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Abstract. This work presents an interdisciplinary assessment that looks in-
depth at the tracking of air quality in urban environments. The proposed appli-
cation takes advantage of Vehicle Sensor Networks (VSN) by embedding sensor
nodes to public transportation, spreading the sampling activity through different
places visited during the route. We perform environmental modeling based on
real data collected from the city of São Paulo, considering the multivariate spa-
tial behavior of five different air pollutants from fossil-fueled vehicles (CO, O3,
PM10, NO2 and SO2) simultaneously while it also varies in time. Finally, our
VSN-based approach showed an improvement of 126 times lower error and 11
times higher coverage about conventional monitoring with air quality stations.

1. Introduction
The world around us has various phenomena monitored by devices provided with sensing,
processing, and communication capabilities. While cooperatively working in an area of
interest, such devices comprise a wireless sensor network (WSN) [Akyildiz et al. 2002].
This study evaluates a solution that considers a set of different physical phenomena ob-
served by wireless sensor networks. In this context, the challenge of monitoring urban
areas regarding subjects as air quality and meteorological conditions rises as notoriously
relevant research opportunities [Rashid and Rehmani 2016, Yi et al. 2015].

We refer to the resulting output from various phenomena sensing processes as
multivariate data. The samples of each monitored variable are simultaneously collected
and stored by different sensors in the same node. To reach a better coverage area, we pro-
posed to use embedding sensor nodes to public transportation [Kaivonen and Ngai 2020],
such as bus lines and trains. Simultaneously, they visit many different places during
the route. This mobility pattern simplifies the sampling, power management, number of
packages, and other general maintenance issues.

Despite the advantages previously mentioned, these conditions aggravate redun-
dancy issues due to the dynamics of urban traffic [Yi et al. 2015] (i.e., store repeat-
edly samples from the same place when the vehicle is in a traffic jam or high spa-
tial similarity data at closer neighborhoods). An important aspect to highlight after
taking a more in-depth look at available solutions is to realize the lack of an ap-
proach that handles multivariate sampling at distributed, noisy, and adverse be-
haved conditions, as typically seen under realistic urban environments. Simultaneously,
data sampling techniques are well suited to solve redundancy problems such as dis-
cussed in VSN known constraints. Some of the mentioned techniques comprise vari-
able reporting rate [Devarakonda et al. 2013, Hu et al. 2011, Wang and Chen 2017], node
clustering [Khedo et al. 2010, Ma et al. 2008], data fusion [Devarakonda et al. 2013,



Hu et al. 2011, Khedo et al. 2010, Ma et al. 2008], and reconstruction of lost data
[Wang and Chen 2017].

Thus, the aspects mentioned above drive us to state the following research ques-
tion: “What is the impact of using a VSN-based solution to monitor the air quality that
observes multiple phenomena simultaneously?”. The solution must consider a multivari-
ate data set as input and raise additional complexities compared to univariate ones. We
used a Spatio-temporal real dataset of available multivariate samples collected by ten sta-
tionary air quality stations in the experimental validation methodology. These samples
are air pollution variables with some correlation with each other. With these data, we
perform a multivariate interpolation to obtain a visualization covering the entire range of
simulated environments at each unit of area in the field. An event-based simulation will
put vehicle traffic over this previously generated field to evaluate the network behavior,
restrictions, and parameters. The simulation strategy will make car-mounted sensors read
the table with stated field data.

Real data requires pre-processing to fix NA samples at the temporal axis at the
modeling stage. On the other hand, looking at the spatial point of view, the lack of en-
tire series for some variables at station coordinates (irregular data availability) requires a
second additional pre-processing step to predict these missing points and perform the mul-
tivariate interpolation. This step involves a sequence of manual procedures and consumes
significantly more implementation time. The methods described in Section 4 discuss the
adopted strategy to handle this data and prepare it for reconstruction.

