
Aspectual Connectors:
Supporting the Seamless Integration of Aspects and ADLs

Thaís Batista1 , Christina Chavez2 , Alessandro Garcia3,
Uirá Kulesza4, Cláudio Sant’Anna4, Carlos Lucena4

1Computer Science Department, UFRN - Brazil
2Computer Science Department, UFBA - Brazil

3Computing Department, Lancaster University, United Kingdom
4Computer Science Department, PUC-Rio - Brazil

thais@ufrnet.br, flach@ufba.br, garciaa@comp.lancs.ac.uk

{uira,claudios,lucena}@inf.puc-rio.br

Abstract. With the emergence of Aspect-Oriented Software Development

(AOSD), there is a need to understand the adequacy of Architecture

Description Languages (ADLs) connection abstractions for capturing the

crosscutting nature of some architectural concerns. In this paper, we present

the Aspectual Connector (AC), a special kind of architectural connector, as

the only necessary enhancement to an ADL in order to support a seamless

integration of AOSD and Software Architecture. We also present

AspectualACME, an extension to ACME that incorporates ACs and additional

facilities to modularize architectural crosscutting concerns. We use a Web-

based information system as the main case study.

Resumo. Com o amadurecimento das pesquisas em Desenvolvimento de

Software Orientado a Aspectos (DSOA) é necessário investigar se as

abstrações das Linguagens de Descrição de Arquitetura (ADLs) são

adequadas para modelar interesses arquiteturais transversais. Nesse artigo

apresentamos o conceito de Conector Aspectual (AC), um tipo especial de

conector arquitetural, como a única abstração adicional necessária em ADLs

para permitir a integração entre DSOA e arquitetura de software.

Apresentamos também AspectualACME, uma extensão de ACME que

incorpora ACs e mecanismos adicionais para modularizar interesses

arquiteturais transversais. Um sistema de informação Web é usado como

estudo de caso para ilustrar a expressividade de AspectualACME.

1. Introduction

Aspect-Oriented Software Development (AOSD) (Filman et al. 2005) aims to provide
systematic support for the identification, modularization, and composition of
crosscutting concerns throughout the software lifecycle. At the architecture design
level, a crosscutting concern can be any concern that cannot be effectively modularized
using the given abstractions of Architecture Description Languages (ADLs) (Shaw and
Garlan 1996), leading to increased maintenance overhead, reduced reuse capability and

XX Simpósio Brasileiro de Engenharia de Software

17

generally resulting in architectural erosion over the lifetime of a system. Since the
emergence of Software Architecture as a discipline, the main focus of ADLs has been
on the conception of architectural connection abstractions, such as interfaces,
connectors, and configurations (Shaw and Garlan 1996). Hence, there is a pressing need
for understanding to what extent these abstractions are able to capture the crosscutting
interaction of certain architectural components. Ideally, ADL designers should promote
a natural blending of conventional architectural abstractions and aspects.
 Some Aspect-Oriented Architecture Description Languages (AO ADLs)
(Navasa et al., 2002)(Pérez et al., 2003)(Pessemier et al., 2004)(Pinto et al., 2005) have
been proposed, either as extensions of existing ADLs or developed from scratch
employing AO abstractions commonly adopted in programming frameworks and
languages, such as aspects, joinpoints, pointcuts, advice, and inter-type declarations.
Although these AO ADLs provide interesting first contributions and viewpoints to the
field, there is little consensus on how AOSD and ADLs should be integrated, especially
with respect to the interplay of aspects and architectural connection abstractions. The
main problem is that existing proposals typically provide heavyweight solutions (Batista
et al. 2006), thereby hardening their adoption and the exploitation of the available tools
for supporting ADLs.
 In a previous work (Batista et al. 2006) we have discussed seven issues relating
to the integration of AOSD and ADLs. We have discussed how and why extensions are
required or not to conventional interconnection ADL elements, such as interfaces,
connectors, and architectural configurations. Our conclusion was that ADLs promote
the principle of Separation of Concerns (SoC) by explicitly separating components from
their interactions (described by connectors). A systematic integration of architectural
abstractions and AOSD would enhance the existing support for separation and modular
representation of crosscutting concerns at the architectural level. The idea is to reuse the
abstractions provided by conventional ADLs, with minor adaptations to support
effective modeling of crosscutting concerns without introducing additional complexity
into architecture specification.

