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Abstract. Visually impaired individuals often face challenges when navigating
unfamiliar or dynamic environments, where access to real-time spatial
information is limited. This paper presents the development of SoundEyes,
an assistive technology for visually impaired individuals that employs
computer vision techniques to recognize objects and generate real-time audio
descriptions. Designed for mobile devices with limited resources, the system
uses an edge computing architecture and Bluetooth communication to ensure
low latency and high autonomy. In practical tests with mobile devices,
SoundEyes achieved a total response time of less than one second in HVGA
mode on mid-range devices and demonstrated greater detection accuracy in
XGA mode, showing promise for both dynamic and static environments.

Resumo. Pessoas com deficiência visual frequentemente enfrentam desafios ao
se locomoverem em ambientes desconhecidos ou dinâmicos, onde o acesso
a informações espaciais em tempo real é limitado. Este artigo apresenta o
desenvolvimento do SoundEyes, uma tecnologia assistiva voltada para pessoas
com deficiência visual. O sistema utiliza técnicas de visão computacional
para reconhecer objetos e gerar descrições auditivas em tempo real, com
foco em dispositivos móveis de baixo custo. Por meio de uma arquitetura
baseada em Edge Computing e comunicação via Bluetooth, o SoundEyes
permite maior autonomia e segurança durante a navegação. Em testes práticos
com dispositivos mobile, o sistema obteve um tempo total de resposta inferior a
1 segundo no modo HVGA em dispositivos intermediários, e apresentou maior
precisão no modo XGA, com potencial para ambientes dinâmicos e estáticos.

1. Introdução

A visão é um sentido fundamental para a interação humana com o ambiente, permitindo a
captação e interpretação imediata de informações visuais, o que amplia significativamente
a compreensão espacial ao redor. Além disso, ela é essencial na comunicação não verbal,
na identificação de objetos e sı́mbolos, e na realização de atividades rotineiras, como o
deslocamento seguro por diferentes ambientes. No entanto, segundo o Relatório Mundial
sobre a Visão da Organização Mundial da Saúde [World Health Organization 2019],
estima-se que mais de 2,2 bilhões de pessoas no mundo apresentem algum grau de
deficiência visual, variando de baixa visão à cegueira completa.



Essa limitação sensorial impõe sérios desafios à autonomia, segurança e qualidade
de vida dessas pessoas, dificultando interações sociais, profissionais e pessoais. Nesse
cenário, tecnologias baseadas em computação ubı́qua e pervasiva têm se mostrado
fundamentais para promover acessibilidade em tempo real, integrando sensores, redes
e dispositivos móveis ao cotidiano. Soluções como bengalas inteligentes, sistemas de
orientação indoor e reconhecimento de objetos vêm explorando dispositivos conectados,
com suporte à Internet das Coisas (IoT) e computação de borda (Edge Computing), para
oferecer maior independência e segurança às pessoas com deficiência visual.

Neste contexto, este trabalho propõe o SoundEyes, uma tecnologia assistiva
baseada em computação móvel, visão computacional e comunicação Bluetooth,
desenvolvida para fornecer descrições auditivas em tempo real a partir da detecção de
objetos em ambientes reais. O sistema utiliza o smartphone como núcleo da solução,
atuando como centro de processamento e resposta. Por estar constantemente presente
com o usuário e integrar-se ao seu cotidiano, o celular configura-se como uma plataforma
pervasiva, capaz de reagir dinamicamente ao ambiente e fornecer suporte assistivo de
forma contı́nua e contextual. Dessa forma, as principais contribuições deste trabalho são:

• A concepção de uma arquitetura baseada em dispositivos móveis e comunicação
via Bluetooth, que opera de forma totalmente local, sem necessidade de internet.

• A implementação de um pipeline de captura, detecção e audiodescrição com uso
de modelos otimizados (YOLOv8) para funcionamento em tempo real.

• A avaliação empı́rica do sistema em diferentes dispositivos Android, comparando
os modos velocidade (HVGA) e qualidade (XGA) quanto ao tempo de resposta e
precisão da classificação.

