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Abstract. Chronic diseases, such as cardiovascular disease, diabetes, and can-
cer, have daily stress as a relevant factor in their progression. This study propo-
ses a deep learning architecture to detect real-time stress episodes. Data from
IoT devices on the individual’s heart rate and location was used to do this. A
mobile system processes this data, identifies stress patterns, and sends real-time
notifications to the user. The results show that with the approach developed, it
is possible to detect episodes of stress, providing real-time alerts to the user.

Resumo. Doenças crônicas, como cardiovasculares, diabetes e câncer, têm o
estresse diário como fator relevante em sua progressão. Este estudo propõe
uma arquitetura com aprendizado profundo para detectar episódios de estresse
em tempo real. Para tal, dados de dispositivos IoT sobre frequência cardı́aca
e localização do indivı́duo foram utilizados. Um sistema móvel processa esses
dados, identifica padrões de estresse e envia notificações em tempo real para
o usuário. Os resultados demonstram que é possı́vel detectar episódios de es-
tresse, fornecendo alertas em tempo real ao usuário.

1. Introdução
O estresse é um fenômeno associado a situações imprevisı́veis e incontroláveis, onde o in-
divı́duo percebe uma ameaça ou perigo. Como destacado em [Bauer 2002], essa condição
desencadeia respostas fisiológicas, como elevação da frequência cardı́aca e liberação de
adrenalina, que podem persistir mesmo após a remoção do estı́mulo estressor. Essas
reações, quando recorrentes, estão ligadas ao desenvolvimento de doenças crônicas, como
diabetes e cardiopatias [Dieleman et al. 2020].

Com o avanço da tecnologia IoT e de dispositivos vestı́veis (wearables) é possı́vel
a coleta constante de dados biométricos, como a frequência cardı́aca, e dados contextuais,
como a localização do usuário, mesmo sem a necessidade de conexão à internet. Estudos
mostram que a análise integrada desses dados utilizando modelos de aprendizado pro-
fundo (deep learning) pode identificar padrões de comportamento e detectar alterações
que indicam episódios de estresse [Gedam and Paul 2021].

Este estudo propõe uma arquitetura para o desenvolvimento de um sistema offline-
first baseado em operações de aprendizado de máquina para analisar dados de sensores
(como frequência cardı́aca) e a geolocalização do usuário em tempo real. O sistema



estuda o comportamento basal do usuário e identifica momentos em que há alterações
bruscas, como picos de batimentos cardı́acos em locais possivelmente estressantes. A
implementação inclui um aplicativo Android que se conecta a dispositivos IoT, armazena
dados localmente, como em smartbands, e sincroniza com um servidor em nuvem apenas
quando há conectividade, protegendo a privacidade e evitando perda de dados. O sistema
gera notificações em tempo real quando detecta instabilidades fisiológicas, alinhando-se
a estratégias de prevenção primária.

As principais contribuições deste trabalho incluem a otimização de recursos com-
putacionais em dispositivos móveis, a redução de falsos positivos na detecção de estresse,
e a integração de dados heterogêneos, como batimentos cardı́acos e coordenadas GPS.
A localização é crucial para a análise, visto que dados geográficos como altitude, podem
causar uma variação do comportamento de batimentos cardı́acos da pessoa.

Além desta introdução, este artigo está organizado da seguinte forma: a Seção 2
traz os trabalhos relacionados a essa pesquisa, a Seção 3 detalha os materiais e métodos
utilizados no estudo, e a Seção 4 apresenta os resultados obtidos. Por fim, a Seção 5
discute as conclusões do trabalho, além de sugerir direções para pesquisas futuras.

2. Trabalhos Relacionados
Para contextualizar a pesquisa, realizamos uma análise de estudos relacionados à detecção
de estresse utilizando tecnologias vestı́veis e técnicas de aprendizado de máquina.

Em [Can et al. 2020], foi proposto um sistema de detecção de estresse usando
smartbands, combinando dados fisiológicos (EDA, HRV) e contexto (clima, atividades).
Entretanto, a pesquisa apresenta autorrelatos subjetivos e tamanho reduzido de amostra
(16 participantes), além de não explorar técnicas de deep learning para séries temporais.

