
XXXVI Congresso da Sociedade Brasileira de Computação

1026

From a Smart House to a Connected City: Connecting Devices
Services Everywhere

João Paulo Cardoso de Lima1, Leandro Buss Becker2, Frank Siqueira3,
Analucia Schiaffino Morales1, Gustavo Medeiros de Araujo1

1Department of Computing
Federal University of Santa Catarina (UFSC)

Araranguá, SC – Brazil

2Department of Automation and System
Federal University of Santa Catarina (UFSC)

Florianópolis, SC – Brazil.

3Department of Informatic and Statistics
Federal University of Santa Catarina (UFSC)

Florianópolis, SC – Brazil
joao.pcl@grad.ufsc.br,

{leandro.becker, frank.siqueira, analucia.morales, gustavo.araujo}@ufsc.br

Abstract. The growing development of smart devices makes it possible to create
new distributed applications targeted for smart spaces. The design of intelli-
gent spaces assumes that there is an infrastructure to support the applications
requirements. Many academic works have proposed middlewares that provide
an abstraction for the use of network services. The network services of an smart
space, such as an automated home, can have different communications inter-
faces. Accordingly, we developed a middleware called UDP4US (Universal
Device Pipe for Ubiquitous Services) which was designed to abstract different
patterns of communication, keeping the discovery of devices on a local network
services. In this paper, we present a new UDP4US architecture component that
aims to expose the local network devices services to the Internet. The new com-
ponent was developed with the REST technology, thus the devices services can
be discovered and accessed over the Internet. The new component was exhaus-
tively tested in order to find the limits of its effectiveness. The evaluation of the
new component was performed by measuring its discovery and execution times
plus the success rate of the services execution exposed over the Internet. The re-
sults from the present work are important to guide a better design of distributed
applications for smart places.

1. Introduction
Ubiquitous computing requires binding inexpensive computing device to larger comput-
ers and others resources using, preferably, wireless medium. For example, a smart house
controlled with smart devices shall have remote control of home lighting, integrated enter-
tainment systems, messaging services, and should be able to monitor the health conditions
of the house inhabitants. Mark Weiser in [Weiser 1991] proposed the idea of injecting
computation capacity into the physical world with high spatial density and invisibility,
by having nodes and collectives of nodes operating autonomously, i.e., the technology



1027

SBCUP - 8º Simpósio Brasileiro de Computação Ubíqua e Pervasiva

From a Smart House to a Connected City: Connecting Devices
Services Everywhere

João Paulo Cardoso de Lima1, Leandro Buss Becker2, Frank Siqueira3,
Analucia Schiaffino Morales1, Gustavo Medeiros de Araujo1

1Department of Computing
Federal University of Santa Catarina (UFSC)

Araranguá, SC – Brazil

2Department of Automation and System
Federal University of Santa Catarina (UFSC)

Florianópolis, SC – Brazil.

3Department of Informatic and Statistics
Federal University of Santa Catarina (UFSC)

Florianópolis, SC – Brazil
joao.pcl@grad.ufsc.br,

{leandro.becker, frank.siqueira, analucia.morales, gustavo.araujo}@ufsc.br

Abstract. The growing development of smart devices makes it possible to create
new distributed applications targeted for smart spaces. The design of intelli-
gent spaces assumes that there is an infrastructure to support the applications
requirements. Many academic works have proposed middlewares that provide
an abstraction for the use of network services. The network services of an smart
space, such as an automated home, can have different communications inter-
faces. Accordingly, we developed a middleware called UDP4US (Universal
Device Pipe for Ubiquitous Services) which was designed to abstract different
patterns of communication, keeping the discovery of devices on a local network
services. In this paper, we present a new UDP4US architecture component that
aims to expose the local network devices services to the Internet. The new com-
ponent was developed with the REST technology, thus the devices services can
be discovered and accessed over the Internet. The new component was exhaus-
tively tested in order to find the limits of its effectiveness. The evaluation of the
new component was performed by measuring its discovery and execution times
plus the success rate of the services execution exposed over the Internet. The re-
sults from the present work are important to guide a better design of distributed
applications for smart places.

