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André Luiz Marques Serrano1 , Geraldo Pereira Rocha Filho1,2 , Guilherme
Fay Vergara1 , Letı́cia Rezende Mosquéra1 , Vinı́cius Pereira Gonçalves1
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Abstract. This work introduces MELISSA, a multi-agent system that uses Large
Language Models (LLMs) to optimize household energy consumption by inte-
grating historical analysis and meteorological inputs, acting as an intelligent
Home Energy Management System (HEMS) for smart spaces. Through a two-
stage process that condenses data by approximately 99%, the system identifies
consumption patterns and anomalies. The Gunning Fog Index indicates that the
outputs are easily readable by the target audience, with a moderate Self-BLEU
score. Thus, MELISSA offers an effective residential energy management so-
lution, using LLMs to communicate with the end-users. Future enhancements
include integrating energy generation data.

1. Introduction

Energy management systems monitor and control energy resources to enhance efficiency
and sustainability. This approach encompasses measuring energy consumption, imple-
menting strategies to optimize electricity use, and promoting the adoption of renewable
energy sources. When applied effectively, these systems minimize environmental im-
pacts while significantly reducing operational and household costs. As residential energy
use represents a significant portion of global electricity demand [Wang et al. 2024], these
benefits emphasize the importance of intelligent systems in optimizing household energy
consumption.

The rise of urbanization and increasing reliance on electronic devices have inten-
sified energy use in residential environments, making it essential to adopt more efficient
practices. However, many households still struggle with inefficient consumption patterns,
whether due to improper appliance use, lack of control over connected devices or the
absence of tools for intelligent energy management.

With the growing adoption of ubiquitous and pervasive computing, an emerging
opportunity exists to transform how energy is used in residential settings. Automated
systems enable more efficient device management, whether through remote control of
appliances, automatic consumption adjustments based on user needs or integration with
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renewable energy sources such as solar panels. The connectivity provided by the Internet
of Things (IoT) has promoted this evolution, allowing devices to communicate with each
other and respond to real-time inputs, optimizing electricity usage and reducing waste.

In this context, the Internet of Energy (IoE) is a solution to improve energy effi-
ciency and solve uncontrolled consumption. The IoE refers to the interconnection of in-
telligent energy devices within a digital ecosystem that enables consumption monitoring
and automation. Integrating smart home technologies with advanced energy management
systems facilitates the modernization of traditional power grids, transforming them into
intelligent networks capable of distributing energy more efficiently and sustainably.

Integrating the IoE and Large Language Models (LLMs) represents a significant
advancement in energy management. These models can transform how energy data
is interpreted, making information more accessible for users. The LLMs can process
data generated by smart home devices and provide personalized recommendations based
on individual consumption habits. Instead of users having to interpret numerical val-
ues about their energy consumption, they can interact with an LLM-based virtual as-
sistant that offers detailed guidance on reducing waste and improving energy efficiency
[Giudici et al. 2024] with a more user-friendly interface that enables individuals to in-
terpret its results. Furthermore, LLMs facilitate more natural communication between
consumers and energy systems, allowing real-time responses to inquiries and personal-
ized strategy suggestions.

Based on these technological advancements, we introduce MELISSA (Modern
Energy LLM-IoE Smart Solution for Automation), a smart Home Energy Management
System (HEMS) solution. MELISSA is designed to advance the interaction between in-
dividuals and their household energy consumption information, offering a novel approach
to optimizing electricity demand. MELISSA continuously monitors a household’s energy
consumption, using IoE integration to collect electricity usage data. Analyzing consump-
tion patterns provides personalized recommendations to reduce waste and alerts users
when household appliances may require maintenance. Additionally, MELISSA commu-
nicates with users using natural language, facilitating data comprehension.

The key benefits of MELISSA include reducing energy waste by automatically
identifying devices consuming excessive electricity, enabling financial savings by helping
users adopt cost-cutting strategies, promoting sustainability by encouraging more con-
scious energy use, and offering ease of use through an intuitive AI-powered interface that
allows personalized communication.