 This work presents the Aspectual Connector (AC) as the only necessary
enhancement to an ADL in order to support a seamless integration between AOSD and
Software Architecture. The AC specializes the conventional connector abstraction to
support the description of interactions among components that have a crosscutting
impact and other components. Instead of defining a new AO ADL, we extend ACME
(Garlan et al 1997), a well-known ADL, with aspectual connectors. The resulting
extension is AspectualACME, an ADL that supports the seamless exploitation of AOSD
composition mechanisms in architecture design. To illustrate and evaluate
AspectualACME, we present a web-based information system that exhibits some
traditional crosscutting concerns in architecture description, such as persistence and
distribution. We also assess the simplicity and generality of our approach with respect
to related work and according to an evaluation framework that is also proposed in this
paper.
 The remainder of this paper is organized as follows. Section 2 presents
background concepts related to AOSD and ADLs, and introduces the example that will
be used throughout the paper. Section 3 presents an evaluation framework for AO
ADLs that encompasses seven important issues related to aspects and architectural
connection. Section 4 presents the notion of Aspectual Connectors. Section 5 illustrates

XX Simpósio Brasileiro de Engenharia de Software

18

how to incorporate ACs into ACME. Section 6 compares our proposal with related
work and Section 7 presents the final remarks.

2. ADLs and Aspect-Oriented Software Development

Architecture Description Languages (Sections 2.1 and 2.2) and Aspect-Oriented
Software Development (Section 2.4) encompass abstractions and techniques that
promote the principle of separation of concerns (SoC). In this section, we also present
an initial description of an example used in this paper to illustrate the manifestation of
crosscutting concerns in ADL representations.

2.1 Architecture Description Languages

Architectural concerns are typically expressed by using abstractions supported by
Architecture Description Languages (ADLs). According to a well-known conceptual
framework (Medvidovic and Taylor, 2000), the building blocks of an architectural
description are components, connectors, and architectural configurations. In fact, ADLs
enforce the SoC principle by explicitly distinguishing architectural elements used to
specify computation (components) from those used to express interaction between
components (connectors). Components are the units of computation, while connectors

are the locus of interaction. Components and connectors may have associated interfaces,
types, semantics and constraints, but only explicit component interfaces are a required
feature for ADLs. A component’s interface is a set of interaction points between it and
the external world. An interface specifies the services (messages, operations, and
variables) a component provides and also the services it requires from other
components. Component types are templates that encapsulate functionality into reusable
blocks and can be instantiated many times. Connectors model interactions among
components and specify rules that govern those interactions. Similarly, connector types
are templates that encapsulate component communication, coordination, and mediation
decisions. A connector’s interface specifies the interaction points between the
connector and the components attached to it. A connector enables proper connectivity
between components by exporting as its interface those services it expects from its
attached components. Configurations define architectural structure and how
components and connectors are connected.

2.2 ACME

ACME (Garlan et al. 2000) supports the definition of: (i) architectural structure, that is,
the organization of a system into its constituent parts, (ii) properties of interest,
information about a system or its parts that allow one to reason abstractly about overall
behavior, both functional and nonfunctional, and (iii) types and styles, defining classes
and families of architecture. Architectural structure is described in ACME with
components, connectors, systems, attachments, ports, roles, and representations.
Components are potentially composite computational encapsulations that support
multiple interfaces known as ports. Ports are bound to ports on other components using
first-class intermediaries called connectors which support so-called roles that attach
directly to ports. Systems are the abstractions that represent configurations of
components and connectors. A system includes a set of components, a set of connectors,
and a set of attachments that describe the topology of the system. Attachments define a

XX Simpósio Brasileiro de Engenharia de Software

19

set of port/role associations. Representations are alternative decompositions of a given
element (component, connector, port or role) to describe it in greater detail. Thus, the
representation may be seen as a more refined depiction of an element. For instance,
ports may have a representation to encapsulate a large set of API calls as a single port.
Inside the representation, a set of ports is used to represent individual API calls.