1. Introduction
Ubiquitous computing requires binding inexpensive computing device to larger comput-
ers and others resources using, preferably, wireless medium. For example, a smart house
controlled with smart devices shall have remote control of home lighting, integrated enter-
tainment systems, messaging services, and should be able to monitor the health conditions
of the house inhabitants. Mark Weiser in [Weiser 1991] proposed the idea of injecting
computation capacity into the physical world with high spatial density and invisibility,
by having nodes and collectives of nodes operating autonomously, i.e., the technology

should be part of everyday life until they are indistinguishable from it. In general, the
ubiquitous computing devices are composed of hardware platforms, operating systems,
network protocols, interaction substrates, applications, privacy, and computational meth-
ods. The main concern in this area has been the integration of the digital artifacts with the
physical world [Kumar 2009].

In the context of ubiquitous computing, devices interaction has been traditionally
addressed within a local network [Gubbi et al. 2013]. However, nowadays, this concept
is extended in a way that devices can be reached through the Internet. This new concept
is known as the Internet-of-Things (IoT) [Atzori et al. 2010]. A wide variety of devices is
available as a consequence, a great amount of different communication interfaces are un-
der use. This is, in fact, a barrier to provide proper interaction between different devices.
To solve this problem, efforts have been made to describe protocols that allow different
classes of devices to operate together.

Some protocols have been employed in the ubiquitous computing, such as DPWS
(Device Profile for Web Service)1 which is designed to simplify the integration between
web services and device-provided services. DPWS brought SOA concepts to the device
level [Cândido et al. 2010], allowing devices to expose their services. This enables a wide
applicability, ranging from industrial to home automation [Sleman and Moeller 2008].
The DLNA (Digital Living Network Alliance)2 is a collaborative standard organization
that defines interoperability guidelines to enable devices to communicate in a home net-
work. The DLNA aims the sharing of multimedia content between producer and con-
sumer devices. However, the DLNA is not limited to sharing multimedia content, as it
can be used with the same purpose as DPWS. Given that both DPWS and DLNA use
UPnP as underlying protocol, they can be combined in order to allow interoperation be-
tween heterogeneous devices and the development of several application scenarios.

Additionally, the REST (REpresentational State Transfer) technology has been
widely used to integrate systems. The REST is an architectural style [Fielding 2000],
which is being adopted in the context of Web-based services and applications as a strat-
egy to provide interoperation system. The REST technology can also be useful in the
context of ubiquitous systems, due to its lightweight and stateless nature, REST can be
seen as a suitable solution for device integration [Guinard et al. 2010, Riedel et al. 2010,
Moritz et al. 2010].

Firstly, this paper presents the Universal Device Pipe for Providing Ubiquitous
Services (UDP4US) [Felisberto et al. 2015] emphasizing its new component. The new
component is the REST module, which is the main contribution presented in this paper.
The REST component is responsible for exposing and execution device’s services over
the Internet. The remainder of this paper is structured as follows. Section 2 outlines some
issues about REST technologies. Section 3 presents the most relevant related work in
this field. Section 4 provides an overview of the proposed UDP4US and its components.
Section 5 outlines the implementation of UDP4US REST module and the experimental
testbed employed. Finally, Section 6 presents the conclusions and the future work ideas.

1http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
2http://www.dlna.org/



XXXVI Congresso da Sociedade Brasileira de Computação

1028

2. REST Technology

The REST was proposed by [Fielding 2000] aiming to simplify the Hypermedia Dis-
tributed Architecture. His work introduces the term REST, which stands for Represen-
tational State Transfer. REST is an architectural style that became an alternative to the
standard Web Service technology. The main difference between traditional Web Services
and REST is that the former is based on the SOAP protocol, which demands a more
complex protocol stack than REST. REST is based just on HTTP operations, which scale
better because of the independence from the SOAP protocol. The simplicity of REST
makes it an ideal candidate to build an “universal” API for embedded devices. This con-
cept is often referred to as “Web of things” [Guinard et al. 2010]. The main features of
REST are the use of URIs and of resource entities. Four HTTP methods can be employed
to provide services, as shown in figure 1. These methods are described as follows:

• GET: Requests data from a specific resource. It is defined as a safe method and
should not be used to trigger an action.

• POST: The information sent in the request body is used to create a new resource
instance.

• DELETE: Remove a resource instance. Should return the 204 status if there is no
resource associated with the specified URI.

• PUT: Updates a resource at the specified URI. If the resource does not exist, it
does create one. The main difference between POST and PUT is that the former
can deal not only with resources, but can also process information.