Em [Zhao et al. 2023], os autores propuseram um sistema de detecção de estresse
baseado em fusão multimodal (ECG e EDA) e análise multitemporal, combinando carac-
terı́sticas handcrafted e deep learning. A abordagem alcançou alta precisão (90,05%) no
dataset WESAD, superando métodos baseados em fontes únicas. No entanto, o estudo
foi limitado por sua dependência de ambientes controlados e pela ausência de avaliação
em cenários do mundo real com conectividade intermitente, além de não explorar a
personalização contı́nua dos modelos para usuários individuais.

Em [Risch et al. 2022] foi desenvolvido um algoritmo de LSTM (rede neural re-
corrente) para detectar COVID-19 dois dias antes do surgimento de sintomas, usando
pulseiras que monitoram frequência respiratória, cardı́aca e temperatura da pele. O sis-
tema alcançou 68% de sensibilidade em 66 pacientes sintomáticos, mas foi limitado por
falsos positivos e falta de diversidade na amostra (apenas adultos saudáveis ≤ 51 anos).

O estudo de [Nurmi and Lohan 2021] analisou 67 pesquisas sobre monitoramento
de saúde com aprendizado de máquina, explorando sensores (acelerômetros, EEG, ECG
e smartwatches). Os dispositivos acompanham sinais vitais de pacientes com doenças
crônicas, como problemas cardı́acos e diabetes. Os resultados concluı́ram que o uso de
sensores corporais é uma abordagem viável para a coleta de dados de saúde.

Este trabalho se distingue das abordagens anteriores pelos seguintes aspectos:
• Operação autônoma: Funcionamento independente de conexão contı́nua à inter-

net, com armazenamento local dos dados no dispositivo móvel;



• Aprendizado adaptativo: Implementação de um modelo personalizado baseado
em padrões individuais dos usuários, sem a necessidade de dados pré-rotulados;

• Análise contextualizada: Consideração do contexto circunstancial como fator
determinante na interpretação dos sinais de estresse;

• Aplicabilidade real: Projeto especialmente adaptado para cenários com conecti-
vidade intermitente e variabilidade interindividual nos padrões de estresse.

Tais aspectos tornam a proposta deste trabalho mais adequada para aplicações no
mundo real, onde a conectividade pode ser intermitente e os padrões de estresse variam
significativamente entre indivı́duos.

3. Materiais e Métodos

Para garantir a máxima eficiência e precisão da arquitetura proposta é essencial adotar
uma abordagem multifacetada, abordando diferentes áreas de desenvolvimento. A com-
plexidade envolvida na aplicação de modelos de machine learning em contextos reais
exige não apenas a otimização do modelo em si, mas também melhorias na coleta e no
pré-processamento dos dados, no desempenho das ferramentas de visualização e na esca-
labilidade da solução.

A arquitetura (Figura 1) segue o paradigma Edge-Fog-Cloud, que permite um
processamento distribuı́do dos dados coletados pelos dispositivos vestı́veis, otimizando o
tempo de resposta e a eficiência do sistema. Esse paradigma é ideal para aplicações que
lidam com dados de sensores em tempo real, como os batimentos cardı́acos, pois evita
a necessidade de enviar todas as informações para a nuvem constantemente, reduzindo
latência, economizando largura de banda e garantindo respostas rápidas ao usuário.

Figura 1. Representação da arquitetura proposta usando o paradigma Edge-Fog-
Cloud



3.1. Camada Edge
A primeira etapa da arquitetura ocorre na camada Edge, que compreende os dispositi-
vos mais próximos do usuário, como as smartbands conectadas aos smartphones. Esses
dispositivos são responsáveis por coletar os sinais vitais do usuário em tempo real, regis-
trando batimentos cardı́acos com alta frequência, além de capturar informações contex-
tuais como a localização geográfica (latitude e longitude) e o horário exato da medição,
sendo todas essas informações importantes para o treinamento do modelo.