 Other ACME elements support more sophisticated architectural features.
Properties of interest are <name, type, value> triples that can be attached to any of the
above ACME elements as annotations. Properties are a mechanism for annotating
designs and design elements with detailed, generally non-structural, information.
Architectural styles define sets of types of components, connectors, properties, and sets
of rules that specify how elements of those types may be legally composed in a reusable
architectural domain. The ACME fragment in Figure 1 illustrates the main ACME
elements. These architectural elements organize software architecture as a graph of
components and connectors. However, they do not provide the adequate means to
capture some architectural crosscutting concerns, as discussed in the next section.

2.3. Crosscutting Concerns in ADL Representations: An Example

Figure 1. ACME Description of the HealthWatcher System

The HealthWatcher (HW) system is a Web-based information system developed by the
Software Productivity research group from the Federal University of Pernambuco
(Soares et al. 2002). The HW system supports the registration of complaints to the
Public Health System. The HW is composed of the three main architectural
components: (i) the GUI (Graphical User Interface) component provides a web
interface for the system, (ii) the Business component defines the business rules, and (iii)
the Data component stores the information to be processed. Figure 1 depicts ACME
textual and graphical descriptions for this example. The interactions between the HW
components are modeled using provided and required ports, and connectors. In Figure
1, for example, the GUI component uses the functionalities provided by the Business

component by means of the connector C1. This connector has two roles which are used
to attach the component ports. The attachment textual description for the HW system

Component GUI =
{Port registerUser
Port registerComplaint
Port listComplaint
Port updateComplaint
Port searchComplaint }

Component Business =
{Port services
Port saveInfo
Port restoreInfo}

Component Data =
{Port storeInfo
Port recoverInfo}

Connector C1, C2 =
{ Roles caller, callee }
Attachments
GUI.updateComplaint to C1.caller
C1.callee to Business.services
Business.saveInfo to C2.caller
C2.callee to Data.storeInfo

Business

Data

GUI

storeInfo

listComplaint

saveInfo

services

registerComplaint

updateComplaint

recoverInfo

C1

C2

searchComplaint

restoreInfo

registerUser

Provided Port

Required Port

Connector

Key:

Component

Component GUI =
{Port registerUser
Port registerComplaint
Port listComplaint
Port updateComplaint
Port searchComplaint }

Component Business =
{Port services
Port saveInfo
Port restoreInfo}

Component Data =
{Port storeInfo
Port recoverInfo}

Connector C1, C2 =
{ Roles caller, callee }
Attachments
GUI.updateComplaint to C1.caller
C1.callee to Business.services
Business.saveInfo to C2.caller
C2.callee to Data.storeInfo

Business

Data

GUI

storeInfo

listComplaint

saveInfo

services

registerComplaint

updateComplaint

recoverInfo

C1

C2

searchComplaint

restoreInfo

registerUser

Provided Port

Required Port

Connector

Key:

Component

Provided Port

Required Port

Connector

Key:

Component

XX Simpósio Brasileiro de Engenharia de Software

20

(Figure 1) shows, for example, the binding of: (i) the updateComplaint required port to
the caller role from the C1 connector; and (ii) the services provided port to the callee
role from the C1 connector.

 However, some architectural concerns cannot be modularly captured with
traditional abstractions supported by ADLs, such as ACME. Some concerns are
crosscutting even at the architectural design level, since they cannot be easily localized
and specified with individual architectural units such as traditional interfaces,
components, connectors, and configurations. Similar to the notion of aspect at the
programming level (Kiczales et al., 1997), we say that these concerns crosscut the
architectural units and denote the so-called architectural aspects (Araújo et al.,
2005)(Baniassad et al., 2006)(Chitchyan et al., 2005)(Cuesta et al., 2005)(Krechetov et

al., 2006).