RESTful services can exchange messages using several data formats, such as
XML, JSON and HTML. The use of the HTTP protocol allows it to easily cross net-
work boundaries. Since RESTful services have a stateless behavior, the overall system
scalability is highly improved.

Figure 1. Message Exchanges in REST

3. Related Works

Some related works address devices integration at the protocol level, using DPWS or
DLNA as a part of the proposed solution. For instance, in [Samaras et al. 2013] it is
proposed a DPWS modified stack to be applied to 6LoWPAN-Based Wireless Sensor
Networks (WSN). Therefore, the DPWS implementation was enhanced in order to con-
sume less memory and decrease the processing overhead. The work shows the advantages
to add SOA concepts into WSN by applying DPWS, in spite of increasing the message
overhead.



1029

SBCUP - 8º Simpósio Brasileiro de Computação Ubíqua e Pervasiva

2. REST Technology

The REST was proposed by [Fielding 2000] aiming to simplify the Hypermedia Dis-
tributed Architecture. His work introduces the term REST, which stands for Represen-
tational State Transfer. REST is an architectural style that became an alternative to the
standard Web Service technology. The main difference between traditional Web Services
and REST is that the former is based on the SOAP protocol, which demands a more
complex protocol stack than REST. REST is based just on HTTP operations, which scale
better because of the independence from the SOAP protocol. The simplicity of REST
makes it an ideal candidate to build an “universal” API for embedded devices. This con-
cept is often referred to as “Web of things” [Guinard et al. 2010]. The main features of
REST are the use of URIs and of resource entities. Four HTTP methods can be employed
to provide services, as shown in figure 1. These methods are described as follows:

• GET: Requests data from a specific resource. It is defined as a safe method and
should not be used to trigger an action.

• POST: The information sent in the request body is used to create a new resource
instance.

• DELETE: Remove a resource instance. Should return the 204 status if there is no
resource associated with the specified URI.

• PUT: Updates a resource at the specified URI. If the resource does not exist, it
does create one. The main difference between POST and PUT is that the former
can deal not only with resources, but can also process information.

RESTful services can exchange messages using several data formats, such as
XML, JSON and HTML. The use of the HTTP protocol allows it to easily cross net-
work boundaries. Since RESTful services have a stateless behavior, the overall system
scalability is highly improved.

Figure 1. Message Exchanges in REST

3. Related Works

Some related works address devices integration at the protocol level, using DPWS or
DLNA as a part of the proposed solution. For instance, in [Samaras et al. 2013] it is
proposed a DPWS modified stack to be applied to 6LoWPAN-Based Wireless Sensor
Networks (WSN). Therefore, the DPWS implementation was enhanced in order to con-
sume less memory and decrease the processing overhead. The work shows the advantages
to add SOA concepts into WSN by applying DPWS, in spite of increasing the message
overhead.

A different integration approach was presented in [Dohndorf et al. 2010]. The
proposal was to integrate DPWS with the OSGi platform. Therefore, all DPWS devices
could be seen and controlled over the Internet, instead of being managed just in a local
network. The authors intention was to place devices into the internet of things.

Some works have shown the role that REST plays on the integration of IoT sys-
tems that uses DPWS standard [Han et al. 2015, Guinard et al. 2010, Riedel et al. 2010,
Moritz et al. 2010]. For instance, in [Han et al. 2015] it is presented an extension for
DPWS using a REST proxy for IoT applications. Although REST or HTTP-based imple-
mentations cannot support event-driven models as DPWS, the work has shown improve-
ments in latency and overhead, as well as simplifying the global topology.

In [Riedel et al. 2010] it is presented an approach for handling the task of inte-
grating multiple concurrent IoT systems using automatic generation of DPWS gateways
for sensor nodes. The study has shown that Web service gateways have great scalability
in local area networks, besides being flexible enough to support Industrial applications.

Since SOA and REST are not conflicting, combining them, provides features to
meet requirements of single applications (LAN) and IoT scenarios (WAN) for smart coop-
erating objects. Therefore, in [Moritz et al. 2010] it is discussed the drawbacks of using
DPWS along with REST, which may require more resources and implementation efforts
to carry out eventing and discovery features.

4. Universal Device Pipe for Providing Ubiquitous Services

Considering an ubiquitous environment, one can imagine several services being provided.
However, making service composition using current SOA facilities is quite complicated
for several reasons. The most difficult is the wide variety of technologies available to
describe, publish, and compose services. Depending on the target application, different
protocols and mechanisms should be used to provide the required services.

