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Abstract. Chronic diseases, such as cardiovascular disease, diabetes, and can-
cer, have daily stress as a relevant factor in their progression. This study propo-
ses a deep learning architecture to detect real-time stress episodes. Data from
IoT devices on the individual’s heart rate and location was used to do this. A
mobile system processes this data, identifies stress patterns, and sends real-time
notifications to the user. The results show that with the approach developed, it
is possible to detect episodes of stress, providing real-time alerts to the user.

Resumo. Doencgas cronicas, como cardiovasculares, diabetes e cdncer, tém o
estresse didrio como fator relevante em sua progressdo. Este estudo propoe
uma arquitetura com aprendizado profundo para detectar episodios de estresse
em tempo real. Para tal, dados de dispositivos loT sobre frequéncia cardiaca
e localizacdo do individuo foram utilizados. Um sistema movel processa esses
dados, identifica padréoes de estresse e envia notificacoes em tempo real para
o usudrio. Os resultados demonstram que é possivel detectar episodios de es-
tresse, fornecendo alertas em tempo real ao usudrio.

1. Introducao

O estresse € um fendmeno associado a situacdes imprevisiveis e incontrolaveis, onde o in-
dividuo percebe uma ameaca ou perigo. Como destacado em [Bauer 2002], essa condi¢do
desencadeia respostas fisioldgicas, como elevacdo da frequéncia cardiaca e liberagcao de
adrenalina, que podem persistir mesmo apds a remocdo do estimulo estressor. Essas
reacoes, quando recorrentes, estdo ligadas ao desenvolvimento de doengas cronicas, como
diabetes e cardiopatias [Dieleman et al. 2020].

Com o avango da tecnologia [oT e de dispositivos vestiveis (wearables) é possivel
a coleta constante de dados biométricos, como a frequéncia cardiaca, e dados contextuais,
como a localiza¢ao do usudrio, mesmo sem a necessidade de conexao a internet. Estudos
mostram que a andlise integrada desses dados utilizando modelos de aprendizado pro-
fundo (deep learning) pode identificar padroes de comportamento e detectar alteragdes
que indicam episddios de estresse [Gedam and Paul 2021].

Este estudo propde uma arquitetura para o desenvolvimento de um sistema offline-
first baseado em operacdes de aprendizado de méaquina para analisar dados de sensores
(como frequéncia cardiaca) e a geolocalizagdo do usudrio em tempo real. O sistema



estuda o comportamento basal do usudrio e identifica momentos em que ha alteracdes
bruscas, como picos de batimentos cardiacos em locais possivelmente estressantes. A
implementag¢do inclui um aplicativo Android que se conecta a dispositivos [oT, armazena
dados localmente, como em smartbands, e sincroniza com um servidor em nuvem apenas
quando ha conectividade, protegendo a privacidade e evitando perda de dados. O sistema
gera notificacdes em tempo real quando detecta instabilidades fisioldgicas, alinhando-se
a estratégias de prevencao primaria.

As principais contribui¢des deste trabalho incluem a otimizagdo de recursos com-
putacionais em dispositivos moveis, a reducao de falsos positivos na deteccao de estresse,
e a integracdo de dados heterogéneos, como batimentos cardiacos e coordenadas GPS.
A localizagdo € crucial para a andlise, visto que dados geogréificos como altitude, podem
causar uma variacdo do comportamento de batimentos cardiacos da pessoa.

Além desta introdugdo, este artigo estd organizado da seguinte forma: a Secdo 2
traz os trabalhos relacionados a essa pesquisa, a Secao 3 detalha os materiais e métodos
utilizados no estudo, e a Secdo 4 apresenta os resultados obtidos. Por fim, a Secdo 5
discute as conclusdes do trabalho, além de sugerir direcOes para pesquisas futuras.

2. Trabalhos Relacionados

Para contextualizar a pesquisa, realizamos uma andlise de estudos relacionados a detec¢ao
de estresse utilizando tecnologias vestiveis e técnicas de aprendizado de maquina.

Em [Can et al. 2020], foi proposto um sistema de deteccdo de estresse usando
smartbands, combinando dados fisiologicos (EDA, HRV) e contexto (clima, atividades).
Entretanto, a pesquisa apresenta autorrelatos subjetivos e tamanho reduzido de amostra
(16 participantes), além de nao explorar técnicas de deep learning para séries temporais.