2. Literature review

Several studies have explored the development of a HEMS to optimize household en-
ergy consumption [Badar and Anvari-Moghaddam 2022]. One such approach focuses on
generating long-term semi-synthetic datasets to address the scarcity of real-world energy
consumption data [Hosseini et al. 2017].

By simulating a simple household environment and employing probabilistic mod-
els based on statistical analysis of real-world data, the authors provide stochastic power
profiles that enhance the accuracy of energy management evaluations. In alignment with
this research, MELISSA uses data-driven knowledge to enhance user interaction with



household energy systems, integrating intelligent analysis and recommendations to im-
prove energy efficiency and sustainability.

Advancing these efforts to generate data, various studies have provided real-world
energy consumption datasets to support further research. As energy consumption may
vary according to regional factors, such as climate, these datasets are specific to their
respective countries. Examples of datasets include those from Chile [Condon et al. 2022],
and from the UK [Pullinger et al. 2021]. These datasets may be used, for example, for
forecasting energy consumption and for detecting anomalies [Liu et al. 2021].

Beyond the energy sector, LLM has been used for smart home automation. For
instance, Sasha [King et al. 2024] interprets vague requests (e.g. ”help me see better”)
to create automation routines (e.g. turning on the lights). This approach can be applied
to HEMS with LLMs, enabling intuitive energy management by interpreting vague user
commands to analyze consumption. The work of [Michelon et al. 2025] also focuses on
using LLMs to format data into well-formatted preferences for HEMSs systems to work
better. Similarly, LLMs have been explored for smart home simulation, where they gener-
ate human-like daily use activities for virtual agents, reducing the complexity of user con-
figurations and increasing the adaptability of automation routines [Yonekura et al. 2024].
This adaptability can be leveraged in HEMS, where LLMs could generate personalized
energy-saving routines based on learned user behavior and environmental conditions.

3. MELISSA architecture

This solution uses an LLM to continuously assess energy data from a household, consid-
ering its historical use, local weather data and number of occupants in the house. The
steps of the architecture used to enable this Human-Computer Interaction (HCI) are de-
picted in Figure 1, which encompasses the data collection, as more deeply explained in
Section 3.1; and its integration with the LLM API, as detailed in Section 3.2. All the
experiments were conducted using Python version 3.11.11.

Figure 1. MELISSA framework



3.1. Data collection
The first step in analyzing and monitoring household energy consumption is data collec-
tion. All collected data is structured in JavaScript Object Notation (JSON) format and
recorded at an hourly frequency. It is later inputted into the LLM autonomous agents.

For energy consumption measurement, we use TP-Link’s Tapo P110 smart plugs,
as they may be remotely accessed and controlled through an API1. These devices have
built-in energy monitoring features that provide data on energy consumption, measured
in kilowatt-hours (kWh). The data spans from February 12, 2025, to March 14, 2025.

In the experimental setup, the smart plugs are installed to measure the consump-
tion of a refrigerator, a water dispenser, a microwave, a fan and a washing machine in a
two-person household in Brası́lia, Brazil. MELISSA tracks the electricity usage within
the household and transmits this data to a central system for analysis and monitoring.
These common household appliances were selected to represent typical residential en-
ergy profiles.

In addition to that, meteorological data is relevant in an HEMS context because
weather conditions directly impact household energy usage [Serrano et al. 2024]. For ex-
ample, temperature fluctuations influence the demand for cooling systems. Furthermore,
incorporating meteorological data allows for a more accurate energy efficiency analysis,
providing knowledge of how external conditions influence consumption. MELISSA col-
lects weather data using the Open-Meteo API, the air temperature measured 2 meters
above the ground, the apparent temperature (both in ◦C), the wind speed measured 10
meters above the ground (in km/h), the total cloud cover (in %) and the precipitation (in
mm).

3.2. LLM integration
The JSON data generated during collection is fed into the LLM API for analysis. While
we currently use Gemini for this purpose, the system is designed to be adaptable. It
can easily be configured to work with other preferred LLM models, such as DeepSeek,
Claude, or GPT, enabling analysis based on the chosen model’s specific capabilities.