A smartband se conecta ao smartphone via Bluetooth Low Energy (BLE), garan-
tindo uma comunicação contı́nua sem necessidade de conexão com a internet. Essa abor-
dagem é eficiente, pois permite a coleta independente e descentralizada dos dados.

3.2. Camada Fog
A camada Fog utiliza os conceitos da arquitetura Lambda em sua composição. Por isso,
nesta camada, o dado segue dois fluxos distintos, um para o processamento interno e
outro para o envio do dado para a nuvem. Assim, a camada Fog tem duas funções: (1)
armazenamento local temporário e submissão do dado para predição de momentos de
estresse, e (2) coleta e encaminhamento dos dados ao processamento na nuvem.

O modelo preditivo treinado fica armazenado na nuvem e na Fog no smartphone
do usuário. Assim, quando um dado chega na camada Fog, ele é temporariamente ar-
mazenado, pré-processado e apresentado ao modelo preditivo, previamente treinado na
nuvem, para realizar inferências em tempo real. O modelo interpreta esse dado e o classi-
fica como sendo um momento de estresse ou não. O mesmo dado utilizado para predição
de estresse na camada Fog é encaminhado para a nuvem.

Diferente de abordagens que realizam treinamento dos modelos preditivos local-
mente, nesta proposta o smartphone na Fog transmite os dados para a nuvem (linhas
pontilhadas). O smartphone atua como um intermediário entre a smartband e a nuvem,
garantindo que os dados coletados sejam enviados de maneira contı́nua e segura. Como
os dispositivos móveis possuem restrições de energia e processamento, a decisão de não
realizar treinamento na Fog otimiza o desempenho e prolonga a autonomia da bateria.

Caso o dispositivo esteja temporariamente sem conexão, os dados ficam armaze-
nados localmente. Assim que a conectividade é restabelecida os dados são enviados para
a nuvem e removidos do banco de dados local na Fog. Esse mecanismo garante que ne-
nhuma informação seja perdida e que o monitoramento do estado fı́sico e emocional do
usuário continue sem interrupções.

3.3. Camada de Nuvem
O processamento dos dados e treinamento dos modelos preditivos ocorrem de forma
contı́nua na nuvem. Os dados enviados pela Fog são armazenados em um DataLake
na nuvem. Posteriormente, os dados são consumidos do DataLake e é realizado o pré-
processamento, transformando as medições brutas em um formato adequado para a etapa
de treinamento. Esse processo inclui a normalização dos valores, a remoção de ruı́dos e a
fusão de dados provenientes de diferentes medições, tornando a informação mais coesa e
representativa do estado do usuário. Técnicas como StandardScaler, o uso da biblioteca
de deep learning “TensorFlow” e da biblioteca “Pandas” foram cruciais para essa etapa.
A representação global do funcionamento do projeto pode ser visualizada na Figura 2.



Com base nos trabalhos da literatura, inicialmente foi utilizado o modelo K-
Neighrest Neighbors (KNN). Porém, considerando a natureza dos dados e resultados pre-
liminares [Sergio et al. 2023], neste trabalho foi feito o uso de Long Short Term Memory
(LSTM), um modelo baseado em série temporais. Acreditamos que o uso de LSTM seja
mais adequado para a resolução do problema, visto que o batimento cardı́aco no tempo t
está relacionado com os batimentos em t− 1, t− 2, ... e com a localização geográfica.

Os modelos treinados para cada usuário são armazenados na nuvem e enviados
para a Fog. Assim, a nuvem armazena todos os modelos e a Fog armazena apenas o
último modelo treinado do usuário. Essa abordagem melhora a precisão das previsões,
pois os modelos podem ser continuamente aprimorados com novos dados e ajustados
com maior poder computacional na nuvem.

Figura 2. Representação do funcionamento do aplicativo

Ao dividir o foco da arquitetura em camadas estratégicas baseadas no paradigma
Edge-Fog-Cloud, é possı́vel aprimorar cada etapa do processo, garantindo que os dados
sejam tratados de maneira adequada, que os modelos sejam treinados com alta perfor-
mance e que os resultados sejam acessı́veis e compreensı́veis para diferentes usuários.
Dessa forma, essa abordagem integrada não apenas fortalece a confiabilidade das pre-
visões, mas também permite uma solução mais robusta e adaptável.