Em [Zhao et al. 2023], os autores propuseram um sistema de detec¢ao de estresse
baseado em fusdo multimodal (ECG e EDA) e anélise multitemporal, combinando carac-
teristicas handcrafted e deep learning. A abordagem alcancou alta precisdo (90,05%) no
dataset WESAD, superando métodos baseados em fontes tinicas. No entanto, o estudo
foi limitado por sua dependéncia de ambientes controlados e pela auséncia de avaliagdao
em cendrios do mundo real com conectividade intermitente, além de ndo explorar a
personalizacdo continua dos modelos para usudrios individuais.

Em [Risch et al. 2022] foi desenvolvido um algoritmo de LSTM (rede neural re-
corrente) para detectar COVID-19 dois dias antes do surgimento de sintomas, usando
pulseiras que monitoram frequéncia respiratoria, cardiaca e temperatura da pele. O sis-
tema alcancou 68% de sensibilidade em 66 pacientes sintomaticos, mas foi limitado por
falsos positivos e falta de diversidade na amostra (apenas adultos sauddveis < 51 anos).

O estudo de [Nurmi and Lohan 2021] analisou 67 pesquisas sobre monitoramento
de saude com aprendizado de mdquina, explorando sensores (acelerometros, EEG, ECG
e smartwatches). Os dispositivos acompanham sinais vitais de pacientes com doencgas
cronicas, como problemas cardiacos e diabetes. Os resultados concluiram que o uso de
sensores corporais ¢ uma abordagem vidvel para a coleta de dados de saude.

Este trabalho se distingue das abordagens anteriores pelos seguintes aspectos:

* Operacao autonoma: Funcionamento independente de conexdo continua a inter-
net, com armazenamento local dos dados no dispositivo mével;



* Aprendizado adaptativo: Implementacdo de um modelo personalizado baseado
em padrdes individuais dos usudrios, sem a necessidade de dados pré-rotulados;

* Analise contextualizada: Consideracdo do contexto circunstancial como fator
determinante na interpretacdo dos sinais de estresse;

* Aplicabilidade real: Projeto especialmente adaptado para cendrios com conecti-
vidade intermitente e variabilidade interindividual nos padrdes de estresse.

Tais aspectos tornam a proposta deste trabalho mais adequada para aplicagdes no
mundo real, onde a conectividade pode ser intermitente e os padrdes de estresse variam
significativamente entre individuos.

3. Materiais e Métodos

Para garantir a maxima eficiéncia e precisdo da arquitetura proposta é essencial adotar
uma abordagem multifacetada, abordando diferentes dreas de desenvolvimento. A com-
plexidade envolvida na aplicacdo de modelos de machine learning em contextos reais
exige ndo apenas a otimiza¢do do modelo em si, mas também melhorias na coleta e no
pré-processamento dos dados, no desempenho das ferramentas de visualizagdo e na esca-
labilidade da solugdo.

A arquitetura (Figura 1) segue o paradigma Edge-Fog-Cloud, que permite um
processamento distribuido dos dados coletados pelos dispositivos vestiveis, otimizando o
tempo de resposta e a eficiéncia do sistema. Esse paradigma € ideal para aplicacdes que
lidam com dados de sensores em tempo real, como os batimentos cardiacos, pois evita
a necessidade de enviar todas as informacdes para a nuvem constantemente, reduzindo
laténcia, economizando largura de banda e garantindo respostas rdpidas ao usudrio.
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Figura 1. Representacao da arquitetura proposta usando o paradigma Edge-Fog-
Cloud



3.1. Camada Edge

A primeira etapa da arquitetura ocorre na camada Edge, que compreende os dispositi-
vos mais proximos do usudrio, como as smartbands conectadas aos smartphones. Esses
dispositivos sdo responsaveis por coletar os sinais vitais do usudrio em tempo real, regis-
trando batimentos cardiacos com alta frequéncia, além de capturar informacdes contex-
tuais como a localiza¢do geogréfica (latitude e longitude) e o hordrio exato da medigao,
sendo todas essas informag¢des importantes para o treinamento do modelo.

A smartband se conecta ao smartphone via Bluetooth Low Energy (BLE), garan-
tindo uma comunicag¢do continua sem necessidade de conex@o com a internet. Essa abor-
dagem ¢ eficiente, pois permite a coleta independente e descentralizada dos dados.