 Three crosscutting concerns affect the components of the HW system: (i)
Persistence – supports issues related to the data management in web-based systems
(transaction management, data update, repository configuration); (ii) Distribution –
supports the distribution of the Business component services; (iii) Concurrency –
specifies mechanisms to apply different concurrency strategies to the functional
components. The problem is that, very often, the crosscutting property of these
architectural concerns remains either implicit or is described in informal ways leading
to reduced uniformity, impeding traceability and hindering detailed design and
implementation decisions.

2.4 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) (Filmann et al., 2005) provides new
abstractions and composition mechanisms to support the explicit representation of
aspects through software development stages, including software architecture design.
The use of such new abstraction and composition mechanisms supports the
encapsulation of crosscutting concerns into separated modular units, which are
composed with other system modules at well-defined join points. Hence AOSD
supports the modularization of structures and behaviors relative to a concern, which
otherwise would be tangled and scattered through the representation of other concerns
in software artifacts. Structural and behavioral enhancements can be typically applied
before, after and around certain join points. In general, some quantification mechanism
is provided to specify the extent of validity of such enhancements, that is, the extent to
which each enhancement holds over a range of join points.

3. A Framework for Evaluation of Aspect-Oriented ADLs

This section presents a conceptual framework that subsumes a set of core issues that
need to be considered while dealing with architectural aspects. Our goal is to use such a
conceptual framework to support the systematic evaluation of existing aspect-oriented
(AO) ADLs with respect to their proposed abstractions and extensions on the top of
existing non-AO ADLs. The proposed framework is a result of a conceptual blending
involving an AOSD glossary (van den Berg et al., 2005) and a widely-recognized
terminology for software architecture descriptions (Medvidovic and Taylor, 2000). The
conceptual framework was also derived from our extensive experience on: (i) the design
of aspect-oriented software architectures in different application domains (Garcia et al,

XX Simpósio Brasileiro de Engenharia de Software

21

2004)(Kulesza et al., 2004)(Kulesza et al., 2006)(Kulesza et al., 2006b), (ii) the
development of modeling approaches to handle different categories of crosscutting
concerns at the architectural stage (Chavez et al., 2006)(Garcia et al., 2006)(Krechetov
et al., 2006)(Kulesza et al., 2004), and (iii) analysis of the suitability of existing ADLs
to support architectural aspects (Chitchyan et al., 2005)(Batista et al., 2006).

Our comparison framework is composed of seven main elements, which are
described in Table 1. The first column lists the framework issues, while the second
column defines the purpose of the respective issue and describes potential choices in the
design of an AO ADL. The first issue is dedicated to understanding which architectural
elements (e.g. components and interfaces) in an architectural description are typically
affected by a crosscutting concern. The following six issues correlate AOSD concepts
with conventional abstractions of ADLs (Section 2.1). For example, the fourth issue is
related to the specification of aspect interfaces. The last issue is particularly concerned
with the need of a new abstraction for aspects at the architectural level. We recommend
that the interested readers explore the details of our extensive discussion on the issues
that inspired the conception of our evaluation framework (Batista et al., 2006).

Architectural
Issue

Description

Base Elements An AO ADL must define which architectural building blocks may be affected by aspects.
The main architectural building blocks are components, connectors, configurations and
interfaces. Hence, the design of an AO ADL is expected to define a subset or all of them
as base elements.

Aspectual
Composition

An AO ADL must support the composition between base elements and aspects. The issues
here are whether and where the aspectual composition should be defined.

Quantification An AO ADL can support or not quantification mechanisms over join points. If so, it must
define where and how quantification should be specified.

Aspect
Interfaces

An AO ADL should allow the explicit description of aspect interfaces. The issue is
whether the conventional notion of architectural interfaces should be changed or not to
express the boundaries of aspects.