4. Resultados

Com base na arquitetura, foi desenvolvido um aplicativo, chamado Olivia, com a intenção
de informar os usuários, baseado na coleta de seus dados de batimentos cardı́acos em
tempo real, o momento que eles estão passando por estresse. O aplicativo gerencia
a autenticação dos usuários, se conecta à pulseira inteligente para coletar dados de
frequência cardı́aca e emite alertas caso um padrão incomum seja identificado. Para
operar corretamente, a aplicação necessita de permissões como acesso à localização em
segundo plano, autorização para execução contı́nua e permissão para uso do Bluetooth.

Foi desenvolvida uma tela de login onde os usuários inserem e-mail e senha para
acessar o sistema. Após a autenticação, são redirecionados para a tela de monitoramento
da conexão, onde podem emparelhar a pulseira para medições da frequência cardı́aca (3).
Nesta tela, os usuários selecionam “Conectar Dispositivo”, fazendo com que o aplica-
tivo exiba uma lista de dispositivos próximos. Além disso, o aplicativo utiliza o GPS
do smartphone para acompanhar mudanças de localização. Os dados são armazenados
temporariamente no banco de dados local no dispositivo, que é um requisito da Fog.



Figura 3. Aplicativo Olivia

A sincronização com o banco de dados ocorre sob demanda, dependendo da dis-
ponibilidade da conexão. Foi utilizado o MongoDB no desenvolvimento do aplicativo.
Caso a conexão com a pulseira inteligente seja perdida, o aplicativo executa uma tarefa
em segundo plano para localizar e restabelecer a conexão com o dispositivo previamente
registrado. Essa conexão de sincronização é realizada por meio do protocolo HTTPS para
garantir a segurança dos dados. Os dados armazenados no banco de dados são marcados
apenas com o ID para garantir a anonimidade.

Uma etapa importante é a notificação ao usuário quando ocorre o momento de es-
tresse. Essas mensagens auxiliam o usuário a reconhecer eventos especı́ficos que contri-
buem para o estresse pessoal no dia a dia. A notificação enviada pelo aplicativo Olivia ao
usuário tem o seguinte formato: Observei uma variação significativa em sua frequência
cardı́aca em [date] em [time]. Isso pode sugerir um momento de estresse. Recomendamos
que você tire um tempo para relaxar e pratique técnicas de redução do estresse.

4.1. Desenvolvimento do Modelo Preditivo

A conexão com a internet sendo estabelecida, os dados brutos são enviados para a nuvem
e passam por um processo de normalização utilizando StandardScaler, garantindo que
todas as variáveis fiquem em uma escala apropriada antes do treinamento. Esse processo
de normalização é aplicado separadamente aos dados de treino e de validação para evitar
vazamento de informações entre os conjuntos.

Algumas métricas e correlações são traçadas para entender a importância de cada
uma das features de dados existentes no modelo. Foi modelada uma matriz de correlação
para entender como as features se relacionam (Figura 4).

Analisando a matriz da Figura 4, observa-se que:

• Correlação entre latitude (lat) e longitude (long): Há uma correlação muito alta
(0.99), o que indica que essas variáveis estão fortemente relacionadas, devido à
proximidade geográfica dos pontos analisados.

• Correlação entre data e outras variáveis: A data tem correlações negativas com
horas (-0.48), latitude (-0.35) e longitude (-0.31), o que confirma o padrão tem-
poral nos dados, demonstrando que as coletas anteriores influenciam bastante no
comportamento das subsequentes.



Figura 4. Representação do funcionamento do aplicativo

• Relação entre frequência cardı́aca (heartrate) e outras variáveis:
– Apresenta uma correlação positiva de 0.27 com as horas do dia, o que

pode sugerir que a frequência cardı́aca tende a aumentar em determinados
perı́odos do dia.