3.2. Camada Fog

A camada Fog utiliza os conceitos da arquitetura Lambda em sua composi¢@o. Por isso,
nesta camada, o dado segue dois fluxos distintos, um para o processamento interno e
outro para o envio do dado para a nuvem. Assim, a camada Fog tem duas funcdes: (1)
armazenamento local temporario e submissdo do dado para predi¢do de momentos de
estresse, e (2) coleta e encaminhamento dos dados ao processamento na nuvem.

O modelo preditivo treinado fica armazenado na nuvem e na Fog no smartphone
do usudrio. Assim, quando um dado chega na camada Fog, ele é temporariamente ar-
mazenado, pré-processado e apresentado ao modelo preditivo, previamente treinado na
nuvem, para realizar inferéncias em tempo real. O modelo interpreta esse dado e o classi-
fica como sendo um momento de estresse ou ndo. O mesmo dado utilizado para predi¢ao
de estresse na camada Fog é encaminhado para a nuvem.

Diferente de abordagens que realizam treinamento dos modelos preditivos local-
mente, nesta proposta o smartphone na Fog transmite os dados para a nuvem (linhas
pontilhadas). O smartphone atua como um intermediario entre a smartband e a nuvem,
garantindo que os dados coletados sejam enviados de maneira continua e segura. Como
os dispositivos mdveis possuem restricoes de energia e processamento, a decisdo de ndo
realizar treinamento na Fog otimiza o desempenho e prolonga a autonomia da bateria.

Caso o dispositivo esteja temporariamente sem conexao, os dados ficam armaze-
nados localmente. Assim que a conectividade € restabelecida os dados sdo enviados para
a nuvem e removidos do banco de dados local na Fog. Esse mecanismo garante que ne-
nhuma informagao seja perdida e que o monitoramento do estado fisico e emocional do
usudrio continue sem interrupgdes.

3.3. Camada de Nuvem

O processamento dos dados e treinamento dos modelos preditivos ocorrem de forma
continua na nuvem. Os dados enviados pela Fog sio armazenados em um Datal.ake
na nuvem. Posteriormente, os dados sd@o consumidos do DatalLake e € realizado o pré-
processamento, transformando as medi¢des brutas em um formato adequado para a etapa
de treinamento. Esse processo inclui a normalizagao dos valores, a remocao de ruidos e a
fusdo de dados provenientes de diferentes medi¢des, tornando a informacao mais coesa e
representativa do estado do usudrio. Técnicas como StandardScaler, o uso da biblioteca
de deep learning “TensorFlow” e da biblioteca “Pandas” foram cruciais para essa etapa.
A representacao global do funcionamento do projeto pode ser visualizada na Figura 2.



Com base nos trabalhos da literatura, inicialmente foi utilizado o modelo K-
Neighrest Neighbors (KNN). Porém, considerando a natureza dos dados e resultados pre-
liminares [Sergio et al. 2023], neste trabalho foi feito o uso de Long Short Term Memory
(LSTM), um modelo baseado em série temporais. Acreditamos que o uso de LSTM seja
mais adequado para a resolugdo do problema, visto que o batimento cardiaco no tempo ¢
estd relacionado com os batimentos em ¢ — 1,7 — 2, ... e com a localiza¢do geogréfica.

Os modelos treinados para cada usudrio sdo armazenados na nuvem e enviados
para a Fog. Assim, a nuvem armazena todos os modelos e a Fog armazena apenas o
ultimo modelo treinado do usudrio. Essa abordagem melhora a precisdo das previsdes,
pois os modelos podem ser continuamente aprimorados com novos dados e ajustados
com maior poder computacional na nuvem.
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Figura 2. Representacao do funcionamento do aplicativo

Ao dividir o foco da arquitetura em camadas estratégicas baseadas no paradigma
Edge-Fog-Cloud, € possivel aprimorar cada etapa do processo, garantindo que os dados
sejam tratados de maneira adequada, que os modelos sejam treinados com alta perfor-
mance € que os resultados sejam acessiveis e compreensiveis para diferentes usudrios.
Dessa forma, essa abordagem integrada nao apenas fortalece a confiabilidade das pre-
visdes, mas também permite uma solu¢do mais robusta e adaptéavel.

