
The Rhadamanthys Quality of Context Architecture
Hélio Carlos Brauner Filho1, Claudio Fernando Resin Geyer1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{hcbfilho,geyer}@inf.ufrgs.br

Abstract. With the rising number of Internet of Things devices and context
providers, the need for sorting and selecting them according to user require-
ments and to the quality of sensed information becomes prevalent. Thus, this
paper presents the Rhadamanthys architecture, designed to fulfill this require-
ment using Quality of Context information for both ranking and selection. In-
dividual Quality of Context criteria as defined in the literature are evaluated
for each available provider and used in formulae to obtain a single score that
enables ranking and allows selection.

1. Introduction
Estimates on the number of Internet of Things(IoT) capable devices in 2015 indicate
around 15.4 billion in existence, with an expected growth towards more than 30 billion
devices in 2020 and further to the mark of 75 billion devices in 2025 [IHS Markit 2016].

Due to the huge number of IoT context providers, researchers have been studying
and proposing new methods to allow searching and ranking such devices according to
the quality of their sensed and generated data in order to allow the selection of the most
appropriate providers that can solve a given task.

Some solutions that can be cited include Cuida [Nazário et al. 2015], Yasar’s
[Yasar et al. 2011] and CASSARAM [Perera et al. 2013], which have in common the use
of Quality of Context (QoC) definitions to evaluate several sensor information criteria
individually, as well as the use of a final aggregation function that could make single
ranking possible.

While Quality of Context was first defined as “any information that describes the
quality of information that is used as context information” and that it “refers to informa-
tion and not to the process nor the hardware component that possibly provide the infor-
mation” [Buchholz et al. 2003], the concept of QoC has evolved to include measurement
of sensed data quality using numerical values at least since [Kim and Lee 2006].

Considering the requirements for IoT sensor selection and the QoC definitions
studied, and the fact that current solutions are not flexible enough to allow new meth-
ods for QoC evaluation and aggregation to be used, the Rhadamanthys architecture was
conceived. It encompasses the process of searching, ranking and selecting providers, and
allows flexibility in terms of QoC criteria and of aggregation methods to be used. It also
includes a Graphical User Interface (GUI) to aid users in the task of informing their needs
in order for the system to determine the QoC value of providers.

This paper is divided into 5 sections. Section 2 presents related work. The Section
3 presents the architecture and describes its components. Section 4 presents the prototype
and evaluation of the architecture. Finally, Section 5 concludes it.

XXXVII Congresso da Sociedade Brasileira de Computação

938

2. Related Works
The works presented here were selected because they make use of QoC concepts in their
models but do not limit themselves to basic QoC definitions. Two other aspects considered
were:

1. the use of individual criteria (referred to as dimensions, attributes or parameters in
works such as [Perera et al. 2013] and [Nazário et al. 2015]) for evaluating Qual-
ity of Context, as well as an aggregation function that results in a single QoC value
that could enable simple ranking and selection operations;

2. the use of QoC criteria along with a user interface for the selection of context
providers.

In [Yasar et al. 2011], some QoC criteria are used in order to evaluate if mes-
sages in Vehicular Ad Hoc Networks (VANETs) should be transmitted or dropped so as
to reduce network traffic and free resources. Definitions on how to evaluate four criteria,
Temporal Relevance, Completeness of Information, Priority of Information and Spatial
Relevance, are given, and a definition is given stating that each of those criteria might
have different weights. The final QoC single value is obtained by calculating the weighted
average of the criteria.

In Trust and Privacy Management Support For Context-Aware Service Platforms
[Neisse 2012], QoC criteria are identified as QoC attributes, and are defined based on an
international metrology standard found in [Vim 2004]. The QoC model defined in that
work allows QoC values, such as precision of context information values and freshness of
timestamps, to be obtained implicitly. The defined attributes help users decide if context
providers are trustworthy concerning applications such as GPS positioning and tempera-
ture measurements.

The definition of trustworthiness found in it differs from what is shown in
[Buchholz et al. 2003] and [Sheikh et al. 2008]. The latter two consider trustworthiness
to be a QoC attribute, but [Neisse 2012] considers it to be “a property of the context
provider from the context consumer’s point of view, and is not a quality concept related to
the context information itself” [Neisse et al. 2008]. Thus, trustworthiness is treated in the
Trust Management Model and defined there instead of being defined in the QoC Model.