MELISSA employs two autonomous agents: the data analyst agent, which pro-
cesses the collected JSON to summarize the raw inputted data; and the energy manage-
ment agent, which interprets the data provided by the data analyst agent, along with last
week’s raw data to provide knowledge and interact with the user. These agents are de-
signed to work synergistically, with the data analyst agent focusing on data-driven analy-
sis and the energy management agent taking action based on the study, enabling efficient
energy management.

The agents were configured to process with a zero temperature to ensure con-
sistent responses, fewer assumptions, and a maximum output length of 2.000 tokens
for the energy management agent, to make the response concise. The structured sys-
tem prompts were developed using the RICES (Role, Instructions, Context, Expectations,
Style) [Vogelsang 2024], combined with the CLEAR frameworks [Lo 2023], to delineate
tasks for each AI agent. This approach maximizes their potential for accurate task execu-
tion. These agents summarize energy consumption patterns and help identify trends that

1https://github.com/mihai-dinculescu/tapo



may suggest opportunities for improving energy efficiency or indicate areas where con-
sumption may be unnecessarily high. For instance, they might detect that energy usage
spikes during certain hours or correlate it with specific appliances, allowing the user to
ask further questions about their energy consumption. In addition, the analysis consid-
ers possible anomalies, which could indicate issues such as malfunctioning appliances or
unanticipated energy surges.

3.2.1. Data analyst agent

The data analyst agent is designed to process and summarize the hourly datasets related
to energy consumption and meteorological variables. The system prompt created for
this agent is depicted in Table 1. This agent is tasked with analyzing historical energy
consumption data for household appliances while considering critical contextual factors,
such as the number of tenants in the household, which can influence energy usage patterns.

The data analyst agent serves as the first step in interpreting the collected data,
and its output is fundamental for providing interpretable information for the energy man-
agement agent. The prompt is structured to ensure that the agent focuses on delivering a
comprehensive yet concise summary of the dataset, ensuring it is usable for the next step
in the workflow. The following quote contains the user prompt given to the agent:

”Summarize the following historical data for a house of {num tenants} tenants
with the maximum possible detail so that the next LLM agent can have a full view of the
datasets:{combined history data}”.

Table 1. Data analyst agent RICES system prompt

Category Instruction
Role You are a data analyst with expertise in summarizing data to an-

other LLM. Your role is to provide the minimum information that
describes the datasets completely.

Instructions Analyze the attached historical energy consumption and weather
data for household appliances, considering the number of tenants in
the household.

Context The dataset includes historical energy consumption for specified
household appliances and weather data for the same date range.

Expectations Present data in a structured format. Provide sufficient context for
another LLM to understand the data completely.

Style Maintain a professional and concise tone. Avoid jargon unless neces-
sary and explain technical terms when used. Understandably present
the findings so that an LLM can conclude.

Token Reduction Ratio (TRR) is calculated as per Equation 1 and is used to evalu-
ate the amount of information that flows onto the next agent compared to its input JSON.

TRR =

(
1− Ts

To

)
× 100 (1)



where To is the number of tokens in the original text, and Ts is the number of
tokens in the summarized text.

3.2.2. Energy management agent

The system prompt created to feed the energy management agent is depicted in Table 2.
This agent is responsible for analyzing the summarized data provided by the data analyst
agent and transforming it into information to improve household energy efficiency. This
agent examines household appliances’ historical energy consumption data while consid-
ering contextual factors such as the number of tenants in the household. The output con-
tributes to making informed decisions about optimizing energy use, reducing costs, and
minimizing environmental impact.

Serving as the second stage in the data analysis process, the energy management
agent complements the findings from the data analyst agent to offer detailed recommen-
dations and enable the HCI regarding energy consumption.

Table 2. Energy management agent RICES system prompt

Category Instruction
Role You are an energy data analyst with expertise in historical energy

consumption data analysis for household appliances. You provide
detailed information and recommendations based on the provided
datasets.

Instructions Analyze the attached historical energy consumption data for house-
hold appliances, considering the number of tenants in the household
and the weather conditions. Compare the energy usage of each appli-
ance with the most recent states and avoid speculating on anomalies
without data evidence.