• A proposição de um método simples de localização espacial de objetos na
imagem, enriquecendo a audiodescrição com informações contextuais de direção.
O restante do artigo está estruturado da seguinte forma: a Seção 2 apresenta

trabalhos relacionados. Na Seção 3 detalha-se o planejamento do projeto, etapas, métodos
de avaliação, a arquitetura projetada e desafios de implementação. A Seção 4 traz a
avaliação da solução e, por fim, na Seção 5 são feitas considerações finais e sugestões
de trabalhos futuros.

2. Trabalhos Relacionados
Os recentes avanços nos campos da computação, inteligência artificial e Internet das
Coisas (IoT) impulsionaram o desenvolvimento de tecnologias assistivas para pessoas
com limitações sensoriais. Cada vez mais, são explorados o uso de sensores vestı́veis,
dispositivos móveis e Inteligência Artificial para implementar mecanismos que promovam
maior acessibilidade e auxı́lio por meio da tecnologia.

A navegação assistida para indivı́duos com deficiência visual tem sido uma área
de intenso estudo, com esforços voltados para o aprimoramento da qualidade de vida.
O sistema descrito em [Supekar and Patil 2022], por exemplo, emprega processamento
de imagens em tempo real para converter informações visuais em texto, áudio ou sinais
táteis, utilizando um microcomputador Raspberry Pi, câmeras e motores de vibração.
Outra alternativa, apelidada de ”Guide-Me”[Dissanayake et al. 2021], propõe o uso de
beacons Bluetooth e reconhecimento de voz para criar um sistema de navegação em
ambientes fechados, como prédios públicos, salões de eventos e aeroportos, garantindo
maior segurança e precisão na locomoção.



Além disso, dispositivos conectados à Internet das Coisas (IoT), como a bengala
inteligente SCBIoT [AbdElminaam et al. 2022], combinam sensores ultrassônicos e
GPS(Global Positioning System) para detecção de obstáculos e monitoramento remoto de
localização. Complementando essas soluções, [Osama et al. 2021] propõe um assistente
móvel para identificação de objetos cotidianos, como cédulas e roupas, empregando redes
neurais, como as MobileNets [Howard et al. 2017], para classificação em dispositivos de
baixo custo.

A identificação eficiente de objetos em imagens desempenha um papel
fundamental para garantir informações confiáveis e em tempo real. Nesse sentido,
mecanismos de visão computacional como o YOLO (You Only Look Once)
[Redmon et al. 2016] ganham destaque. Esse modelo utiliza um sistema de regressão
unificado para determinar as coordenadas e probabilidades de objetos, reduzindo o
número de interações necessárias para classificá-los.

Essa abordagem viabiliza alta eficiência computacional e processamento em
tempo real, caracterı́sticas essenciais para aplicações em dispositivos móveis ou vestı́veis.
Com a versão de [Jocher et al. 2023], houve um aprimoramento significativo na precisão
e latência, tornando-a ideal para integração em sistemas assistivos. A necessidade de
algoritmos rápidos e precisos também é ressaltada por [Devi and Subalalitha 2021], que
revisa projetos de bengalas inteligentes equipadas com IA, destacando a importância da
detecção contextual de obstáculos, como escadas e buracos.

3. Metodologia

No âmbito de desenvolvimento da solução proposta, foi aplicada uma abordagem que
emprega diversos conceitos de computação móvel, redes e arquiteturas de computadores
e processamento de imagens, para implementar um sistema de auxı́lio à mobilidade e
audiodescrição para pessoas com deficiência visual.

Nesse sentido, escolhas como o processamento em bordas de rede (ou Edge
Computing), o uso de redes bluetooth e computação mobile, se justificam pelo fato de
ser uma aplicação voltada ao fácil acesso e à baixa latência em termos de tempo de
processamento e resposta, e podem ser melhor compreendidas nas subseções que se
seguem, por meio das seguintes etapas: 3.1 desenvolvimento da arquitetura do sistema,
incluindo a escolha de sensores, algoritmos de visão computacional e estratégias de
processamento de dados; 3.2 método de avaliação da solução; e 3.3 desafios enfrentados.