In order to illustrate this problem, let us suppose an application scenario that
adopts three different technologies, such as: DPWS, DLNA, and REST. Consider a per-
son located in a public transportation vehicle (bus, train, etc). To make good use of its
time, the person can watch a movie or listen to the radio using his/her tablet or smart-
phone along the journey. A given software running in the tablet or smartphone could keep
updating the person location to the smart home system (e.g. by REST) so that it could
forecast the person arrival time in order to properly maintain a comfortable temperature
in the house. When the person arrives at home, he/she might like to continue watching
the video on the TV (without having to make setups). At the moment that the smart home
system realizes that the person is located in the living room it would transfer the video
from the tablet to the TV in a synchronized manner (e.g. by DLNA). The identification of
the person location inside the house could be done, for example, using a DPWS enabled
RFID reader.

However, performing such operations using current technologies is a difficult task
(not to say impossible). These protocols are incompatible with each other, making it
hard to perform communication between heterogeneous devices. In order to provide a
contribution for solving this problem, we have analyzed which would be the requirements
necessary to allow the integration of heterogeneous devices, as follows:



XXXVI Congresso da Sociedade Brasileira de Computação

1030

• The first requirement is to expose the device and its services on the network.
Each device has a specific metadata which describes its features, such as man-
ufacturer, model, version, and details about its services. For instance, a sensor
node that senses ambient temperature could provide the service getCurrentTem-
perature. This service should also be detailed, with all the necessary parameters,
to allow the interaction with the client.

• The second requirement is to discover the device and its services. The clients
should easily request any device on the network, regardless if the device is within
a local or a remote network. Likewise, the devices should reply to discovery
requests sent by clients.

• The third requirement is to perform service requests. With the metadata device,
the clients must be able to run the service without the knowledge of the specific
communication interface from the device.

In order to provide a solution for accomplishing the mentioned requirements, we
propose UDP4US (Universal Device Pipe for Ubiquitous Services). The UDP4US was
designed to be an integration channel at application level. The UDP4US works as a pipe
that connects the different technological solutions, such as DPWS, DLNA, and REST.
The details about UDP4US architecture and its operations are described next.

4.1. UDP4US Architecture

The UDP4US was designed to abstract services provided in different network protocols.
It plays the role of a middleware on top of the supported protocols, allowing to pro-
vide abstract services and properly transporting messages. UDP4US provides a specific
communication interface for each supported protocol, as illustrated in figure 2. This is
provided by the Service Broker component, which in fact is a service with a published
operation. The Service Broker hides the complexity to deal with incoming requests from
different protocols. It listens the requests and translates them through the pipe. Currently,
the Service Broker can handle requests from DPWS, DLNA, and RESTful clients.

Figure 2. The Service Broker

The UDP4US stack protocol is presented in figure 3. From top-down, the topmost
layer is the Service Broker Integrator (SBI). The SBI is responsible for implementing
interfaces for each related protocol, in order to translate the requests. The SBI has a
device for each supported protocol. For instance, the SBI has a device for DPWS that
can be reached by any DPWS enable device, but cannot be directly reached by DLNA
or REST enabled devices. Therefore, if a DLNA-enabled device needs to discover a



1031

SBCUP - 8º Simpósio Brasileiro de Computação Ubíqua e Pervasiva

• The first requirement is to expose the device and its services on the network.
Each device has a specific metadata which describes its features, such as man-
ufacturer, model, version, and details about its services. For instance, a sensor
node that senses ambient temperature could provide the service getCurrentTem-
perature. This service should also be detailed, with all the necessary parameters,
to allow the interaction with the client.

• The second requirement is to discover the device and its services. The clients
should easily request any device on the network, regardless if the device is within
a local or a remote network. Likewise, the devices should reply to discovery
requests sent by clients.

• The third requirement is to perform service requests. With the metadata device,
the clients must be able to run the service without the knowledge of the specific
communication interface from the device.

In order to provide a solution for accomplishing the mentioned requirements, we
propose UDP4US (Universal Device Pipe for Ubiquitous Services). The UDP4US was
designed to be an integration channel at application level. The UDP4US works as a pipe
that connects the different technological solutions, such as DPWS, DLNA, and REST.
The details about UDP4US architecture and its operations are described next.