The statement of expected contributions achieved at this research work
goes through a generalization purpose addressing evaluation methods and ex-
perimentation scenarios featured closely at [Hu et al. 2009], [Hu et al. 2011] and
[Wang and Chen 2017]. Moreover, we intended 1) to provide a simulation framework
that covers realistic use cases alongside a precise environmental model, 2) to raise a rel-
evant subset of experimentation conditions and formulate guidelines to execution on real
scenarios, 3) bring up side by side in comparison, considering the experiment results, the
behavior of a classical strategy by static monitoring (air quality stations) alongside the
presented VSN approach looking on its intrinsic operation principle.

We can assure a bottom line to develop a simulation environment that looks at
urban pollution agents from a multivariate perspective. The main achievement of this
study is that all referred researches work with univariate data, whereas we propose to
expand the evaluation to a multivariate domain. We focus on observing the behavior
of each monitored variable individually and the correlation among them. We consider
real data input collected from air quality stations and assess the effort to handle a VSN
application with this complex data type. We evaluate our model considering the absolute
value of relative error and global field coverage metrics.

2. Related Work
WSN based air quality monitoring solutions are an already mature subject-matter in liter-
ature. In the following discussion, we present the papers with the closest relation to our
research scope and address the open points regarding the handling of multivariate data
assessed at this work.

Addressing the research background under urban zones, we can highlight al-



ternative monitoring solutions approaching vehicle sensor networks [Yi et al. 2015,
Hu et al. 2011, Devarakonda et al. 2013]. This case study takes advantage of bus lines
as mobile sensing units, as seen in [Kaivonen and Ngai 2020], that ride through the city
while collects the data. [Hu et al. 2009] and [Hu et al. 2011] present a standard VSN ap-
plication implemented to perform micro-climate monitoring through CO2 concentrations.
This application integrates a map service to show the collected data from car-mounted
sensors (GPS/Cellular based) running in a real environment. Adaptive reporting with data
aggregation and V2V communication strategies to bandwidth management are considered
as well. [Wang and Chen 2017] propose a novel approach over a Vehicle Sensor Network,
which consists of a probabilistic strategy to handle adaptive sampling of cars and balanc-
ing the trade-off between monitoring accuracy and communication cost with data traffic.
This simulation comprises mobility and pollutant dispersion models, while advances on
the methodology stated in [Hu et al. 2011].

Considering the overall aspects considered in the mentioned works, we observed
a solid direction with a mature network simulation methodology that fits as a solid bottom
line for our research.

Looking at Table 1, we highlight that our proposal is the only one that handles
multiple simultaneous phenomena (MDH, Multivariate Data Handling), thereby taking
into account the impact of spatial correlation between different sensed variables. Another
characteristic that did not explore so far for this kind of solution is considering real data
under a simulated environment. Besides that, we quantify the error and coverage im-
provement from a VSN-based application compared to conventional air quality stations,
considering a realistic urban environment.

Table 1. Summary of related work (sensors and methods).
Article Air Sensors/Indicators Processing on Application Level Experiment

(per year) COx O3 PM NOx SOx Comp./Aggr.* Adapt. Rep.* MDH* Real Sim.*

PROPOSAL x x x x x x x
[Völgyesi et al. 2008] x x x x x

[Ma et al. 2008] x x x x x
[Hu et al. 2009] x x x
[Hu et al. 2011] x x x x

[Devarakonda et al. 2013] x x x x x
[Wang and Chen 2017] x x x

[Kaivonen and Ngai 2020] x x x

*Abbreviations respectively for "Compression/Aggregation", "Adaptive Reporting", "Multivariate Data Handling", "Simulated".

3. Environmental Application Design
Let the overall behavior be denoted by

N V∗ V V ′

D D′

P S

R

ω

R (1)

where N denotes the environment and the process to be measured, P is the phenomenon
of interest, and V∗ is the time-space domain. If a complete and uncorrupted observation
is possible, it can devise a set of rules (R), leading to ideal decisions (D). Replicate this



behavior for every phenomenon Pi | i = {1, . . . , n}, where n is the number of different
phenomena under observation, thereby considering its multivariate manifestation.