In Context-aware sensor search, selection and ranking model for Internet of
Things middleware (CASSARAM) [Perera et al. 2013], the authors present a GUI based
approach to complement their Context Awareness for Internet of Things (CA4IOT)
[Perera et al. 2012] architecture. It allows priority assignment for several criteria to al-
low the selection of sensors according to user needs. By default, it has 30 criteria, called
context attributes, available for users to select and assign priorities to using sliders, with
possible values ranging from 0, less priority, to 1, high priority. The interface can be
extended, allowing for more sliders to be added if new criteria are required by users to be
considered.

After obtaining user priorities, weights are assigned to each of the criteria com-
paratively. Then, all of the values are aggregated into a single value using an index
based on Euclidean distance calculation called Comparative Priority-based Weighted In-
dex (CPWI). This index requires the user to inform an ideal sensor that is positioned in a

9º SBCUP - Simpósio Brasileiro de Computação Ubíqua e Pervasiva

939

multidimensional space, with each space representing a criterion and ranging from 0 to 1.
Sensors with values closest to the ideal sensor will be selected. If no values are informed
by the user, the ideal sensor has all values defaulted to 1. The values for each sensor are
then multiplied by the comparative weights resulting in a single CPWI value.

In Cuida: um modelo de conhecimento de qualidade de contexto aplicado aos
ambientes ubı́quos internos em domicı́lios assistidos [Nazário et al. 2015], an extensive
study is made on QoC attributes in order to develop a knowledge model for QoC to be
applied in a ubiquitous assisted household environment. The study identified a lack of
standard nomenclature, standard definitions and standard quantification methods for QoC
parameters. This resulted in the creation of an ontology model to represent QoC.

In order to evaluate the model, a context architecture is proposed, and within
this architecture, two modules are dedicated to QoC. The first one is responsible
for quantifying QoC parameters between 0 and 1, using rules that were defined in
[Nazário et al. 2014]. It is highlighted that the aggregation method, while using the
same weighted average as [Yasar et al. 2011], differs from it in the way significance is
treated as defined by [Manzoor et al. 2008]. While [Yasar et al. 2011] uses significance
as one of the parameters in the weighted average, calling it priority, the approach in
[Nazário et al. 2014] defines that this parameter should not lower the QoC value, but only
be used to give different priorities when evaluating the information.

The second one is responsible for evaluating the QoC values that were obtained
by the first QoC module, detecting possible problems with sensors and communication
networks, or possible risks to the patient that is being monitored by the environment.

All of the related works presented QoC being used in some bigger context than
just QoC definitions, showing that there are valid applications for QoC definitions, while
a few others showed that having a user interface and quantifying QoC values between 0
and 1 is a trend and that those two aspects can make evaluation easier.

3. Rhadamanthys Architecture: Concepts and Model

The Rhadamanthys Architecture was designed to allow search, ranking and selection of
context providers in a fashion similar to that of the CASSARAM model. Its main differ-
ences are the possibility of using different aggregation methods, the use of QoC profiles to
make assignments easier for the user to make, and allowing the identification of redundant
criteria by the user community.

3.1. Overview

The Rhadamanthys Architecture comprises 8 modules:

1. A Search module to discover the available context providers;
2. A Weight and Requirement Assignment module that receives assignments made

by the user;
3. A QoC Criteria Evaluation module that evaluates each QoC criterion according,

for the default criteria, to methods defined in the literature;
4. An Aggregator module that receives individual QoC criteria values and respective

weights and returns a single QoC aggregated value;

XXXVII Congresso da Sociedade Brasileira de Computação

940

5. A QoC Profiles module, that saves user weight and requirement assignment def-
initions in order to make them available to other users who might have the same
needs;

6. A Ranking module that allows the use of different ranking methods for the values
generated by the Aggregator;

7. A Selection module that uses the number of context providers informed by the
user to select them based on their ranking;

8. An Interface that allows the user to inform weights, desired criteria etc. and shows
the resulting selection.

A diagram of the modules encompassed by Rhadamanthys with the interactions between
them is presented in Figure 1. Each of module is better explained in the following sub-
sections.

1, U, W

4, V, Z, 17

32, 5

9

7,X

11

10

13

15

 16

14

Search

6

8

Y

12

Figure 1. The Rhadamanthys Architecture with Modules and Interactions. The
latter are described in the final subsection of Section 3

3.2. Search
The Search module finds available context providers to be tested in order to verify if
they comply with user requirements. The module does so by keeping a list of all known
providers and making requests for information when requested by the Interface.