3.1. Arquitetura Proposta

A solução SoundEyes está dividida em dois ambientes funcionais: o Ambiente de Captura
(ESP32-CAM + OV2640) e o Ambiente de Processamento e Resposta (Smartphone
Android). A escolha de utilizar um ambiente móvel baseia-se em sua acessibilidade,
portabilidade e conveniência. No entanto, essa escolha requer cuidados, pois os
dispositivos móveis possuem limitações de memória e processamento. Já o ambiente
de captura enfrenta desafios relacionados à qualidade das imagens capturadas e à latência
na transmissão dos dados pela rede bluetooth, exigindo uma conexão estável entre os
ambientes para garantir uma comunicação eficaz. A Figura 1 exibe o fluxograma da
arquitetura do sistema, e a descrição dos blocos se encontra nos tópicos a seguir.



Figura 1. Fluxograma - Representação da Arquitetura do Sistema

• Bloco de Captura: O ambiente de captura de imagem é composto por um
módulo ESP32-CAM e uma câmera OV2640, escolhidos por sua capacidade
de capturar imagens de até 2 megapixels, ter um módulo Bluetooth embutido
e a facilidade de programação, permitindo a captura e transmissão de imagens
em tempo real. Na melhor configuração para o projeto, a câmera foi ajustada
para capturar uma sequência contı́nua de frames em duas resoluções, priorizando
velocidade e qualidade. Para maior velocidade, a imagem é limitada a 0,5
megapixels em resolução HVGA(480×320); para melhor qualidade, adotou-se a
resolução XGA(1024×768) com 1 megapixel.Para facilitar o uso por pessoas com
deficiência visual, o módulo ESP32-CAM é acoplado a um suporte no abdómen,
alinhando o campo de visão da câmera com o eixo do corpo do usuário. Dessa
forma, basta segurar o dispositivo com uma mão para obter imagens estáveis e
sempre voltadas para a direção de deslocamento.

Figura 2. Módulo ESP32CAM com Câmera OV2640.

• Processamento de Imagens: Para a detecção de objetos, o sistema utiliza o
YOLOv8n (nano) [Jocher et al. 2023], em que é pré-treinado no conjunto COCO
(80 classes). A inferência ocorre diretamente no TensorFlow para Android,
exigindo apenas ajustes de pré-processamento de imagem. Conhecido por sua
alta precisão e capacidade de identificar múltiplos objetos em tempo real. Além
disso, sua abordagem pré-treinada elimina a necessidade de ajustes complexos



ou treinamento personalizado, e possui ampla generalização para objetos do
cotidiano.
O processamento da imagem recebida pelo bloco de captura inicia-se com
um pré-processamento, no qual as imagens são convertidas para um formato
compatı́vel com o YOLO. Em seguida, o modelo identifica as coordenadas e
probabilidades dos objetos detectados, informações que serão utilizadas pelo
bloco de audiodescrição para gerar a saı́da em áudio.

• Audiodescrição: Após a detecção dos objetos, o sistema gera uma descrição
auditiva dos itens identificados e suas posições. Para isso, é utilizada a tecnologia
de sı́ntese de fala Google Text-to-Speech [Google LLC 2024], que converte o
texto em áudio. As descrições são criadas levando em conta a relevância dos
objetos no contexto do usuário, de forma que informações mais importantes sejam
priorizadas.

• Integração dos Componentes:Para a integração entre os diferentes componentes,
foi utilizada a tecnologia Bluetooth Low Energy (BLE), que permite a transmissão
de dados de forma eficiente sem a necessidade de uma conexão com a internet. Seu
baixo consumo de energia e à capacidade de estabelecer uma rede de área pessoal
(PAN) se mostra ideal para o projeto, pois possibilita a troca de informações de
forma contı́nua e confiável entre os dispositivos.