Furthermore, S is the set of sensors where S = {S1, . . . , Sk} and k is the number
of sensors available on network. In this case, a sensor Sk is a car-mounted mobile node
and navigate through the monitored area. Each sensor provides measurements of the
phenomenon and produces a report in the domain Vi,j | 1 ≤ i ≤ n AND 1 ≤ j ≤ k (n
is the number of different phenomenon under observation and k is the number of sensors,
as mentioned previously).

Thereby, we denote the global visualization of sensing activity resulting from the
combination of all sets of phenomena covered by every sensor as V = {V(1,1), . . . , V(n,k)}.
Processes to reduce the size of collected data are not considered in this study so far.

In our case study, the process ω consists of assembling a Voronoi Dia-
gram [Aurenhammer 1991] to fill left blank spaces from non visited areas. The Voronoi
strategy used is

dom(Sp, Sq) = {x ∈ R2|ρ(x, Sp) < ρ(x, Sq)}, (2)

we consider the samples’ location (S) as a set of n points in an area, the dominance of
Sp over Sq is the subset (or sub-area) of the plane that is closer to Sp than Sq, where
ρ represents the Euclidean distance function, and x represents a given point in the R2

plane. In this problem, the seeds in the diagram represent the locations visited by the
busses (VSN strategy) and air quality station locations (Conventional monitoring strat-
egy), and the dominance is the sub-areas (Voronoi cells) covered by each seed. After
that, it generates the reconstructed set V′ from V , where we can use the same set of rules
R to make decisions D′. The Diagram 1 is analogous to presented by Aquino et. al
[Aquino et al. 2012].

Figure 1. Matching city area
with 25× 25 pollution map.

The first rule considered to evaluate the
performance at each scenario is the Absolute
Value of Relative Error (ε̂) [Frery et al. 2010]

ε̂ =
1

L

Z∑
x,y

∣∣∣∣∣V∗(x, y)−V′(x, y)

V∗(x, y)

∣∣∣∣∣ , (3)

where Z is the set of (x,y) coordinates that be-
long to the internal area of Figure 1, parsed as
valid inputs to reconstruction technique, L is
the length of set Z, V∗ is the field that repre-
sents the environment and was initially simu-
lated; V′ is the rebuilt field. Moreover, by the
fact that by input data that generates V∗ was
pre-processed to handle all NA measurements,
it can always ensure the definition of ε̂ since
V∗(i, j) 6= 0.

4. Multivariate Pollutant Map Generation
The considered dataset contains real data collected from air quality stations placed in São
Paulo, with samples from Jan-01-2005 to Dec-31-2005. About 15 different variables re-
porting information such as wind speed and direction, atmospheric stability, temperature,



humidity, and other classes of pollutants are available. To delimit the research scope, we
reduce these variables from 15 to 5 considering the pollutant agents related to the burning
of fossil-fueled vehicles: Carbon Monoxide (CO); Particulate Matter (PM10); Nitrogen
Dioxide (NO2); Ground-level Ozone (O3) and Sulfur Dioxide (SO2).

After a preliminary processing step to assert the unformatted raw data in good
shape to perform subsequent operations, the date length was reduced to a range of one
week, enough to run the simulations and allow feasible processing with available com-
puting resources. Finally, for validation purposes we choose the interval of oct-15-2005
to oct-21-2005 arbitrarily through visual inspection, considering the occurrence behavior
of N/A samples due to sensor fails or maintenance at this selected window.

4.1. Prediction

The first direction is to gather the variables one by one at each column (that shows samples
of a sensor within a single station). This step aims to fill the blank spaces caused by NA
occurrences keeping the overall behavior.

For that, we take the actions as follows: (i) Assert each single column (Table 2)
as a matrix (Table 3) with hours (0h–23h) × days (15–21); (ii) Test normality (Shapiro-
Wilk) for everyone, evaluate mean µ and standard deviation σ by two times, for entire
row and for the whole column that crosses on the current NA cell (at hour× days matrix);
(iii) Generate a merged normal curve parsing the parameters µ1, µ2, σ1, σ2 and sample a
random value from this distribution. (iv) After that, this procedure should deliver a Table
with NA samples fixed for every variable (standalone pollutant sensor).