3.3. Weight and Requirement Assignment
This module receives weights informed by the user, as well as other requirements, such
as the maximum radius to consider context providers as valid candidates, the type of

9º SBCUP - Simpósio Brasileiro de Computação Ubíqua e Pervasiva

941

provider that is required, the number of providers required, the aggregation method to be
used and the desired ranking method. The selected ranking method is informed to the
Ranking module, and the rest of the information is passed to the Aggregator module.

3.4. QoC Criteria Evaluation
The QoC Criteria Evaluation module is responsible for applying the formulae defined
for each criterion to measure the corresponding QoC value, between 0 (No Quality/Don’t
Care) and 1(Best Quality). These values are grouped according to the context provider
that generated the data and sent to the Aggregator module.

3.5. Aggregator
The Aggregator module is responsible for receiving the values obtained by the QoC Cri-
teria Evaluation module and the weights and other assignments from the Weight and
Requirements Assignment module and apply the method chosen by the user to generate
single QoC values for each context provider.

Since different aggregation methods might result in different execution times and
different final results for each method, offering choices to the user allows the compromise
between performance and efficiency according to need. The results are sent to the Ranking
module.

3.6. QoC Profiles
This module is responsible for saving previous choices made by users according to an
application description. To exemplify the advantage conferred by this module, one can
imagine a user trying to describe his needs for an application that uses temperature mea-
surement providers. It is possible that a previous user might have already described his
needs for the same application. So, the current user might be able to use the same spec-
ifications the previous user defined by looking for the profile descriptions and finding
“Temperature measurement” or a similar description and get the job done faster.

On the other hand, the current user might want to describe his own specification
under the same description, or there might be redundant definitions for the same applica-
tion with different descriptions.

In the first of the latter two cases, the QoC Profiles module must be able to save
both descriptions and find balance between them in order to relay a single description to
other users. This is ideally accomplished by an algorithm that is capable of generating a
configuration with high representativeness towards the average, while discarding sets of
user specifications that stray too much from it.

In the second case, definitions must be compared to see how close they are and be
declared as candidates for merging. Merging can be either a manual process, when the
scope of descriptions is small enough to be handled by humans, or an automated process
otherwise.

3.7. Ranking
The Ranking module receives every value generated by the Aggregator module and ranks
providers according to the ranking method informed by the Weight and Requirement As-
signment module. These methods might vary according to how values are ordered (e.g.

XXXVII Congresso da Sociedade Brasileira de Computação

942

ascending, descending) and to sorting algorithms used. The resulting ranking is then sent
to the Selection module.

3.8. Selection

This module is selects the number of providers required by the user, and also for informs
when the required amount of providers could not be met.

3.9. Interface

The Interface module receives all of the definitions and assignments the user makes and
relay them to the other modules, and also receives information from these modules and
show them to the user. Therefore, its role in the architecture is defined by how other mod-
ules and the user interact with it, and can be better understood by reading the Interactions
subsection.

3.10. Interactions

The interactions represented by the arrows in Figure 1 are as described in this list:

1) The User interacts with the Interface
2) The Interface module requests current profiles to be shown to the User
3) The QoC Profiles module answers the requests made in 2
4) The Interface informs the User which profiles are currently available
5) The Interface module sends values informed by the User to be saved by the QoC

Profiles module
U) The User informs the Interface that a new QoC criterion will be added
V) The Interface requests a definition on how to evaluate this new criterion
W) The User informs, using some sort of language, the method used to evaluate this new

criterion
X) The Interface signals the QoC Criteria Evaluation module that a new criterion and its

respective method will be added
Y) The QoC Criteria Evaluation module signals that it has saved the information about

the new criterion and its corresponding evaluation method
Z) The Interface informs the User that the operation started in U has been successfull
6) The Interface signals the Search module that the User has already defined his

needs and is now expecting results, triggering the Search module to find context
providers

7) The Interface informs the QoC Criteria Evaluation module which of the criteria must
be evaluated according to the User

8) The Search module sends the information obtained from the context providers con-
tacted to the QoC Criteria Evaluation module. The QoC Criteria Evaluation
module applies methods to determine the value of individual QoC criteria in a
range from 0 to 1

9) The Interface transmits the weights and other assignments made by the User to the
Weight and Requirement Assignment module

10) The QoC Criteria Evaluation module sends its results to the Aggregator module
11) The Weight and Requirement Assignment module sends its results to the Aggregator

module

9º SBCUP - Simpósio Brasileiro de Computação Ubíqua e Pervasiva

943

12) The Weight and Requirement Assignment module informs the Ranking module the
ranking method to be used

13) The Aggregator module sends its results to the Ranking module
14) The Weight and Requirement Assignment module informs the Selection module how

many context providers the User requires
15) The Ranking module sends the final ranking to the Selection module
16) The Selection module returns the final list of context providers that fulfill the User

requirements to the Interface
17) The Interface returns the list to the User

4. Prototype and Evaluation
In order to evaluate the proposed model for the architecture, a prototype implementing its
main functions was developed. The programming language used was Java, and the GUI
was developed using the Netbeans IDE.