Join point
Exposition

An AO ADL must support join point exposition. Architectural join points are the instances
of base elements in an ADL-based specification that can be affected by a certain aspect.
The issue is whether the base elements should have a different interface exposing the join
points to the aspectual components.

Interface
Enhancements

Interface enhancement is the enrichment of component interfaces with new elements, such
as services and attributes. An AO ADL may support or not interface enhancements.

Aspect An AO ADL must support the description of aspects. The issue is whether it should
provide or not a new architectural abstraction for describing them.

Table 1. An Evaluation Framework for Aspect-Oriented ADLs

 In a previous work (Batista et al., 2006), we used our conceptual framework to
evaluate several AO and non-AO ADLs. We analyzed how different ADLs address each
issue of the framework. One of the main conclusions of our analysis was that no
additional architectural abstractions were needed to represent aspects. We proposed
extensions to the connector abstraction and to the configuration abstraction to support
the modeling of the composition mechanism used in the crosscutting concern
representation at the architectural level. These extensions are related with the need to
support new ways of composition, as well as the quantification supported by a number
of AO approaches. Next section describes aspectual connectors as the core of our
proposal.

XX Simpósio Brasileiro de Engenharia de Software

22

4. Aspectual Connectors

As already stated, software architecture descriptions rely on a connector to express the
interactions between components. This section discusses why crosscutting interactions
(Section 4.1) involving architectural components can be localized through the use of an
extended notion of traditional connectors, called Aspectual Connectors (Section 4.2).
From herein, we use the term aspectual component to refer to a component that
implements a crosscutting concern (architectural aspect).

4.1. Modularizing Crosscutting Interactions in ADL Representations

A connector is a fundamental building block to model simple or complex interaction
protocols as discussed in the taxonomy of connectors (Mehta et al. 2000). In addition,
since ADLs (Section 2.1) explicitly distinguish components (units of computing) from
connectors (units of interaction), this SoC approach should also play a key role in the
integration of ADLs and AOSD. First of all, the component abstraction should be
enough to model any kind of architectural concern independently from its crosscutting
interaction with other components. In fact, a central goal of architecture specifications is
to come up with a unifying abstraction – the component – to capture different types of
computing units defined in specific architectural styles (Medvidovic and Taylor, 2000),
such as objects, layers, meta-objects, and aspects. The key distinction between
aspectual and regular components is in the way aspects compose with the rest of the
system – the scope of the composition is broad and affects multiple components or
multiple architectural elements.
 Second, as connectors are widely used for different interconnection purposes,
they are enough to model the interaction between traditional components and
components that represent a crosscutting concern. However, the way that an aspectual
component composes with a regular component is slightly different from the
composition between traditional components. A crosscutting concern is represented by
a provided service of an aspectual component and it can affect provided or required
services of other components. As in ADLs valid configurations are those that connect
provided and required services, it is impossible to represent a connection between a
provided service of an aspectual component and a provided service without extensions
to the traditional notion of architectural connections.

4.2. The Structure of Aspectual Connectors

In order to address the issues mentioned in Section 4.1, we propose an innovative
abstraction, called Aspectual Connector (AC), which is a regular connector with a new
interface. The purpose of such a new interface is twofold: to make a distinction between
the elements playing different roles in a crosscutting interaction – i.e. affected base
components and aspectual components; and to capture the way both categories of
components are interconnected. The AC interface contains: (i) a base role, (ii) a
crosscutting role, and (iii) a glue clause. Figure 2 depicts a high-level view of the
composition between an aspectual component and two components. C1 and C2 are
examples of aspectual connectors. Note that we do not have a distinct abstraction to
represent architectural aspects, which are similarly represented as regular components;
the different colors in Figure 2 are only to emphasize which one is playing the role of
aspectual component in the crosscutting collaborations.