Table 2. Selecting gray to handle
NA.

Date Time Station-Sensor(1,...,n)

(h) 1-CO ... 4-PM10 ... 47-O3

15-Oct 01:00 0.71 ... 12.08 ... 18.69
15-Oct 02:00 0.67 ... 8.53 ... 10.56
15-Oct 03:00 0.79 ... 28.64 ... 12.46

... ... ... ... ... ... ...
21-Oct 23:00 0.59 ... 6.56 ... 17.03
21-Oct 00:00 0.62 ... 13.94 ... 16.19

Table 3. Entire 4-PM10 column as-
serted as hour × days matrix (be-
fore prediction).

Station 4-PM10

15-Oct 16-Oct ... 19-Oct ... 21-Oct

01h 12.08 48.39 ... NA ... 14.06
02h 8.53 36.77 ... NA ... 9.93
03h 28.64 46.46 ... NA ... 16.22
... ... ... ... ... ... ...

23h 61.69 33.12 ... 11.66 ... 6.56
00h 60.20 16.20 ... 11.95 ... 13.94

Table 4. Prediction of missing data.
Station Sensors

(ID) 1st Turn Prediction 2nd 3rd

1 CO PM10 O3 NO2 SO2

2 CO PM10 O3 NO2 SO2

3 CO PM10 O3 NO2 SO2

4 CO PM10 O3 NO2 SO2

5 CO PM10 O3 NO2 SO2

8 CO PM10 O3 NO2 SO2

12 CO PM10 O3 NO2 SO2

16 CO PM10 O3 NO2 SO2

27 CO PM10 O3 NO2 SO2

47 CO PM10 O3 NO2 SO2

All five pollutant sensors (CO,
PM10, NO2, O3, SO2) are not available
on every station. For this reason, there
is a lack of measurement at some input
coordinates for reconstruction. This ab-
sence of data disturbs the prediction for the
multivariate phenomena process so that all
points should be available on each station
coordinates. Table 4 describes the arrange-
ment of sensor availability, where vari-
ables colored on green shades are the miss-
ing ones. At the first turn, we interpolate



the entire map based on CO, PM10, and O3 at available stations {1, 3, 5, 16, 27} and as-
sign to missing stations the predicted data at respective coordinates. After that, repeat the
similar process to NO2 and SO2 accumulating sequentially the new predicted samples at
the previous turn.

With missing points fixed, we parse the data as input to multivariate ordinary cok-
riging (supported by R package GSTAT, [Pebesma and Heuvelink 2016]) to interpolate
the entire map area, this assembled field represents V∗ from Section 3. We use the same
technique to fix missing stations (Table 4). Finally, the achieved outcome is a set of five
tables (one for each pollutant). Each table is assembled by placing columns with a list of
valid coordinates from the map area. Each row in this table represents the entire map area
in a particular timestamp.

4.2. Traffic Simulation

Table 5. Summary table represent-
ing V∗.

Pollutant Pi

Date Time Coordinates(x,y)

(h) (5,3) (6,3) (7,3) ... (11,23)

15-Oct 00:00 1.75 1.75 1.75 ... 1.76
15-Oct 01:00 1.76 1.77 1.77 ... 1.77
15-Oct 02:00 1.78 1.79 1.78 ... 1.75

... ... ... ... ... ... ...
21-Oct 23:00 1.57 1.58 1.58 ... 1.41

The pollution map described in the previ-
ous Section (Table 5) is the general struc-
ture used as the baseline in our experi-
ments. The subsequent stage consists of
setting up the urban maps and traffic be-
havior. We use the Open Street Maps
(OSM) API to get geographic information
from the city by parsing latitude/longitude
coordinates. With roads and highways
structure appropriately in place, the sub-
sequent step is to generate vehicle routes.
For this task, we adopted the Simulator of
Urban MObility (SUMO).