4. Resultados

Com base na arquitetura, foi desenvolvido um aplicativo, chamado Olivia, com a intencdo
de informar os usuarios, baseado na coleta de seus dados de batimentos cardiacos em
tempo real, o momento que eles estdo passando por estresse. O aplicativo gerencia
a autenticacdo dos usudrios, se conecta a pulseira inteligente para coletar dados de
frequéncia cardiaca e emite alertas caso um padrao incomum seja identificado. Para
operar corretamente, a aplicacao necessita de permissdes como acesso a localizagao em
segundo plano, autorizacdo para execucdo continua e permissio para uso do Bluetooth.

Foi desenvolvida uma tela de login onde os usudrios inserem e-mail e senha para
acessar o sistema. Apds a autenticacdo, sdo redirecionados para a tela de monitoramento
da conexao, onde podem emparelhar a pulseira para medi¢des da frequéncia cardiaca (3).
Nesta tela, os usudrios selecionam “Conectar Dispositivo”, fazendo com que o aplica-
tivo exiba uma lista de dispositivos proximos. Além disso, o aplicativo utiliza o GPS
do smartphone para acompanhar mudancas de localizagdo. Os dados sdo armazenados
temporariamente no banco de dados local no dispositivo, que € um requisito da Fog.
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Figura 3. Aplicativo Olivia

A sincronizacao com o banco de dados ocorre sob demanda, dependendo da dis-
ponibilidade da conexdo. Foi utilizado o MongoDB no desenvolvimento do aplicativo.
Caso a conex@o com a pulseira inteligente seja perdida, o aplicativo executa uma tarefa
em segundo plano para localizar e restabelecer a conexdo com o dispositivo previamente
registrado. Essa conexdo de sincronizacao € realizada por meio do protocolo HTTPS para
garantir a seguranga dos dados. Os dados armazenados no banco de dados sao marcados
apenas com o ID para garantir a anonimidade.

Uma etapa importante € a notificacdo ao usudrio quando ocorre 0 momento de es-
tresse. Essas mensagens auxiliam o usudrio a reconhecer eventos especificos que contri-
buem para o estresse pessoal no dia a dia. A notificacio enviada pelo aplicativo Olivia ao
usudrio tem o seguinte formato: Observei uma variagdo significativa em sua frequéncia
cardiaca em [date] em [time]. Isso pode sugerir um momento de estresse. Recomendamos
que vocé tire um tempo para relaxar e pratique técnicas de redugdo do estresse.

4.1. Desenvolvimento do Modelo Preditivo

A conexao com a internet sendo estabelecida, os dados brutos sdo enviados para a nuvem
e passam por um processo de normalizacdo utilizando StandardScaler, garantindo que
todas as varidveis fiquem em uma escala apropriada antes do treinamento. Esse processo
de normalizagdo € aplicado separadamente aos dados de treino e de validagdo para evitar
vazamento de informacdes entre os conjuntos.

Algumas métricas e correlacdes sao tracadas para entender a importancia de cada
uma das features de dados existentes no modelo. Foi modelada uma matriz de correlagao
para entender como as features se relacionam (Figura 4).

Analisando a matriz da Figura 4, observa-se que:

* Correlagao entre latitude (lat) e longitude (long): H4d uma correlacdo muito alta
(0.99), o que indica que essas varidveis estdo fortemente relacionadas, devido a
proximidade geografica dos pontos analisados.

* Correlacdo entre data e outras varidveis: A data tem correlacdes negativas com
horas (-0.48), latitude (-0.35) e longitude (-0.31), o que confirma o padrdo tem-
poral nos dados, demonstrando que as coletas anteriores influenciam bastante no
comportamento das subsequentes.
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Figura 4. Representacao do funcionamento do aplicativo

* Relacdo entre frequéncia cardiaca (heartrate) e outras variaveis:

— Apresenta uma correlagdo positiva de 0.27 com as horas do dia, o que
pode sugerir que a frequéncia cardiaca tende a aumentar em determinados
periodos do dia.

— Tem correlagdes relativamente baixas com latitude (0.19) e longitude
(0.19), o que sugere que a localizac¢do pode ter um leve impacto na variagao
da frequéncia cardiaca.