4.1. UDP4US Architecture

The UDP4US was designed to abstract services provided in different network protocols.
It plays the role of a middleware on top of the supported protocols, allowing to pro-
vide abstract services and properly transporting messages. UDP4US provides a specific
communication interface for each supported protocol, as illustrated in figure 2. This is
provided by the Service Broker component, which in fact is a service with a published
operation. The Service Broker hides the complexity to deal with incoming requests from
different protocols. It listens the requests and translates them through the pipe. Currently,
the Service Broker can handle requests from DPWS, DLNA, and RESTful clients.

Figure 2. The Service Broker

The UDP4US stack protocol is presented in figure 3. From top-down, the topmost
layer is the Service Broker Integrator (SBI). The SBI is responsible for implementing
interfaces for each related protocol, in order to translate the requests. The SBI has a
device for each supported protocol. For instance, the SBI has a device for DPWS that
can be reached by any DPWS enable device, but cannot be directly reached by DLNA
or REST enabled devices. Therefore, if a DLNA-enabled device needs to discover a

device or perform a service that is not DLNA-enabled, but that is a DPWS-enable device,
the SBI has a DLNA-enabled device that listens to requests and translates to the DPWS
protocol. The devices implemented in the SBI are in fact virtual devices that simply listen
to incoming requests.

Figure 3. Proposed Protocol Stack

Below SBI there are the supported application protocols: DPWS, DLNA, and
REST. The DPWS and DLNA engines are responsible for discovering and processing
their requests independently. The REST interface plays the role of exposing DPWS and
DLNA devices over the Internet.

The next layer is the Adapter Layer, which can be seen as a driver for the operating
system. It acts like any off-the-shelf device that must implement a specific device-driver to
support a given operating system. For devices that are neither DPWS nor DLNA enabled,
different interfaces can be used. Currently it provides interfaces for serial communication
and Bluetooth. Such requests are later translated for DPWS or DLNA. Our proposal was
designed to be extended to others Adapter Layers, such as 802.15.4.

4.2. UDP4US Operation

The UDP4US can act as a Client Device and a Provider Device at the same time. For
instance, if a Service Provider is not reachable using a given protocol, such request is
translated to one of the other supported protocols. For example, if a DLNA client does
not get an answer for a request, UDP4US translates the request to DPWS or REST in
order to try to find a service. Furthermore, if the device provider is neither DLNA nor
DPWS enabled, the Adapter Layer plays the role of a request translator. It is important
to highlight that the requests could be a discovery or a service invocation. For example,
if a Bluetooth device needs to interact with a serial device, i.e., both are not DPWS- nor
DLNA-enabled devices, the requests must be translated to both technologies.

5. Experimental Evaluation

In order to validate the new component from UDP4US project, some experiments were
performed to measure the bounds of the REST component. The experimental setup is
illustrated in figure 4. From the right side, the DPWS-enabled client is requesting a service
to its local network. However, the requested service was not presented in the same local
network. Then the UDP4US listening the requests, translates to REST component and
it dispatches over the internet. On the left side, a Service Provider DPWS enabled was
listening incoming request from its local network. All incoming requests from internet
were managed by UDP4US middleware. The incoming requests from the internet are
listened by REST component, which gets the request and translate to UDP4US format.



XXXVI Congresso da Sociedade Brasileira de Computação

1032

The Service Broker component will translate the request to the specific format, which was
in this case to DPWS metadata. Finally, the Service Provide DPWS enabled can process
the request and reply to the DPWS-enabled client.

Figure 4. Experimental Setup Over the Internet

The main goal of the experiments were to find the boundaries of this new UDP4US
component. Finding the limits of our approach might help to better guide the applications
design, with a clear understanding of the viability the applying the concept of IoT. We
performed the experiments with a high number of clients requesting one device’s service.
The number of clients ranged from 50 to 500, increasing with a step of 50, which means
that UDP4US must handle with a high number of requests. The client and service provider
were hosted in different networks. In order to reduce the statistical bias, each obtained
result refers to the average of 10 executions. Furthermore, all experiments were carried
out with clients performing discovery and execution of a service. The service execution
performed by means of two-way requesting, such as a system requesting a value from a
sensor. In the last experiment, the goal was to measure the cost of the solution over the
internet, that way we have a sense of performance on IoT solutions. To oversee the perfor-
mance analysis from all protocols, three metrics were chosen: i) number of successfully
executed requests, ii) service discovery time, and iii) service execution time.