Context The dataset includes historical energy consumption data for speci-
fied household appliances. The goal is to derive knowledge that can
improve energy efficiency, reduce costs, and minimize environmen-
tal impact, factoring in the number of tenants in the household and
weather conditions.

Expectations Present information in a structured format. Offer clear explanations.
Provide recommendations for optimizing energy usage. Ensure that
the analysis is comprehensive and addresses all requested aspects.

Style Maintain a professional and concise tone. Avoid jargon unless nec-
essary and explain technical terms when used. Present the findings
in an understandable way for both technical and non-technical stake-
holders.

After passing the system prompts to the respective agents, a function to analyze
energy efficiency was created with the following command to the energy management
agent, in which summary the output generated from the previous agent, recent data
corresponds to last week’s energy data, and recent weather data represents the previous
week’s weather data. Next is the user prompt that was inputted to the second agent:



”Based on this summary ({summary}), compare it with recent data
({recent data}) and weather conditions ({recent weather data}). Suggest cost-saving
measures and alert if any anomaly is detected.”

The Gunning Fog Index, as defined in Equation 2, is used to evaluate the outputs
of the energy management agent. It is a readability metric that estimates the years of
formal education a person needs to understand a piece of text on first reading. A higher
score indicates that the text is more complex.

GFI = 0.4×
(

Words
Sentences

+ 100× Complex Words
Words

)
(2)

We also use Self-BLEU, a diversity metric that measures the similarity among
generated texts, defined as the average BLEU score of each text against all others in the
set. It ranges from 0 to 1, with higher values indicating similar texts and lower values
indicating higher diversity.

3.2.3. Human-computer interaction

As the primary users of these agents are typically non-experts in data science, ensuring
that the interaction is user-friendly is critical to the success of these tools. The interaction
with MELISSA should be designed to provide relevant summaries that are easy to under-
stand. The user must quickly gain key knowledge, such as energy consumption trends and
anomalies, leading to data-driven decision-making. Furthermore, the interaction design
should prioritize minimizing cognitive overload, where the user is not overwhelmed by
too much detail but can access new information as needed.

A significant advantage of HCI in this context is the ability for users to interact
with the system using natural, free-form questions. This allows users to inquire about
their energy consumption and receive recommendations without being restricted to pre-
defined queries or specific scopes, making MELISSA more flexible and accessible. This
feature enables users to explore various aspects of their energy usage on demand, ask
about particular appliances or seek general advice on improving energy efficiency.

4. Results and discussion

This section presents the results from this research to evaluate the
gemini-2.0-flash-thinking-exp-01-21 model’s performance in suffi-
ciently describing the data to itself so that it can compare it with recent weekly data
without losing information. Furthermore, the output from the second agent is presented
as the main result and conclusions are drawn from its performance on both tasks.

4.1. Data Analyst Agent’s output and assessment

The first agent is responsible for summarizing the original dataset while preserving critical
information. Its output successfully extracts information from the energy consumption
and weather datasets, which can be accessed at a public repository 2. The summarization

2zenodo.org/records/15034634



process effectively captured energy consumption data by maintaining hourly granularity,
appliance-level differentiation, and timestamps.

Figure 2. Token reduction by the data analyst agent

The agent reduced the token count from 172,129 to 932, achieving a significant
TRR of 99.45%, as depicted in Figure 2. Nevertheless, the output retained the details
necessary for further analysis, demonstrating an effective balance between conciseness
and informativeness, reducing computational costs while maintaining analytical value.

4.2. Energy Analyst Agent’s output and assessment
The second agent analyzed the recent energy consumption dataset compared to the sum-
marized historical data from a week before the last recorded date. The resulting output de-
tailed each appliance’s energy usage and recommended cost-saving measures. The anal-
ysis effectively captured appliance-level consumption patterns. The refrigerator showed
stable energy use with minor fluctuations from defrost cycles or door openings. The wa-
ter dispenser had low, intermittent consumption. Fan usage correlated with temperature
variations, while the washing machine exhibited infrequent use with energy spikes during
washing cycles. The microwave displayed short bursts of high consumption, consistent
with its operation. Additionally, no significant anomalies were detected in the energy
consumption trends, and all observed variations were within expected ranges.