O sistema foi configurado para funcionar em três etapas, que rodam em ciclos. Na
primeira etapa, o Bloco de Captura obtém uma imagem, e realiza a compressão JPEG da
mesma, afim de facilitar o envio. A imagem comprimida é então dividida em pacotes de
20.480 bytes e enviadas a uma taxa de 1Mbps via bluetooth para a aplicação.

Na segunda etapa, a imagem recebida é direcionada ao processamento YOLO,
para definir a localização dos objetos dentro da cena, entre três possı́veis posições:
Esquerda, Frente e Direita. Para isso, a imagem de entrada é dividida em uma grade (grid)
3x1, e o posicionamento de cada objeto localizado é determinado pela comparação de sua
área com as coordenadas da imagem em que foi detectado. Ou seja, a coluna na qual a
maior parte da área do objeto está localizada define sua classificação de posicionamento.
A Figura 3, exibe a detecção de múltiplos objetos dentro de uma cena, enquanto as
Figuras 4 e 5, exibem respectivamente a detecção e a marcação de posicionamento para
um veı́culo e pedestres caminhando.

Na terceira e última etapa, com a definição do objeto e seu posicionamento, o
sistema gera uma descrição auditiva dos itens identificados com base na relevância e
proximidade do usuário.

Figura 3. Saı́da da detecção de objetos utilizando YOLOv8.



Figura 4. Carro detectado à direita

Figura 5. Detecção de pessoas (esquerda e direita)

3.2. Método de Avaliação

A avaliação da solução proposta se dá por meio de métricas de desempenho, combinadas
com testes e simulações. Como o projeto é baseado em modelos previamente treinados,as
métricas de avaliação focam principalmente em métricas de desempenho do sistema como
tempo de resposta e confiabilidade/qualidade da resposta.

• Tamanho da Imagem: A resolução da imagem impacta diretamente no tempo de
envio e classificação dos frames. Foram consideradas duas resoluções:

– XGA (1024 x 768): Exige maior volume de dados, aumentando a
quantidade de pacotes e o tempo de envio.

– HVGA (480 x 320): Exige menor volume de dados, resultando em menor
latência.

• Tempo de resposta:
– Quantidade dos Pacotes: Avalia o número de pacotes na transmissão

via Bluetooth. A solução deve considerar que os frames são divididos
em pacotes de 20.480 bytes e transmitidos a uma frequência de 1 Mbps.



É importante minimizar a quantidade de pacotes e as quebras durante a
transmissão para reduzir a latência.

– Tempo de Envio dos Pacotes: Mede o tempo total necessário para
enviar todos os pacotes de uma imagem. A solução deve buscar reduzir
esse tempo, considerando a taxa de transmissão (1 Mbps) e possı́veis
interferências no canal Bluetooth, como perdas ou retransmissões.

• Tempo de classificação: Avalia o tempo que o modelo leva para processar as
informações e gerar uma resposta no hardware projetado. Espera-se que a solução
apresente tempos curtos de resposta para cada ciclo de processamento. O tempo de
resposta será medido a partir do recebimento de imagem até a emissão da resposta,
usando ferramentas de monitoramento de tempo de execução.

O desempenho da solução será avaliado com base nos valores obtidos em cada
uma dessas métricas, além da facilidade e acessibilidade oferecidas pela solução proposta.

3.3. Implementação

Durante a implementação do sistema, foram enfrentados desafios relacionados à captura,
processamento e integração dos componentes. Um dos principais problemas observados
foi o condicionamento da iluminação: o sistema apresentou redução na precisão em
ambientes com pouca luz ou iluminação variável, o que exigiu ajustes nos parâmetros
de detecção para preservar a acurácia do modelo. Além disso, a identificação de objetos
pequenos ou parcialmente ocultos mostrou-se limitada, já que o modelo YOLO utilizado
prioriza a generalização para objetos maiores, resultando em dificuldades na detecção
de itens com menor área visı́vel. Outro desafio relevante foi garantir a integração
eficiente do áudio em tempo real, de forma que a descrição gerada estivesse sincronizada
com a detecção visual; isso demandou otimizações no processamento e adoção de
estratégias para redução da latência do sistema. O código-fonte do sistema e os artefatos
desenvolvidos estão disponı́veis para consulta no repositório oficial do projeto1.