Figure 2. The ”Add New Dimension” prompt window. It allows users to describe
new methods for criteria through Java code

The Interface()Figure 3) has sliders ranging from 0 (Not Important) to 1 (Most
Important), with big steps in order to save the user time fine tuning assignments. It
also allows the addition of new criteria and their respective sliders and method codes
through the ”Add New Dimension” button, and the selection of ranking and aggregation
methods (those are combined e.g. “Weighted Average - descending order”). Currently,
the methods are described through Java code(Figure 2). The Interface also provides the
option to select if context providers that are not of the specific type required by the user,
but that can generate similar data (e.g using accelerometer information when the required
provider type is “seismometer”) will be a part of the ranking.

The QoC Criteria Evaluation module was implemented using several of the defi-
nitions found in the literature, for parameters such as Up-to-Dateness, Completeness and
Battery Life. Values vary from 0 to 1, as modeled.

The QoC Weight and Requirement Assignment module also uses the 0 to 1 range
variation, and does not use the comparative approach proposed in CASSARAM, but rather
the defined weights directly.

The QoC Profiles implementation has used a simple method to verify its feasibil-
ity. An algorithm was implemented that picks the first definition related to an application

XXXVII Congresso da Sociedade Brasileira de Computação

944

description as standard. The standard remains so until some other definition for the same
application differs too much from it(1/3 of criteria with a difference of at least 0.2 be-
tween one user assignment and the other). When this happens before 10 definitions are
made, the default action is to no longer show those definitions to users until it reaches
that number of definitions, when the new definition is obtained through average. If it does
not differ, the standard remains. While not ideal, this algorithm shows that, given the
proper attention in order not to allow the problem of divergent definitions to cripple it,
QoC Profiles can be a valuable aid for users to save time using predefined assignments.
The current number of definitions required was defined as 10 to make tests easier.

The Search module currently reads a dummy file containing a list of descriptions
for available providers and sends it to the Interface.

Based on the approaches shown in the literature, two aggregation methods were
implemented for the Aggregator module: Weighted Average (Equation 1) and Eu-
clidean Distance Based (Equation 2). EDB is based on the approach presented in
[Perera et al. 2013], modified to solve a problem where the ranking was inverted. The
equations for these two methods are described in the next subsection.

The implementation of these two showed that different methods can be used for
aggregation. Also, tests using pseudo-random values showed that Weighted Average is
more than two times faster and has better results than EDB, because the standard deviation
for WA is smaller in at least 80 % of the cases, and in the cases where EDB has a better
result the difference towards WA is smaller than a hunredth.

Also, three different ranking methods were implemented for the Ranking module,
using ascending, descending and random order. This made it easier for different scenarios
to be tested. The descending order makes it easier to detect failing context providers, and
the random order can be used for statistical studies.

4.1. Equations

Equation 1 for the Weighted Average aggregated QoC value assignment is as follows:

WAvg =

∑n
i=0(Ci ∗Wi)∑n

i=0Wi

(1)

Where Ci is the quality value for criterion i obtained through the QoC Criteria
Evaluation module and Wi is the assigned weight for criterion i.

Equation 2 for the Euclidean Distance Based method is described as:

EDB = 1−

√√√√
n∑

i=1

[Wi(Ud
i − Sαi)2] (2)

WhereWi is the normalized weight assigned through the sliders for criterion i(that
is, the ratio between the assigned weight and the sum of all assigned weights), Ud

i is the
user-defined ideal value for criterion i and Sαi is the value attributed to sensor α, (α being
any sensor in the complete set of evaluated sensors) for criterion i by the QoC Criteria
Evaluation module.

9º SBCUP - Simpósio Brasileiro de Computação Ubíqua e Pervasiva

945

Figure 3. Interface implemented in Java. On the top left, the ”Add New Dimen-
sion” button and the selector for ranking method and ordering. On the top right,
options to select or add profile, define maximum radius, sensor type and required
number. On the bottom, the sliders that enable weight assignment for criteria

5. Conclusion

The research made has shown that with the growing numbers of IoT capable devices, the
need for methods that allow selection of devices amid those has increased.