The vehicle generation consists of bus stops and their respective defined lines for
public transportation, available at fetched maps. During the simulation, the busses will
loop on those designated routes and be analyzed in realistic environments. On the other
hand, for small passenger cars, the application performs an insertion with random routes
and starting places for each one. These vehicles disappear from simulation after reach the
end of their routes. Three different traffic intensities are generated (referred respectively
as LIGHT, AVERAGE and HEAVY traffic) in a range of 7 days. Visited coordinates at each
bus line are stored to evaluate performance metrics. Collected data is reported during
the route to a remote cloud-based service using cellular network attached with sensor
nodes, following sample rate from Table 6.

4.3. Environment Assembly

The last stage of experimentation consists of put together the output from two previous
ones (multivariate pollution maps from Section 4 and bus routes trace from Section 4.2).
We base the environmental assembly application in R Statistical Language, where we
handle the trace file to match coordinates with pollution maps.

We match the map coordinates with the downloaded area under the following
conditions: (i) If there is at least one bus inside a single sector from the 25× 25 map, we
consider it covered, (ii) we disregard points outside the municipality boundaries.



5. Results and Discussion

Table 6. Simulation parameters.
Parameter Values

Pollutant Variables CO, PM10, O3, NO2, SO2

Pollutant Map Scale 25× 25 size units
Map Area 132 squared size units
Number of Busses 12k
Traffic Intensity Light (90k), Average (180k), Heavy (360k)
VSN Sample Rate 15 min.
Simulated Time 7 days (random seeds for each one)

Initially, we perform all the required data
handling on traces and phenomena infor-
mation. The following actions aim to
achieve a performance assessment look-
ing at overall field coverage and error rate
from measurements at both approaches:
Sampling on conventional air quality sta-
tions or aided by a VSN network with sen-
sor nodes mounted on public transporta-
tion (bus lines). Table 6 summarizes the
parameter set for this experiment.

5.1. Summary for Global Field Coverage

This performance assessment looks at the coordinates where each air quality station is
located or visited from each bus line. We weigh the obtained coordinates from this proce-
dure under two directions: (i) concerning the broad set of map coordinates and (ii) about
traffic intensities over the day.

Table 7 shows the trace from bus lines in a 1-hour window, there is one instance
of this table for each traffic intensity (see Table 6). It is assigned to the respective hour
of day (Table 8). After that, we shape all visited coordinates as a plain list (eliminating
repeated ones) and count how many are covered in relation to 132 squared units of entire
map, generating the percentages seen at Table 9. Global Coverage is achieved under this
weighted sum Light(s)× 6

24
+Average(s)× 12

24
+Heavy(s)× 6

24
(where s is the day/seed).

Table 7. Trace data from bus lines
(scaled as 25× 25).

Timestamp Bus ID(1,...,n)

0 1 2 3 ... n− 1 n

0s (5,8) (3,8) (4,6) (5,8) ... (6,8) (7,7)
900s (6,8) (3,8) (4,7) (5,8) ... (5,8) (7,8)

1800s (7,8) (3,8) (5,7) (6,7) ... (3,6) (6,9)
2700s (7,8) (3,9) (5,7) (7,7) ... (4,6) (6,8)
3600s (7,8) (3,9) (5,8) (7,7) ... (4,7) (6,8)

Table 8. Traffic intensity
day times.

Time Traffic Intensity

(h) Light Average Heavy

0h - 6h x
6h - 7h x
7h - 9h x
9h - 11h x

11h - 13h x
13h - 17h x
17h - 19h x
19h - 0h x

Table 9. VSN summarized coordinates list to evaluate Global Coverage.
Day Traffic Intensity (× Coords List) Global Coverage Global Coverage

(seed) Light Average Heavy (VSN) (Stations)

1 87.12% 86.36% 87.12% 86.74%
2 86.36% 86.36% 86.36% 86.36%
3 86.36% 86.36% 86.36% 86.36%
4 86.36% 86.36% 87.12% 86.55% 7.5%
5 87.12% 86.36% 87.12% 86.74%
6 86.36% 86.36% 86.36% 86.36%
7 87.12% 86.36% 87.12% 86.74%



Considering the presented strategy, after seven days run with random and inde-
pendent seeds for each day, our VSN application achieved a global field coverage of
86.55%, on average. On the other hand, the conventional stations are only aware of phe-
nomenon data on their current sector, taking into account the 132 sectors (see Table 6)
covered by the map area and the known amount of 10 stations. The regular monitoring
system achieves a theoretical global field coverage of 7,5%.