XX Simpósio Brasileiro de Engenharia de Software

23

 The base role is specified to be connected to a port of the regular component and
the crosscutting role is specified to be connected to a port of an aspectual component.
The pair base-crosscutting roles do not impose the constraint of connecting provided
and required ports. A crosscutting role defines the place at which an aspectual
component joins a connector. In Figure 2 the aspectual connector C1 connects a
provided port of the aspectual component with a provided port of Component 1. C2
connects another provided port of the aspectual component with a required port of
Component 2. The glue clause specifies the details about a connection such as the place
where the connector joins the component – after, before, around, and others.

Aspectual Connector

Provided Port

Required Port

Key:

Component 1

Aspectual

Component
Component 2

C1

C2

Crosscutting role

Base role

Aspectual Connector

Provided Port

Required Port

Key:

Component 1Component 1

Aspectual

Component
Component 2

C1

C2

Crosscutting role

Base role

Figure 2. Aspectual Composition

4.3 Aspectual Composition

In ADLs, the connections between components and connectors are defined in the
configuration section. The configuration description picks up architectural join points at
which an aspectual component acts. The join points of interest are certain elements of
the component interfaces, which are captured and associated with a base role of a
specific AC. Thus, such elements of component interfaces are the collection of join
points where the regular components and aspectual connector are combined. In fact, the
concept of configuration already defines the point where a component joins a connector.
Thus, we are just taking advantage of this concept to identify the join points affected by
a crosscutting interaction. Wildcards and logical expressions can be used in the
configuration part to specify several join points in a single statement, or to quantify over
join points.

5. AspectualACME: An Aspect-Oriented ADL

This Section presents the description of AspectualACME, an extension of ACME with
the goal of supporting a seamless integration of aspects and ADLs. In Section 5.2 we
evaluate AspectualACME according to the framework presented in Section 3.

5.1. Extending ACME

We address the integration of aspects and ADLs to conform to the issues discussed in
Sections 3 and 4, by extending ACME to introduce aspectual connectors and
quantification support at the configuration level. Additionally, AspectualACME is
expected to support simplicity, expressiveness, and to provide a conservative extension
so that software architects can foster reuse of ACME libraries and tools. We have

XX Simpósio Brasileiro de Engenharia de Software

24

selected ACME as our base ADL because it presents a relatively simple core set of
concepts for defining system structure and it captures the essential elements of
architectural modeling (Medvidovic and Taylor 2000). In addition, unlike most ADLs,
ACME is not domain-specific and provides generic structures to describe a wide range
of systems. It comes with tools that provide a good basis for designing and manipulating
architectural descriptions and generating code. The complete BNF of AspectualACME
is available at (AspectualACME, 2006).

5.1.1. ACME extension for aspectual connectors

The first extension that we propose is a specialization of ACME’s connector
abstraction. This extension allows the expression of aspectual connectors and their inner
constructs: base roles, crosscutting roles, and the composition between them denoted by
glue. We extend the connector interface in order to support the specification of base and
crosscutting roles. The base role may be connected to the port of a component (provided
or required) and the crosscutting role may be connected to a port of an aspectual
component. The distinction between base and crosscutting roles addresses the constraint
typically imposed by many ADLs about the valid configurations between provided and
required ports. An aspectual connector must have at least one base role and one
crosscutting role. Figure 3a and 3b present examples of a regular connector and an
aspectual connector in ACME.

Connector aConnector = {

Role aRole1;

 Role aRole2;
}

Connector aConnector = {

Base Role aBaseRole;

Crosscutting Role aCrosscuttingRole;

Glue glueType; }

(a) regular connector in ACME (b) aspectual connector in AspectualACME

Fig. 3. Regular and Aspectual Connectors

 We also introduce a new construct - the glue clause - to specify details about the
composition between components and aspectual components, such as the place where
the port from an aspectual component will affect the regular component. There are three
types of aspectual glue: after, before, and around. The semantics are similar to that of
advice composition from AspectJ (AspectJ Team, 2006). For binary aspectual
connectors (only one crosscutting role and one base role), the glue clause is simply a
declaration of the glue type (Figure 3b), but whenever more than one base role and one
crosscutting role are declared inside an aspectual connector, the glue clause must be
more elaborated (Figure 4).
Connector aConnector = {