– Tem correlações relativamente baixas com latitude (0.19) e longitude
(0.19), o que sugere que a localização pode ter um leve impacto na variação
da frequência cardı́aca.

Após a normalização, os dados são organizados em sequências temporais de 30
passos, de modo que cada entrada do modelo contenha informações dos últimos 30 regis-
tros. Esse formato de entrada permite que o modelo aprenda padrões ao longo do tempo
e faça previsões mais precisas. O conjunto de dados é dividido em dados de treinamento
e validação para que o modelo seja avaliado em dados não vistos durante o aprendizado.

O fluxo de treinamento do modelo foi implementado utilizando um sensor na pri-
meira tarefa do Airflow [Foundation 2024]. Esse sensor tem a função de monitorar a fila
do RabbitMQ para verificar se uma nova mensagem foi adicionada. A verificação ocorre
a cada 10 minutos, e o fluxo só avança quando uma nova mensagem é recebida. Assim,
a cada nova mensagem, um novo DAG run é iniciado, onde cada execução representa
uma instância especı́fica de um Directed Acyclic Graph (DAG). Esse mecanismo permite
que múltiplos modelos sejam treinados simultaneamente, possibilitando a escalabilidade
horizontal da aplicação com execuções paralelas de treinamento.

No fluxo de treinamento, após a recepção da mensagem, a tarefa de treinamento
acessa os dados pré-processados do fluxo de processamento. A mensagem recebida na fila
é um JSON serializado contendo informações sobre o intervalo de dados a ser utilizado no
treinamento, bem como o identificador do usuário. Após a leitura desses dados, que estão
armazenados em uma tabela no Delta Lake, eles são submetidos a um pré-processamento
antes de serem inseridos no modelo. A entrada do modelo consiste em uma sequência de
30 registros contendo hora, longitude, latitude e frequência cardı́aca, com o objetivo de
prever a próxima frequência cardı́aca da série.



Após o pré-processamento, os dados são utilizados para treinar o modelo. Du-
rante essa etapa, um experimento é criado no MLFlow para registrar os parâmetros de
configuração do modelo e as métricas extraı́das do treinamento. O conjunto de dados
é dividido em 71,5% para treinamento e 28,5% para validação, seguindo exemplos da
documentação do Keras [Chollet 2015]. A arquitetura da rede consiste em duas camadas
LSTM, cada uma com 64 unidades, seguidas por camadas de Dropout com taxa de 20%
para reduzir o risco de overfitting. A camada final é uma camada Dense, responsável por
gerar a previsão da frequência cardı́aca. O modelo é compilado utilizando o otimizador
RMSprop com taxa de aprendizado de 0.002 e é treinado minimizando o erro quadrático
médio (mean squared error), garantindo estabilidade no processo de aprendizado. As
informações sobre essa etapa estão consolidadas na tabela da Figura 5.

Figura 5. Sumário do modelo

Os valores de loss e val loss apresentados na Tabela 1 mostram a evolução do
erro durante o treinamento do modelo. Observa-se uma redução consistente do erro de
treinamento (loss), passando de 0.8170 na primeira época para valores abaixo de 0.6 a
partir da sexta época, indicando um aprendizado eficaz. Além disso, a validação (val
loss) apresenta uma tendência geral de redução, com destaque para a sétima época, onde
atinge 1.0565, demonstrando a capacidade do modelo de capturar padrões relevantes nos
dados. Esses resultados sugerem um bom ajuste do modelo ao problema proposto, com
potencial para refinamento e otimização adicionais.

Época Loss Val Loss
1 0.8170 1.4513
2 0.6026 1.4021
3 0.6813 1.2196
4 0.5687 1.2445
5 0.6755 1.1280
6 0.5878 1.1259
7 0.6067 1.0565
8 0.5842 1.1695
9 0.6153 1.2037
10 0.5572 1.1694
11 0.6154 1.0956
12 0.5966 1.1469

Tabela 1. Valores de loss e val loss por época durante o treinamento do modelo.