5.1. Implementation

The UDP4US prototype implementation was built on top of tree frameworks, the WS4D-
JMEDS3, Cling4, and REST services, which were hosted by an Apache Server. All frame-
works were developed using the Java SE platform. All source code generated in this
project is publicly available in the github repository5. The equipment used in all experi-
ments are described as follow:

• Service Provider Side:
– Service Provider A notebook with Intel(R)Pentium(R) CPU P6100 @ 2.00

GHz, 2 GB of RAM and Ubuntu 13.10 Operating System hosting the ser-
vice provider. An Arduino UNO R3 was attached to it by USB.

– UDP4US A notebook with Intel(R) Core(TM) i3-M330 @ 2.13GHz,
RAM 4 GB of RAM and Windows 10 hosting the REST Service Provider.

• Client Side:
3http://ws4d.e-technik.uni-rostock.de/, DPWS Implementation
4http://4thline.org/projects/cling/, DLNA Implementation
5https://github.com/UFSCAraSistemasUbiquos



1033

SBCUP - 8º Simpósio Brasileiro de Computação Ubíqua e Pervasiva

The Service Broker component will translate the request to the specific format, which was
in this case to DPWS metadata. Finally, the Service Provide DPWS enabled can process
the request and reply to the DPWS-enabled client.

Figure 4. Experimental Setup Over the Internet

The main goal of the experiments were to find the boundaries of this new UDP4US
component. Finding the limits of our approach might help to better guide the applications
design, with a clear understanding of the viability the applying the concept of IoT. We
performed the experiments with a high number of clients requesting one device’s service.
The number of clients ranged from 50 to 500, increasing with a step of 50, which means
that UDP4US must handle with a high number of requests. The client and service provider
were hosted in different networks. In order to reduce the statistical bias, each obtained
result refers to the average of 10 executions. Furthermore, all experiments were carried
out with clients performing discovery and execution of a service. The service execution
performed by means of two-way requesting, such as a system requesting a value from a
sensor. In the last experiment, the goal was to measure the cost of the solution over the
internet, that way we have a sense of performance on IoT solutions. To oversee the perfor-
mance analysis from all protocols, three metrics were chosen: i) number of successfully
executed requests, ii) service discovery time, and iii) service execution time.

5.1. Implementation

The UDP4US prototype implementation was built on top of tree frameworks, the WS4D-
JMEDS3, Cling4, and REST services, which were hosted by an Apache Server. All frame-
works were developed using the Java SE platform. All source code generated in this
project is publicly available in the github repository5. The equipment used in all experi-
ments are described as follow:

• Service Provider Side:
– Service Provider A notebook with Intel(R)Pentium(R) CPU P6100 @ 2.00

GHz, 2 GB of RAM and Ubuntu 13.10 Operating System hosting the ser-
vice provider. An Arduino UNO R3 was attached to it by USB.

– UDP4US A notebook with Intel(R) Core(TM) i3-M330 @ 2.13GHz,
RAM 4 GB of RAM and Windows 10 hosting the REST Service Provider.

• Client Side:
3http://ws4d.e-technik.uni-rostock.de/, DPWS Implementation
4http://4thline.org/projects/cling/, DLNA Implementation
5https://github.com/UFSCAraSistemasUbiquos

– UDP4US A notebook with Intel(R) Core(TM) i5-2410M CPU @ 2.30
GHz, 6 GB of RAM and MS Windows 7 OS hosting the REST Client.

– Client A notebook Intel(R)Core(R) CPU i3-370M @ 2.53 GHz, 4 GB of
RAM and Arch Linux Operating System hosting the client DPWS enabled.

5.2. Obtained Results
This section presents the results obtained in the performance experiments, where a set of
REST Clients requested a virtual device hosted on DPWS through UDP4US. Figure 5
illustrates the Number of Requests successfully issued over. We can observe that the
amount of successful requests during 500 concurrent requests was nearly 84%. Although
the tests have been executed in extreme conditions, one can say that UDP4US can deal
with 500 concurrent requests over the Internet.

