-poor devices, such as access points, set-top-boxes, routers, switches, end
devices, and base stations, or resource-rich machines, such as cloudlet, i.e., light-weight
cloud servers that are typically one hop away from mobile devices; and microfog, a subset
of fog node (e.g., two Raspberry Pis) enabled by fog cluster to handle data from a sensor
linked to a specific IoT service [Torres Neto et al. 2019]. The gain of an offloading oper-
ation, however, is determined by its ability to infer where the execution of code/data will
represent less computational effort for the drone, so that, by deciding where to offload
correctly, the drone obtains a benefit [Yi et al. 2015, Shakarami et al. 2020].

To address the aforementioned challenges, the main contributions of this paper are
as follows:

• A novel fog-based architecture, called MonDrone-Fog, that supports data offload-
ing between drone and cloudlet. We use a face detection and recognition bench-
marking application as an example to illustrate the proposed architecture.

• MonDrone-Fog feeds a new database with raw data related to the performance
metrics for the drone, wireless network, and cloudlet. These data are pre-
processed for the machine learning classifiers evaluation process and, thus, gener-
ate the ideal candidate model.

• We evaluate performance of multiple machine-learning classifiers from our own
experimental database for the decision-making where to offload images correctly.

The rest of this paper is organized as follows: Related work is discussed in Section
2. Section 3 presents our proposed MonDrone-Fog architecture. Section 4 presents our
evaluation of a real-world application. Finally, Section 5 concludes the paper and presents
future directions that may be considered.



2. Related work
Previous works proposed solutions to address different aspects of fog computing and
UAVs research. We have defined classified it into three features: (i) main goal, (ii) edge
paradigm, and (iii) monitored metrics.

Main goal defines the real benefit of using the associated solution. Solutions
like [Kalatzis et al. 2018], [Motlagh et al. 2017], [Tang et al. 2019], [Luo et al. 2015]
and [Mohamed et al. 2017] are designed to solve problems of civil applications. In
[Kalatzis et al. 2018], authors proposed to apply the edge and fog calculation principle to
forest fire detection based on the drone. The three-layer ecosystem effectively combines
powerful cloud computing resources, rich fog computing resources, and user-perception
capabilities through a hierarchical structure. This cooperative method reduces the network
transmission overhead and the delay of data processing, based on edge intelligence. The
solution [Motlagh et al. 2017] demonstrates how UAVs can be used for crowd surveil-
lance, based on face recognition. They also evaluate the video data processing offloading
to a Mobile Edge Computing (MEC) node compared to the local processing of video data
on board drone. The results demonstrate the efficiency of the MEC-based offloading ap-
proach in processing time, energy drain, and in detecting suspicious persons. In a nutshell,
this paper demonstrates the benefits of using a single UAV system with IoT devices for
crowd surveillance with the introduced video data processing offloading technique. The
authors in [Tang et al. 2019] propose a hybrid fog-computing paradigm that integrates
Flying Ad-hoc Network (FANETs) and fog-enabled vehicles in the disaster area, aim-
ing to run the highly demanding applications while meeting strict latency requirements.
These studies were not evaluated in scenarios involving Search-and-Rescue (SAR) oper-
ations, such as critical infrastructure and forest, unlike MonDrone-Fog, which evaluates
the impact of runtime, energy, throughput, and RSSI in different UAV displacement con-
ditions.

Edge paradigm is the deployment of cloud computing-like capabilities at the
edge of the network. Similar to MonDrone-Fog, the studies [Kalatzis et al. 2018],
[He et al. 2018], [Hou et al. 2019], [Mohamed et al. 2017] and [Tang et al. 2019] use fog
computing for the processing and storage of raw data from IoT applications. The pa-
per [Hou et al. 2019] introduces fog computing into a swarm of drones, constructing a
task allocation optimization problem that jointly considers latency, reliability, and en-
ergy consumption in order to minimize the energy consumption of the swarm of drones
when the latency and reliability requirements are met. A fast Proximal Jacobi Alter-
nating Direction Method of Multipliers (ADMM)-based distributed task allocation algo-
rithm is proposed, which decomposes the optimization problem into several subproblems,
and each drone can solve the subproblem using their local status information separately.
In [He et al. 2018], the authors designed an airborne fog computing system, which is
formed by a network of flying objects, such as UAVs, that play an important role as
fog nodes. The authors have proposed a Inertial Measurement Unit (IMU) sensor-based
Global Positioning System (GPS) spoofing detection scheme, a monocular camera, and
an image localization approach for UAV autonomous return to support the security and
safety of UAVs. Drone-based fog computing is a new concept that was recently described
in [Mohamed et al. 2017], which introduced the advantages of collaborative drones in
supporting IoT-based fog computing based on drone mobility, flexibility, and ease of de-
ployment in smart cities. Thus, the collaborative drones can be used to support SAR by



loading a fixed fog unit or replacing a faulty or lost unit in the case of a disaster situation.