Ap6s a normalizagdo, os dados sdo organizados em sequéncias temporais de 30
passos, de modo que cada entrada do modelo contenha informagdes dos dltimos 30 regis-
tros. Esse formato de entrada permite que o modelo aprenda padrdes ao longo do tempo
e faca previsdes mais precisas. O conjunto de dados € dividido em dados de treinamento
e validagao para que o modelo seja avaliado em dados nao vistos durante o aprendizado.

O fluxo de treinamento do modelo foi implementado utilizando um sensor na pri-
meira tarefa do Airflow [Foundation 2024]. Esse sensor tem a funcdo de monitorar a fila
do RabbitMQ para verificar se uma nova mensagem foi adicionada. A verificacdo ocorre
a cada 10 minutos, e o fluxo s6 avanca quando uma nova mensagem ¢ recebida. Assim,
a cada nova mensagem, um novo DAG run € iniciado, onde cada execuc¢do representa
uma instancia especifica de um Directed Acyclic Graph (DAG). Esse mecanismo permite
que multiplos modelos sejam treinados simultaneamente, possibilitando a escalabilidade
horizontal da aplicacdo com execucdes paralelas de treinamento.

No fluxo de treinamento, apds a recepcao da mensagem, a tarefa de treinamento
acessa os dados pré-processados do fluxo de processamento. A mensagem recebida na fila
¢ um JSON serializado contendo informacdes sobre o intervalo de dados a ser utilizado no
treinamento, bem como o identificador do usudrio. Apds a leitura desses dados, que estao
armazenados em uma tabela no Delta Lake, eles sdo submetidos a um pré-processamento
antes de serem inseridos no modelo. A entrada do modelo consiste em uma sequéncia de
30 registros contendo hora, longitude, latitude e frequéncia cardiaca, com o objetivo de
prever a proxima frequéncia cardiaca da série.



Apos o pré-processamento, os dados sdo utilizados para treinar o modelo. Du-
rante essa etapa, um experimento é criado no MLFlow para registrar os pardmetros de
configuracdo do modelo e as métricas extraidas do treinamento. O conjunto de dados
¢ dividido em 71,5% para treinamento e 28,5% para validagcdo, seguindo exemplos da
documentagao do Keras [Chollet 2015]. A arquitetura da rede consiste em duas camadas
LSTM, cada uma com 64 unidades, seguidas por camadas de Dropout com taxa de 20%
para reduzir o risco de overfitting. A camada final € uma camada Dense, responsavel por
gerar a previsdo da frequéncia cardiaca. O modelo é compilado utilizando o otimizador
RMSprop com taxa de aprendizado de 0.002 e é treinado minimizando o erro quadratico
médio (mean squared error), garantindo estabilidade no processo de aprendizado. As
informagdes sobre essa etapa estdo consolidadas na tabela da Figura 5.

Layer (type) Output Shape Param #

1stm (LSTM)

dropout (Dropout)

dropout_1 (Dropout)

(
(
1stm_1 (LSTM) ( , 64) 33,024
(
(

dense (Dense)

Total params: 50,753 (198.25 KB)
Trainable params: 56,753 (195.25 KB)
Non-trainable params: © (0.00 B)

Figura 5. Sumario do modelo

Os valores de loss e val loss apresentados na Tabela 1 mostram a evoluciao do
erro durante o treinamento do modelo. Observa-se uma reducdo consistente do erro de
treinamento (loss), passando de 0.8170 na primeira época para valores abaixo de 0.6 a
partir da sexta época, indicando um aprendizado eficaz. Além disso, a validagdo (val
loss) apresenta uma tendéncia geral de reducio, com destaque para a sétima época, onde
atinge 1.0565, demonstrando a capacidade do modelo de capturar padrdes relevantes nos
dados. Esses resultados sugerem um bom ajuste do modelo ao problema proposto, com
potencial para refinamento e otimizacao adicionais.

Epoca Loss | Val Loss
1 0.8170 | 1.4513
0.6026 | 1.4021
0.6813 | 1.2196
0.5687 | 1.2445
0.6755 | 1.1280
0.5878 | 1.1259
0.6067 | 1.0565
0.5842 | 1.1695
0.6153 | 1.2037
10 0.5572 | 1.1694
11 0.6154 | 1.0956
12 0.5966 | 1.1469

O 00 1 O\ D W IN

Tabela 1. Valores de loss e val loss por época durante o treinamento do modelo.