4. Testes e Resultados

Para o teste do sistema proposto, três diferentes dispositivos android, classificados com
dispositivos de entrada ou intermediários, foram utilizados. As imagens capturadas
pelo ESP32-CAM foram enviadas aos smartphones Samsung A35 5G, A14 e A10,
onde o aplicativo Android executa o pipeline de inferência e sı́ntese de fala. As
especificações de cada dispositivo (Tabelas 1–3) impactam diretamente no tempo de
classificação e recebimento das imagens disponibilizadas pela ESP32-CAM (Tabela 4).
Suas especificações arquiteturais podem ser consultadas nas Tabelas 1, 2 e 3.

Tabela 1. Especificações do dispositivo Samsung A35 5G
Dispositivo Android Samsung A35 5G
Processador 4x 2.4 GHz Cortex-A78 + 4x 2.0 GHz Cortex-A55
GPU Mali-G68 MP5
RAM 6 GB
Bluetooth 5.3 com A2DP/LE/aptX

1https://github.com/ICEI-PUC-Minas-CC-TI/plmg-cc-ti5-2024-2-g03-soundeyes

https://github.com/ICEI-PUC-Minas-CC-TI/plmg-cc-ti5-2024-2-g03-soundeyes


Tabela 2. Especificações do dispositivo Samsung A10
Dispositivo Android Samsung A10
Processador 2x 1.6 GHz Cortex-A73 + 6x 1.35 GHz Cortex-A53
GPU Mali-G71 MP2
RAM 2 GB
Bluetooth 5.0 com A2DP/LE

Tabela 3. Especificações do dispositivo Samsung A14
Dispositivo Android Samsung A14
Processador 2x 2.4 GHz Cortex-A78 + 6x 2.0 GHz Cortex-A55
GPU Mali-G68 MP2
RAM 4 GB
Bluetooth 5.2 com A2DP/LE

Tabela 4. Especificações do ESP32-Cam
ESP32-Cam Caracterı́sticas
Câmera OV2640 2MP
Velocidade do Clock 240 MHz
Conectividade Bluetooth BLE 4.2
SRAM 520 Kbytes
Memória Flash 4 MB

A Tabela 5, compara os tamanhos da imagem geradas e o número total de pacotes
necessários para envio via canal Bluetooth, para os dois diferentes modos de captura
HVGA (velocidade — 430x320 pixels) e XGA (qualidade — 1024x768 pixels), conforme
esperado, o modo HVGA requer menos bytes e consequentemente menor número de
pacotes devido a redução no número de informações visuais capturadas.

Tabela 5. Tamanho Imagem HVGA x XGA
Descrição HVGA XGA
Tamanho da Imagem 0.3 MB 1.7 MB
Número de Pacotes 16 88

As Tabelas 6 e 7 realizam o comparativo de tempos obtidos para os modos
velocidade e qualidade respectivamente, para cada dispositivo utilizado nos teste.

Tabela 6. Tempo de classificação/resposta modo HVGA(480×320) (Velocidade)
Descrição Samsung A35 Samsung A10 Samsung A14
Classificação da Imagem 194.77 ms 337,72 ms 522.23 ms
Recebimento de Imagem 789.04 ms 552.41 ms 282.35 ms
Tempo Total 983,81 ms 877.75 ms 804.58 ms



Tabela 7. Tempo de classificação/resposta modo XGA(1024x768) (Qualidade)
Descrição Samsung A35 Samsung A10 Samsung A14
Classificação da Imagem 190.79 ms 323.53 ms 490.00 ms
Recebimento de Imagem 1292.58 ms 901.43 ms 563.66 ms
Tempo Total 1483.37 ms 1224.95 ms 1053.66 ms

Com base nos tempos e na qualidade de classificação observados, foi possı́vel
notar que, embora o modo velocidade (HVGA) apresente tempos menores tanto para o
envio quanto para o tempo total, suas respostas foram mais inconsistentes. Isso se justifica
pela redução na resolução e pela maior sensibilidade a fatores externos, como iluminação
e ângulo de captura, conforme discutido na Seção 3.3, que impactam diretamente o
modelo de classificação.