The works [Messous et al. 2017] and [Motlagh et al. 2017] use MEC servers,
which have the computation and storage resources within the mobile network, while
[Mukherjee et al. 2020] introduces the concept of "EdgeDrone," which is an abstraction
that is associated with the concept of Mobile Edge Devices, IoT, and Cloud. The au-
thors in [Mukherjee et al. 2020] proposed a message transfer mechanism for the drone
nodes which are actively participating as edge-computing components. This mechanism
significantly improved performance in terms of latency, publisher bandwidth, and run-
ning time. On the other hand, the game theory was applied in [Messous et al. 2017] to
achieve the trade-off between execution time and energy consumption, while considering
computation offloading in UAV networks. Unlike previous works, MonDrone-Fog imple-
ments cloudlets because they can play a foundational role in service availability in hostile
environments that do not have a network infrastructure.

Monitored metrics are raw data related to the overall performance of an edge so-
lution, which are stored in a dataset for analysis. The papers that focus on Disaster Oper-
ations, such as [Tang et al. 2019] and [Luo et al. 2015], have explored Battery, Mobility,
and Location, whereas the paper that investigates Crowd Surveillance has looked into
Route, Energy, and Mission. Our solution is the only one that monitors and evaluates
Energy, Time, Throughput, and RSSI in an SAR operation. Energy and Execution Time
are the most utilized metrics when evaluating the fog systems. The computing speeds
of UAVs will not grow at the same pace as servers’ performance. This is due to sev-
eral constraints, including: form factor (professionals want UAVs that are smaller and
lightweight, but with more computational capability) and power consumption (the current
battery technology constrains the clock speed of processors, doubling the clock speed and
approximately octupling the power consumption. As a result of the above restrictions, it
is difficult to offer long battery lifetimes with high clock speeds. Therefore, execution
time and energy will continue to be a fog concern in the long term, motivating further
research under these topics.

MonDrone-Fog is the first offloading architecture developed and designed to mon-
itor and store performance metrics related to drone, wireless network, and cloudlet in
search-and-rescue scenarios. To the best of our knowledge, until now, there has been no
work in the literature that uses and evaluates multiple machine-learning classifiers from
experimental databases. Its historical database was built automatically from experimental
data, i.e., our algorithm orchestrates image-offloading operations and decides the class
label (VM01 or VM02) in the database according to the execution time results. In a nut-
shell, MonDrone-Fog adopts a history-based prediction approach where we utilize the
past profiled information as a basis for performance inference in future tasks.

3. MonDrone-Fog design
The proposed system is a three-tier architecture, involving the drone, fog node, and the
cloudlet interacting with each other to ensure performance metrics for image offloading
and storing. The system architecture is presented in Figure 1.

• Drone: Capture and transmit images of different sizes. It has two components:
data flow and AT commands. The data flow component allows for the capture and
transmission of images and video to stream between the drone and fog node. AT



Drone

Cloudlet 

Server

Data

Controler

Fog 

Node
Offloading 

Manager

Cloudlet 

Profiler

Face Detection 

and Recognition

Faces

VM 02

Face Detection 

and Recognition

Faces

VM 01
1

9

3 5

86

4 2

7

AT

commands

Data

Flow

Metrics 

Database

Drone 

Profiler

Figure 1. MonDrone-Fog Architecture

commands are intended to control and configure the drone in communication with
the fog node.

• Fog Node: Controls the drone’s actions and movements, monitors its respective
activity indexes, and manages and manipulates the information that is collected
and transmitted during the whole process. It has four components: offloading
manager, drone profiler, cloudlet profiler, and metrics database.

– Offloading manager: this component accommodates an algorithm that
triggers offloading operations of the input and output images, captures
all metrics between drone and cloudlet, calculates computation time, and
saves metric values together with class labels.

– Drone profiler: this component aims to capture network and drone in-
formation at runtime. The monitoring of network quality is critical in
fog environments since a poor network can cause packet loss and delay
in communication between drone and fog node. It monitors round-trip
time (RTT), received signal strength indication (RSSI), the drone’s bat-
tery, throughput, and image size.