Após o treinamento no experimento do MLFlow, as métricas são analisadas. Caso
a taxa de erro do treinamento (MSE) seja inferior à taxa de erro de validação, o modelo
não é registrado, e o usuário continua utilizando o último modelo validado. Se a MSE ob-
tida for inferior a 70%, o modelo recém-treinado é registrado. Esse valor foi determinado
empiricamente, analisando o comportamento da série e a adaptação do modelo aos dados,
uma vez que o objetivo é identificar momentos que destoam dos padrões aprendidos.

4.2. Discussões e Desafios
Um dos maiores desafios é a melhoria do modelo de machine learning/IA, onde busca-
mos otimizar a performance dos algoritmos utilizados na análise e previsão de padrões
fisiológicos, além de testar outros modelos e parâmetros da rede neural e do aprendizado
profundo.

Outra abordagem que deve ser considerada é o desenvolvimento de mais funci-
onalidades no ambiente mobile. Criação de mais features que possam auxiliar mais os
usuários a entender o que pode estar influenciando os seus respectivos momentos de es-
tresse seria uma excelente contribuição.

Além disso, existem possibilidades de melhorias na captação de mais informação
da pulseira e o tratamento desses novos dados coletados. Pressão arterial, oxigenação no
sangue, temperatura corporal, dados de atividades fı́sicas (por exemplo passos diários,
distância percorrida, calorias queimadas), duração do sono e outros são algumas das
possı́veis features capaz de serem adicionadas ao modelo, aumentando com a precisão
e aproximando mais de cenários reais.

5. Considerações Finais e Trabalhos Futuros
Este trabalho propõe uma arquitetura para o monitoramento de usuários, com o propósito
de detectar momentos de estresse. Para tal, foram usados dados de dispositivos IoT e
aprendizagem profunda. O desenvolvimento do aplicativo Olivia, baseando-se na arqui-
tetura, produziu resultados que mostram que é possı́vel detectar momentos de estresse.

Além dos desafios destacados, como próximos passos, buscamos implementar um
treinamento federado, uma abordagem inovadora que descentraliza a coleta e o proces-
samento dos dados. Em vez de armazenar todas as informações em um servidor central,
cada dispositivo ou ”cliente”realiza o treinamento localmente, preservando a privacidade
dos dados e reduzindo a necessidade de grandes transferências de informação.

Além disso, essa abordagem possibilita a personalização dos modelos, garantindo
que cada sistema treinado localmente contribua para um aprendizado global mais eficiente
e representativo. Com a descentralização, conseguimos capturar variações individuais de
forma mais natural e adaptável, resultando em previsões mais precisas e um processo de
treinamento mais escalável e sustentável.

Embora o aplicativo Olivia tenha sido funcionalmente testado e validado quanto
à sua capacidade de capturar dados de localização e batimentos cardı́acos para prever
situações de possı́vel estresse, ainda se faz necessária uma avaliação mais ampla da ex-
periência do usuário. Testes realizados com os próprios autores indicaram boa precisão
na geração de alertas, mas não foram suficientes para inferir que o usuário está realmente
passando por estresses em todos esses momentos anormais. Estudos futuros devem con-
siderar a realização de testes controlados com usuários reais, visando coletar feedback



qualitativo e quantitativo sobre aspectos como confiabilidade dos alertas, impacto na ro-
tina e taxa de adesão ao uso do aplicativo.

Outro aspecto importante a ser explorado futuramente é a análise detalhada do im-
pacto do Olivia no desempenho energético e computacional dos dispositivos envolvidos.
A arquitetura Edge-Fog-Cloud traz vantagens em termos de escalabilidade, mas também
pode introduzir desafios relacionados ao consumo de bateria do smartphone. É necessário
avaliar, por exemplo, como o intervalo de amostragem dos batimentos cardı́acos e a
frequência de envio de dados afetam a duração da bateria do celular, além de exami-
nar o uso de CPU e memória em cada camada da arquitetura. Investigações nessa direção
permitirão otimizar o balanceamento entre precisão dos modelos preditivos e eficiência
energética, fortalecendo a aplicabilidade da solução no contexto computacional.
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