The agent suggested optimizing energy usage by maintaining refrigerator door
seals and setting optimal temperatures, minimizing unnecessary water dispenser cooling,
strategically using fans with timers and natural ventilation, optimizing washing loads for
efficiency, and promoting efficient microwave use while reducing standby power con-
sumption. The recommendations were practical and well-aligned with the observed con-
sumption data.

To further assess the agent’s output, we have conducted a readability evaluation
on 30 different messages using the Gunning Fog score. Figure 3 shows the results, with
a 10.08 ± 0.75 average score, suggesting the outputs could be easily read by 8th to 11th
grade students [Gunning 1969]. This finding reinforces that MELISSA’s target audience
— homeowners — are unlikely to face language barriers when interacting with the sys-
tem.

Additionally, these 30 outputs achieved a Self-BLEU score of 0.53, reflecting
moderate diversity among the generated messages. This level of diversity can be advanta-



Figure 3. Gunning Fog readability scores

geous, as it ensures that users receive varied responses to avoid monotony yet consistently
sufficient to preserve the alignment with the system’s communication goals.

5. Conclusions and future works
We propose MELISSA, a framework designed to monitor a household’s energy consump-
tion, compare it with the last week’s data, and generate recommendations to optimize en-
ergy usage, reduce environmental impact, and detect anomalies that could trigger mainte-
nance actions.

The first agent successfully condensed the original dataset by roughly 99%, sig-
nificantly reducing the computational burden on the second agent, the energy analyst.
Despite this compression, the energy analyst effectively extracted meaningful informa-
tion, accurately identified consumption patterns, correlated energy use with external fac-
tors, and provided personalized recommendations. This demonstrates the efficiency and
reliability of MELISSA’s multi-agent architecture in synthesizing energy datasets and in
enabling human interaction with household energy consumption patterns in a readable
format.

Future works could explore the integration with actuators, enabling direct con-
trol over household appliances to implement optimizations autonomously. Also, energy
generation data could be inputted into MELISSA, along with consumption. Furthermore,
incorporating quantitative estimates of potential cost reductions for each recommenda-
tion would provide a more robust overview of practical benefits. Although no significant
anomalies were identified, employing statistical or machine learning methods for outlier
detection, such as z-score calculations or anomaly clustering, would enhance the reliabil-
ity of the evaluation by identifying any unexpected spikes or abrupt drops in consumption.
This could be tested in simulated scenarios, such as maintaining an open refrigerator door
for extended durations. MELISSA could also be tested in different physical environments,
such as universities.

To broaden the scope of the analysis, a deeper examination of the correlation be-
tween energy consumption and weather data is proposed. This can include predictive
modeling to determine how additional weather variables influence overall consumption.
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P. R., Gonçalves, V. P., and Albuquerque, R. d. O. (2024). Statistical comparison of
time series models for forecasting brazilian monthly energy demand using economic,
industrial, and climatic exogenous variables. Applied Sciences, 14(13):5846.

Vogelsang, A. (2024). From specifications to prompts: On the future of generative large
language models in requirements engineering. IEEE Software, 41(5):9–13.

Wang, T., Zhao, Q., Gao, W., and He, X. (2024). Research on energy consumption in
household sector: a comprehensive review based on bibliometric analysis. Frontiers in
Energy Research, 11.

Yonekura, H., Tanaka, F., Mizumoto, T., and Yamaguchi, H. (2024). Generating human
daily activities with llm for smart home simulator agents. In 2024 International Con-
ference on Intelligent Environments (IE), pages 93–96.


	Introduction
	Literature review
	MELISSA architecture
	Data collection
	LLM integration
	Data analyst agent
	Energy management agent
	Human-computer interaction


	Results and discussion
	Data Analyst Agent's output and assessment
	Energy Analyst Agent's output and assessment

	Conclusions and future works