– Cloudlet profiler: this component is responsible for monitoring and col-
lecting cloudlet performance data, such as vCPU usage and virtual mem-
ory usage for each VM. Moreover, this component receives the processed
image with the faces recognized.

– Metrics database: once a cycle is executed by the offloading manager,
the previously collected metrics are recorded in the database.

• Cloudlet Server: Fog computing resources for processing face recognition and
detection methods on images. It has two virtual machines (VMs), one with low
processing and memory capacity and another with high processing and memory
capacity.

We define components, data (dash line), and control (solid line) operations, repre-
sented by circled numbers, as the following: 1 Fog node creates the log file. 2 Drone
profiler requests the face image (1.5MP, 7MP, or 14MP). 3 Drone sends the face image
through the wireless channel between the drone and fog node. 4 Drone profiler request
the RSSI, battery, and download/upload time. 5 Drone sends the image size, RSSI, bat-
tery, and download/upload time. 6 Drone profiler forwards the face image and other
aforementioned metrics. 7 Cloudlet profiler sends face image to the VMs. These have
a face detection and recognition application. The face detection component utilizes the
Haar Cascades algorithm implemented in OpenCV library. [Bradski and Kaehler 2008]



It detects faces from the input image and extracts them. For each detected face, the face-
recognition component compares it to the image database and returns their corresponding
profile. 8 Thus, cloudlet profiler receives the quantity of faces detected and recognized,
along with the metrics values, such as vCPU, memory and runtime. 9 Offloading man-
ager receives and saves all values of the aforementioned metrics into a database.

4. Analysis of Results

In this section, we present the evaluation process of the classification algorithms. The
following subsections present the configuration setup and evaluation that are related to
our six classification algorithms.

4.1. Evaluation setup

The evaluation process is illustrated in Figure 2. Each step is described below.

In the first step (i), the researcher must run MonDrone-Fog to collect data re-
lated to the performance of the whole architecture. At runtime, MonDrone-Fog fills the
database with raw data from the metrics. In this phase, experiments are undertaken that
change the behavior of the drone, wireless networks, and cloudlet (VMs). Then the
MonDrone-Fog analyzes the total execution time of each task between two configura-
tions: VM1 remote, where the whole computing-intensive task is processed remotely in
the VM1, and VM2 remote, where the whole computing-intensive task is processed re-
motely in the VM2. At the end of this phase, the MonDrone-Fog compares the total
execution time of each task (VM1 and VM2) for each cycle, then labels those ones whose
total execution time is shorter with a "VM1" value and all others with a "VM2" value.
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Figure 2. Classifiers performance evaluation process

The next step (ii) covers the preprocessing techniques for transforming raw nu-
merical data into features purpose-built for classification algorithms. The first technique
is related to detecting outliers to identify extreme observations, then dropping the obser-
vations, since we can’t believe those values [Albon 2018]. As a result, 10 records were
discarded because outliers were detected in the RTT between Drone and Fog Node, and
Throughput features. The second technique is a common approach to bringing different
features onto the same scale: standardization. Using standardization, we center the feature
columns at mean 0 with standard deviation 1, so that the feature columns take the form
of a normal distribution, which makes it easier to learn the weights [Albon 2018]. The
standardization is more practical for our problem, because some linear classifiers, such as
the logistic regression and SVM, initialize the weights to 0, or small random values close
to 0. The last technique is related to the grouping of observations using clustering. We



use k-means clustering to group similar observations and output a new feature containing
each observation’s group membership [Zheng 2015].

The next step (iii) covers the classifiers evaluation process. We measure the per-
formance of each classifier by means of its accuracy, F1, G-mean, and others metrics
(e.g., specificity, sensitivity, precision) in the test data by using 10-fold cross-validation
and random seed. For this evaluation, six classification algorithms (MLP, Logistic Re-
gression (LR), SVM, Random Forest (RF), Naive Bayes (NB), and Dummy (DM)) were
compared to each other. The Dummy classifier is a simple baseline to compare against
our models. According to [Albon 2018], a common measure of a classifier’s performance
is how much better it is than random guessing. We have used these classifiers because
they require fewer resources (e.g., processing, memory) than deep learning techniques,
and are fairly accurate [Perera et al. 2013].