Ap6s o treinamento no experimento do MLFlow, as métricas sdo analisadas. Caso
a taxa de erro do treinamento (MSE) seja inferior a taxa de erro de validag¢do, o modelo
nao € registrado, e o usudrio continua utilizando o tltimo modelo validado. Se a MSE ob-
tida for inferior a 70%, o modelo recém-treinado € registrado. Esse valor foi determinado
empiricamente, analisando o comportamento da série e a adaptacao do modelo aos dados,
uma vez que o objetivo € identificar momentos que destoam dos padrdes aprendidos.

4.2. Discussoes e Desafios

Um dos maiores desafios € a melhoria do modelo de machine learning/IA, onde busca-
mos otimizar a performance dos algoritmos utilizados na anélise e previsao de padrdes
fisioldgicos, além de testar outros modelos e parametros da rede neural e do aprendizado
profundo.

Outra abordagem que deve ser considerada é o desenvolvimento de mais funci-
onalidades no ambiente mobile. Criacdo de mais features que possam auxiliar mais os
usudrios a entender o que pode estar influenciando os seus respectivos momentos de es-
tresse seria uma excelente contribuicao.

Além disso, existem possibilidades de melhorias na captacao de mais informacao
da pulseira e o tratamento desses novos dados coletados. Pressdo arterial, oxigenagdao no
sangue, temperatura corporal, dados de atividades fisicas (por exemplo passos didrios,
distancia percorrida, calorias queimadas), duracdo do sono e outros sdo algumas das
possiveis features capaz de serem adicionadas ao modelo, aumentando com a precisao
e aproximando mais de cendrios reais.

5. Consideracoes Finais e Trabalhos Futuros

Este trabalho propde uma arquitetura para o monitoramento de usudrios, com o propdsito
de detectar momentos de estresse. Para tal, foram usados dados de dispositivos IoT e
aprendizagem profunda. O desenvolvimento do aplicativo Olivia, baseando-se na arqui-
tetura, produziu resultados que mostram que € possivel detectar momentos de estresse.

Além dos desafios destacados, como proximos passos, buscamos implementar um
treinamento federado, uma abordagem inovadora que descentraliza a coleta e o proces-
samento dos dados. Em vez de armazenar todas as informa¢des em um servidor central,
cada dispositivo ou “cliente’realiza o treinamento localmente, preservando a privacidade
dos dados e reduzindo a necessidade de grandes transferéncias de informacao.

Além disso, essa abordagem possibilita a personalizacao dos modelos, garantindo
que cada sistema treinado localmente contribua para um aprendizado global mais eficiente
e representativo. Com a descentralizacdo, conseguimos capturar variacoes individuais de
forma mais natural e adaptavel, resultando em previsdes mais precisas e um processo de
treinamento mais escaldvel e sustentavel.

Embora o aplicativo Olivia tenha sido funcionalmente testado e validado quanto
a sua capacidade de capturar dados de localizagdo e batimentos cardiacos para prever
situacdes de possivel estresse, ainda se faz necessdria uma avaliacdo mais ampla da ex-
periéncia do usudrio. Testes realizados com os préprios autores indicaram boa precisao
na geracao de alertas, mas ndo foram suficientes para inferir que o usudrio estd realmente
passando por estresses em todos esses momentos anormais. Estudos futuros devem con-
siderar a realizacdo de testes controlados com usudrios reais, visando coletar feedback



qualitativo e quantitativo sobre aspectos como confiabilidade dos alertas, impacto na ro-
tina e taxa de adesao ao uso do aplicativo.

Outro aspecto importante a ser explorado futuramente € a analise detalhada do im-
pacto do Olivia no desempenho energético e computacional dos dispositivos envolvidos.
A arquitetura Edge-Fog-Cloud traz vantagens em termos de escalabilidade, mas também
pode introduzir desafios relacionados ao consumo de bateria do smartphone. E necessério
avaliar, por exemplo, como o intervalo de amostragem dos batimentos cardiacos e a
frequéncia de envio de dados afetam a duracdo da bateria do celular, além de exami-
nar o uso de CPU e memoria em cada camada da arquitetura. Investigacdes nessa dire¢ao
permitirdo otimizar o balanceamento entre precisdo dos modelos preditivos e eficiéncia
energética, fortalecendo a aplicabilidade da solu¢@o no contexto computacional.
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