A análise dos tempos de resposta revelou um importante compromisso entre
desempenho e qualidade. O modo HVGA atingiu o menor tempo total de resposta
no Samsung A14 (804 ms), representando uma redução de aproximadamente 24% em
relação ao tempo obtido no modo XGA (1053 ms). Essa diferença chega a 46% quando
comparados os extremos: 804 ms (A14/HVGA) contra 1483 ms (A35/XGA). No entanto,
a agilidade compromete a acurácia, pois a menor resolução reduz a capacidade de
detecção do modelo YOLO para objetos pequenos ou parcialmente ocultos.

Por outro lado, no modo XGA, a classificação foi mais precisa devido à maior
riqueza de informações visuais, com tempos de processamento ainda aceitáveis —
variando de 1053 ms a 1483 ms entre os dispositivos. A classificação da imagem no A35,
por exemplo, foi 2,7% mais rápida no modo XGA (190,79 ms) em relação ao HVGA
(194,77 ms), demonstrando que o tempo de envio — e não de processamento — é o
principal fator de impacto em resoluções maiores.

Esses resultados reforçam a viabilidade de alternar entre os modos conforme o
contexto de uso: priorizando velocidade em ambientes dinâmicos, como vias públicas, e
precisão em ambientes estáticos, como corredores internos ou áreas de espera.

5. Conclusão

As pessoas com deficiência visual enfrentam diversas dificuldades, como mencionado
anteriormente. Nesse contexto, os avanços tecnológicos são ferramentas valiosas para
promover maior acessibilidade e inclusão. É essencial, portanto, que a comunidade
cientı́fica e da computação continue explorando essas tecnologias como aliadas na
promoção da autonomia e da dignidade para pessoas com deficiência.

Diante desse cenário, este trabalho apresentou o SoundEyes, um sistema assistivo
baseado em computação móvel, visão computacional e comunicação local, projetado para
fornecer descrições auditivas a partir da detecção de objetos em ambientes reais.

Os resultados experimentais demonstraram que a solução é viável para
dispositivos móveis de baixo custo, alcançando tempos de resposta inferiores a 1 segundo
no modo HVGA e maior precisão de reconhecimento no modo XGA. Tais resultados
confirmam que o sistema atende aos objetivos propostos, oferecendo uma ferramenta
acessı́vel, eficiente e com potencial de aplicação em diferentes contextos de uso, tanto



dinâmicos quanto estáticos. Além disso, o uso de Edge Computing e modelos otimizados
como o YOLOv8 reforça a capacidade do sistema de operar em ambientes com recursos
limitados, sendo aplicável no contexto de computação ubı́qua e pervasiva.

Como contribuições futuras, destaca-se a possibilidade de integrar sensores
contextuais, como GPS (Global Positioning System) e acelerômetros, e explorar
abordagens adaptativas para a priorização de objetos em diferentes situações de
mobilidade. O uso de dispositivos móveis, inteligência artificial e redes pode ser
expandido para outras aplicações assistivas. Tecnologias para identificação e tradução
de sinais em Libras para múltiplos idiomas, por exemplo, ou sistemas de detecção e
notificação de quedas para pessoas com mobilidade reduzida, podem ser fundamentais
para garantir segurança e suporte imediato.

O avanço de tecnologias assistivas como o SoundEyes depende da continuidade
de pesquisas voltadas à melhoria dos modelos de classificação, à redução de latência nas
comunicações e ao aprimoramento da usabilidade em cenários reais.
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