100 200 300 400 500

10
0

20
0

30
0

40
0

50
0

number of requests

N
um

be
r o

f R
eq

ue
st

s 
At

te
nd

ed

50 100 150 200 250 300 350 400 450 500

REST−UDP4US−DPWS over the internet

Figure 5. Number of Requests Attended Over the Internet

In figure 6 it is shown the Service Execution Time over the Internet. As ex-
pected, the response time was higher compared with requests on the local network
[Felisberto et al. 2015]. This due to the fact that the Internet has a higher latency than
the local network. The Service Discovery Time is also shown in figure 6. The Service
Discovery Time follows a similar behavior of the Service Execution Time, also due to the
high traffic over the Internet.

100 200 300 400 500

0
10

20
30

40

number of requests

Se
rv

ic
e 

Ex
ec

ut
io

n 
Ti

m
e(

s)

50 100 150 200 250 300 350 400 450 500

REST−UDP4US−DPWS over the internet

100 200 300 400 500

0
10

20
30

40

number of requests

Se
rv

ic
e 

D
is

co
ve

ry
 T

im
e(

s)

50 100 150 200 250 300 350 400 450 500

REST−UDP4US−DPWS over the internet

Figure 6. Service Discovery and Execution Times Over Internet

The first observation we pointed out is that, for all experiments, as the number of
clients increases, the execution and discovery times also increases. In addition, the num-
ber of successfully issued requests decreases. The behavior was a bit irregular, because



XXXVI Congresso da Sociedade Brasileira de Computação

1034

the requests do not have any QoS schema in order to prioritize network traffic. Then, all
requests compete for the access to the network. In spite of the high response time of the
requests, the experiments have clarified the boundaries of response time and the number
of possible concurrent requests for IoT applications using REST and DPWS technologies.

6. Conclusions and Future Works

A lot of research has been made to provide a baseline protocol to connect heterogeneous
devices. Such protocols can be applied in different market segments such as home au-
tomation, industries, health care and many others. Most of automation segment aims the
use of a local network to expose device’s services. Our previous work complies with the
requirements to integrate multiple protocols such as DPWS, DLNA, and Bluetooth. In this
paper, we presented the REST module for the UDP4US architecture. The REST module
is responsible to expose the local network services to the internet. Now the UDP4US ar-
chitecture brought new possibilities to distributed applications for smart spaces. A smart
space such as a house can be connect to other internet services, such as public transport
services. The new opportunities for IoT applications can extend from a smart house to a
connected city.

To make this new trend possible, it is important to establish the limits of the pro-
tocols in order to better guide the implementation of each application scenario. The pre-
sented work shows that the performance of the proposed solution has been satisfactory,
since the tests were performed with the intent of applying the maximum stress. Besides,
the integration was successful and allowed the different devices attached to incompatibles
protocols to reach each other and exchanged messages over the internet.

In a near future, we intend to extend the UDP4US architecture to pro-
vide a QoS schema for client requests. The QoS will be provided by a M,K-
Firm scheduler, that will prioritize the requests that will be near to dynamic failure
[Hamdaoui and Ramanathan 1995]. Furthermore, others adapter layers can also be ex-
tended, such as an adapter for IEEE 802.15.4 technology.

References

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer
networks, 54(15):2787–2805.

Cândido, G., Jammes, F., de Oliveira, J. B., and Colombo, A. W. (2010). Soa at device
level in the industrial domain: Assessment of opc ua and dpws specifications. In
Industrial Informatics (INDIN), 2010 8th IEEE International Conference on, pages
598–603. IEEE.

Dohndorf, O., Kruger, J., Krumm, H., Fiehe, C., Litvina, A., Luck, I., and Stewing, F.-J.
(2010). Towards the web of things: Using dpws to bridge isolated osgi platforms. In
Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010
8th IEEE International Conference on, pages 720–725.

Felisberto, T. Z., Tramontin, E. D., da Cunha dos Santos, F., Morales, A. S., Siqueira, F.,
and de Araújo, G. M. (2015). Universal device pipe for ubiquitous services. In SBESC
Brazilian Symposium on Computing Systems Engineering. IEEE.



1035

SBCUP - 8º Simpósio Brasileiro de Computação Ubíqua e Pervasiva

the requests do not have any QoS schema in order to prioritize network traffic. Then, all
requests compete for the access to the network. In spite of the high response time of the
requests, the experiments have clarified the boundaries of response time and the number
of possible concurrent requests for IoT applications using REST and DPWS technologies.