5.2. Summary for Absolute Value of Relative Error

In the current section, we assess the sampled data representativeness by evaluating the
Absolute Value of Relative Error (detailed in Section 3). Figure 2 shows the behavior of
error metric for each pollutant, at bottom of Figure 3(c) map we see an information loss
at continuous dark red area in comparison with 3(a) and 3(b) due to the lack of spatial
reachability in stationary sensing, which was mitigated at VSN approach.

Figure 2. Error rate evaluated through 7 days from VSN and Conventional Sta-
tions

CO Pollution Map

(a) Reference multivariate data.

CO Pollution Map

(b) Samples from VSN.

CO Pollution Map

(c) Samples from Stations.

Figure 3. Side-by-side performance comparison between sampling with VSN and
Conventional Stations for Carbon Monoxide.

Considering the Carbon Monoxide pollution map, the Absolute Value of Relative



Error (AVRE) along the entire time series presented an average of 0.25% for VSN ap-
plication 31.57% for Conventional Air Quality Stations. For Particulate Matter, AVRE
indicates an average of 0.36% for VSN application and 35.93% for Conventional Air
Quality Stations. For ground-level Ozone, AVRE indicates an average of 0.32% for VSN
application and 32.27% for Conventional Air Quality Stations. For Nitrogen Dioxide,
AVRE indicates an average of 0.48% for VSN application and 34.03% for Conventional
Air Quality Stations. For Sulfur Dioxide, AVRE indicates an average of 2.02% for VSN
application and 13.33% for Conventional Air Quality Stations.

This result means an improvement on the order of 126, 99.8, 100, 70, and 6.59
times lower error respectively for CO, PM10, O3, NO2 and SO2 concerning the regular
monitoring system. We can observe that the error difference between the two approaches
decreases according to data availability displayed at Table 4. Note that the SO2 sensor
is available at only two stations (IDs 5 and 8), and this limited number of input samples
causes an artificial homogeneity on predicted data for this variable, which pulls the AVRE
measurements closer with other sensors.

10413

9792

603 Amount of samples at each condition:

1st Prediction step: Merged Gaussians

2nd Prediction step: Multivariate Cokriging

Raw data

Figure 4. Sources from samples.

Even with this limitation of data
availability that disturbs the prediction of
variables with few inputs, our proposal
shows a noticeable improvement (659% at
the worst case from SO2) on overall ap-
plication behavior comparison to conven-
tional strategy. Since only two sensors for
an entire city is quite extreme restriction,
any dataset with more sensors available is
enough to mitigate this limitation.

This result also shows that our model is robust even with extremely constrained
input data. Highlighting all the procedures from Subsection 4.1 (i.e., NA fixing) that con-
tributes with achieved result. Figure 4 details predicted samples from those procedures.

6. Conclusion and Final Remarks
The presented work has explored the air quality monitoring problem while taking an in-
depth investigation into the modeling of complex environments. Beyond that, to deliver
contributions that improve the view of how correlated multivariate phenomena behave.

The approached VSN supported by public transportation (bus lines) showed con-
siderably higher performance than the regular system based on air quality stations, behav-
ing with error rates near zero and about 11.5 times higher global coverage, which figures
as a solid contribution what is observed at literature so far.

Thereby, overall observed performance indicates that the proposed application
on this case study is suitable to be executed in real-world scenarios and can predict
realistic behaviors of correlated physical processes accurately. Future directions con-
sider evaluating different data processing algorithms and improving environmental mod-
eling with variables that did not consider at last turn, such as wind speed/direction,
temperature, humidity data on evaluation, and finally, find out novel insights. The
complete project is available at link https://github.com/isrvasconcelos/
VSN-MultivariateAirPollution.

https://github.com/isrvasconcelos/VSN-MultivariateAirPollution
https://github.com/isrvasconcelos/VSN-MultivariateAirPollution
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