Since the solutions shown in the related works that focus on QoC based selection
did not present an architecture that allowed new criteria evaluation methods to be added,
the Rhadamanthys Architecture was proposed, and its main aspects were detailed in this
paper.

Advantages of the Rhadamanthys Architecture compared to other solutions in-
clude the QoC Profiles that enable users to inform their needs with ease, and the possibil-
ity of adding new criteria evaluation methods.

To prove the proposal feasible, a prototype implemented in Java, with a GUI
developed with the Netbeans IDE was made. It confirmed that the architecture is capable
of, within the described QoC value assignment model used, supplying different needs,
allowing different configurations that can make it easier to detect the best or worst context
providers and to make tests with random selections. It was also shown that the QoC
Profiles might be an option to help users describe needs concerning context providers for
applications.

This work has also shown that EDB is not an efficient method for aggregation, and
the original algorithm in [Perera et al. 2013] results in inverted rankings.

For future works, evaluations to determine the overall performance of the system
with large amounts of simulated providers are planned. Also, the implementation of a
QoC Criteria Evaluation module to be installed on the IoT devices is going to be made,
in order to verify if a performance gain on the server side where the main system is based
is possible without sacrificing too much of the device battery, memory and processing
power.

The interactions between the Search module and the providers should also be bet-
ter studied. Other ways to describe methods for calculating criteria informed by the user
will be studied. The evaluation will also involve at least one use case with opportunistic

XXXVII Congresso da Sociedade Brasileira de Computação

946

networks. Interface improvements, new interactions and studies on security concerns are
also planned.

References
Buchholz, T., Küpper, A., and Schiffers, M. (2003). Quality of context information: What

it is and why we need it. In Proceedings of the 10th HP OVUA Workshop, 2003.

IHS Markit (2016). Complimentary Whitepaper: IoT Platforms - En-
abling the Internet of Things. https://www.ihs.com/Info/0416/internet-
of-things.html. [Online; accessed 19-March-2017], qtd. in
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-
things-forecasts-and-market-estimates-2016/6101ec2b292d.

Kim, Y. and Lee, K. (2006). A quality measurement method of context information in
ubiquitous environments. In Hybrid Information Technology, 2006. ICHIT’06. Inter-
national Conference on, volume 2, pages 576–581. IEEE.

Manzoor, A., Truong, H.-L., and Dustdar, S. (2008). On the evaluation of quality of con-
text. In European Conference on Smart Sensing and Context, pages 140–153. Springer.

Nazário, D. C., Dantas, M. A. R., and Todesco, J. L. (2014). Context management:
toward assessing quality of context parameters in a ubiquitous ambient assisted living
environment. JISTEM-Journal of Information Systems and Technology Management,
11(3):569–590.

Nazário, D. C. et al. (2015). Cuida: um modelo de conhecimento de qualidade de contexto
aplicado aos ambientes ubı́quos internos em domicı́lios assistidos.

Neisse, R. (2012). Trust and privacy management support for context-aware service plat-
forms. Number 11-216. University of Twente, Centre for Telematics and Information
Technology (CTIT).

Neisse, R., Wegdam, M., and Van Sinderen, M. (2008). Trustworthiness and quality
of context information. In Young Computer Scientists, 2008. ICYCS 2008. The 9th
International Conference for, pages 1925–1931. IEEE.

Perera, C., Zaslavsky, A., Christen, P., Compton, M., and Georgakopoulos, D. (2013).
Context-aware sensor search, selection and ranking model for internet of things mid-
dleware. In Mobile Data Management (MDM), 2013 IEEE 14th International Confer-
ence on, volume 1, pages 314–322. IEEE.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2012). Ca4iot: Context
awareness for internet of things. In Green Computing and Communications (Green-
Com), 2012 IEEE International Conference on, pages 775–782. IEEE.

Sheikh, K., Wegdam, M., and van Sinderen, M. (2008). Quality-of-context and its use for
protecting privacy in context aware systems. JSW, 3(3):83–93.

Vim, I. (2004). International vocabulary of basic and general terms in metrology (vim).
International Organization, 2004:09–14.

Yasar, A.-U.-H., Paridel, K., Preuveneers, D., and Berbers, Y. (2011). When efficiency
matters: Towards quality of context-aware peers for adaptive communication in vanets.
In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 1006–1012. IEEE.

9º SBCUP - Simpósio Brasileiro de Computação Ubíqua e Pervasiva

947