6. Conclusions and Future Works

A lot of research has been made to provide a baseline protocol to connect heterogeneous
devices. Such protocols can be applied in different market segments such as home au-
tomation, industries, health care and many others. Most of automation segment aims the
use of a local network to expose device’s services. Our previous work complies with the
requirements to integrate multiple protocols such as DPWS, DLNA, and Bluetooth. In this
paper, we presented the REST module for the UDP4US architecture. The REST module
is responsible to expose the local network services to the internet. Now the UDP4US ar-
chitecture brought new possibilities to distributed applications for smart spaces. A smart
space such as a house can be connect to other internet services, such as public transport
services. The new opportunities for IoT applications can extend from a smart house to a
connected city.

To make this new trend possible, it is important to establish the limits of the pro-
tocols in order to better guide the implementation of each application scenario. The pre-
sented work shows that the performance of the proposed solution has been satisfactory,
since the tests were performed with the intent of applying the maximum stress. Besides,
the integration was successful and allowed the different devices attached to incompatibles
protocols to reach each other and exchanged messages over the internet.

In a near future, we intend to extend the UDP4US architecture to pro-
vide a QoS schema for client requests. The QoS will be provided by a M,K-
Firm scheduler, that will prioritize the requests that will be near to dynamic failure
[Hamdaoui and Ramanathan 1995]. Furthermore, others adapter layers can also be ex-
tended, such as an adapter for IEEE 802.15.4 technology.

References

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer
networks, 54(15):2787–2805.

Cândido, G., Jammes, F., de Oliveira, J. B., and Colombo, A. W. (2010). Soa at device
level in the industrial domain: Assessment of opc ua and dpws specifications. In
Industrial Informatics (INDIN), 2010 8th IEEE International Conference on, pages
598–603. IEEE.

Dohndorf, O., Kruger, J., Krumm, H., Fiehe, C., Litvina, A., Luck, I., and Stewing, F.-J.
(2010). Towards the web of things: Using dpws to bridge isolated osgi platforms. In
Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010
8th IEEE International Conference on, pages 720–725.

Felisberto, T. Z., Tramontin, E. D., da Cunha dos Santos, F., Morales, A. S., Siqueira, F.,
and de Araújo, G. M. (2015). Universal device pipe for ubiquitous services. In SBESC
Brazilian Symposium on Computing Systems Engineering. IEEE.

Fielding, R. (2000). Representational state transfer. Architectural Styles and the Design
of Netowork-based Software Architecture, pages 76–85.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet of things (iot):
A vision, architectural elements, and future directions. Future Generation Computer
Systems, 29(7):1645–1660.

Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., and Savio, D. (2010). Interacting
with the SOA-based internet of things: Discovery, query, selection, and on-demand
provisioning of web services. IEEE Transactions on Services Computing, 3(3):223–
235.

Hamdaoui, M. and Ramanathan, P. (1995). A dynamic priority assignment technique for
streams with (m, k)-firm deadlines. Computers, IEEE Transactions on, 44(12):1443–
1451.

Han, S. N., Park, S., Lee, G. M., and Crespi, N. (2015). Extending the Devices Profile for
Web Services Standard Using a REST Proxy. Internet Computing, IEEE, 19(1):10–17.

Kumar, S. (2009). Challenges for ubiquitous computing. In Networking and Services,
2009. ICNS ’09. Fifth International Conference on, pages 526–535.

Moritz, G., Zeeb, E., Prüter, S., Golatowski, F., Timmermann, D., and Stoll, R. (2010).
Devices profile for web services and the REST. IEEE International Conference on
Industrial Informatics (INDIN), pages 584–591.

Riedel, T., Fantana, N., Genaid, A., Yordanov, D., Schmidtke, H. V., and Beigl, M. (2010).
Using web service gateways and code generation for sustainable iot system develop-
ment. In Internet of Things (IOT), 2010, pages 1–8. IEEE.

Samaras, I., Hassapis, G., and Gialelis, J. (2013). A modified dpws protocol stack for
6lowpan-based wireless sensor networks. Industrial Informatics, IEEE Transactions
on, 9(1):209–217.

Sleman, A. and Moeller, R. (2008). Integration of wireless sensor network services into
other home and industrial networks; using device profile for web services (dpws). In
Information and Communication Technologies: From Theory to Applications, 2008.
ICTTA 2008. 3rd International Conference on, pages 1–5. IEEE.

Weiser, M. (1991). The computer for the 21st century. Scientific american, 265(3):94–
104.