Finally, in the last step (iv), the researcher must generate the trained classifiers’
models corresponding to those that obtained the highest accuracy. In addition, the files
corresponding to the generated models must be saved in the MonDrone-Fog project to
allow the fog node to load them at runtime. The objective is to evaluate the classifiers’
performance in a real environment and without controlling the behavior of the MonDrone-
Fog components.

4.2. Classifiers performance

From the average results obtained, it is possible to see in Table 1 values related to the
specificity, sensitivity, precision, FPR, and FNR. From the table, we can observe that
the precision is highest and similar for MLP and Logistic Regression (i.e., 99.76% and
99.16%, respectively) and lowest for Dummy with 57.22%. The sensitivity is maximum
for MLP and Logistic Regression, with a rate of 99.49% and 99.27%, respectively, and
moderate for Random Forest at 96.51%. In a nutshell, MLP and Logistic Regression were
the algorithms that most correctly predicted positive records (offloading to the VM01), as
well as outperforming SVM and Naive Bayes. The specificity with MLP classifier was
99.63%, slightly higher than Logistic Regression with a difference of 0.18%, and a 1.55%
difference compared to SVM.

Table 1. Average of each measured metric for algorithms (%)
Algorithm Precision FPR FNR Sensitivity Specificity

MLP 99.76± 0.21 0.24± 0.21 0.51± 0.24 99.49± 0.24 99.63± 0.17
LR 99.16± 0.14 0.84± 0.14 0.73± 0.13 99.27± 0.13 99.45± 0.08

SVM 98.28± 0.30 1.72± 0.30 2.56± 0.25 97.44± 0.25 98.08± 0.22
RF 97.27± 0.21 2.73± 0.21 3.49± 0.35 96.51± 0.35 97.47± 0.34
NB 97.89± 0.19 2.11± 0.19 11.38± 0.31 97.31± 0.25 90.71± 0.36
DM 57.22± 0.77 42.78± 0.77 57.71± 1.20 42.02± 2.07 57.52± 1.82

The FPR and FNR are referred to as the errors rate. This metric is important
for critical situations in rescue operations, because the fog node can decide to offload an
image to a VM erroneously, which results in a longer response time from the cloudlet or
in crashing it, consequently costing the life of a lost person. According to Table 1, MLP
and Logistic Regression have lower FPR (0.24% and 0.84%) compared to SVM, Random



Forest, and Naive Bayes algorithms, while FNR is the lowest for MLP, with a difference
of 0.22% compared to Logistic Regression, and 2.05% compared to SVM.

Figure 3 illustrates the results related to Accuracy, F1, and G-mean. The results
show that the MLP slightly outperforms both Logistic Regression and SVM classifiers
in all metrics. The accuracy of the MLP algorithm is 99.64%, comparable to the Logis-
tic Regression, which achieves 99.20%. The Naive Bayes had the worst accuracy, with
93.53% of records correctly classified. It can be seen that, in all cases, the Dummy clas-
sifier has shown to have the worst performance over our database, because is a algorithm
that makes predictions using simple rules. This classifier is useful as a simple baseline to
compare with our real classifiers.

Figure 3. Comparison between the classifiers performance

With this result, we can generate a weighted majority voting model, in which the
two classifiers (MLP and Logistic Regression) with better performance are decisive for
the choice of the best class.

5. Conclusion and Future Direction

This paper presented MonDrone-Fog, a fog-based architecture for monitoring and stor-
ing the performance metrics related to the drone, wireless network, and cloudlet. The
proposed solution relies on our historical database for the training and testing of six clas-
sification algorithms previously selected. These are MLP, Logistic Regression, SVM,
Random Forest, Naive Bayes, and Dummy. Of these, two are chosen for implementation
in MonDrone-Fog, MLP and Logistic Regression, since they had the best performance
over our database.

Currently, MonDrone-Fog focuses on the binary classification of where to re-
motely process images with faces in cloudlet (VM01 or VM02). Our architecture does
not consider different fog nodes, such as microfogs, that can be a subset of fog devices
(e.g., two Raspberry Pis) enabled by a fog cluster to handle data from a sensor onboard



UAVs [Torres Neto et al. 2019]. Thus, further work will consist of increasing the spec-
trum of offloading opportunities, considering a heterogeneous architecture composed of
cloudlet, microfog, access points, and gateways. Additionally, we intend to investigate
Multi-Drone systems, which are drones with on-board imaging sensors that are used to
locate the position of missing persons in hostile environments [Shakhatreh et al. 2019].
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