Base Role aBaseRole1, aBaseRole2;

Crosscutting Role aCrosscuttingRole1,
 aCrosscuttingRole2;
Glue { aCrosscuttingRole1 before aBaseRole1;

 aCrosscuttingRole2 after aBaseRole2;
 }
}

Fig. 4. Glue Clause

XX Simpósio Brasileiro de Engenharia de Software

25

5.1.2. ACME extension for quantification

The second extension addresses quantification to avoid the need to refer explicitly to
each join point in an architectural description. Since the Attachments part is the place
where structural join points are identified in ACME, we have decided for defining the
quantification mechanism by extending the configuration part. It is also possible to use
wildcards in order to denote names or part of names of components and their ports. The
quantification must be used in the attachment of a base role with target component(s).
In Figure 5, the star symbol (‘*’) is used to specify that aConnector.aBaseRole is
bound to all components that offer a port with a name that begins with prefix.

System Example = {

Component aspectualComponent = { Port aPort }

Connector aConnector = {

baseRole aBaseRole;

 crosscuttingRole aCrosscuttingRole;

 glue glueType;
}
Attachments {

 aspectualComponent.aPort to aConnector.aCrosscuttingRole

 aConnector.aBaseRole to *.prefix* }
}

Fig. 5 ACME Description of the Composition

5.1.3. Example

In this section, we present the modeling of the Distribution and Persistence concerns in
the context of the HealthWatcher (HW) system (Section 2.2). We discuss two different
configurations of the HW system architecture. This allows us to illustrate the flexibility
and expressivity of AspectualACME to represent different architectural decisions when
modeling an architecture. Figures 6 and 7 show the modeling of the two HW
configurations using AspectualACME.

 In the first system configuration (Figure 6) Persistence is modeled as a
crosscutting concern and Distribution is specified as a non-aspectual component which
allows the GUI component to remotely access the services provided by the Business
component. The Persistence aspectual component addresses: (i) the modularization of
an update protocol in order to persist information that is modified by the GUI
component; and (ii) the transaction demarcation of the services provided by the
Business component using a transaction service available in the Data component.

 Figure 6 depicts the AspectualACME description of the HW system including
the Persistence concern. Persistence affects the GUI component and the Business
component. The composition of the Persistence component with the GUI component is
modeled by the Persist aspectual connector. In the attachments section, the Persist

connector connects updateStateControl with registerUser and with registerComplaint

(both are referred by the * wildcard in the attachments description). The glue clause of
Persist specifies that the element bound to the crosscutting role (source) acts after the
execution of the element bound to the base role (sink). This means that, whenever a user
or a complaint is registered, a function is activated by the Persistence component. The
internal implementation of updateStateControl needs to invoke the service of the
Distribution Component, modeled by the C3 connector. However, this internal feature
is not explicit in the AspectualACME description. The reason is that in ACME, as well

XX Simpósio Brasileiro de Engenharia de Software

26

as in other ADLs, implementation details are not described by the architectural
specification. Nevertheless, if the architect decides to expose some internal feature,
ACME properties can be used for this purpose.

Component Persistence =
{Port updateStateControl
Port updateBusinessEntity
Port transactionControl
Port useTransaction }

Component Distribution =
{Port distributedBusinessService
Port saveInfo
Port restoreInfo }

Connector Persist=
{ baseRole sink

crosscuttingRole source
glue source after sink }

Connector Trans=
{ baseRole sink

crosscuttingRole source
glue source around sink }

Connector C1,C2,C3, C4, C5,C6 =
{ Roles caller, callee }
Attachments
Persistence.updataStateControl to Persist.source
Persist.sink to GUI.register*

Persistence.updateBusinessEntity to C1.caller
C1.callee to Distribution.distributedBusinessService

Persistence.transactionControl to Trans.source
Trans.sink to Business.services

Persistence.useTransaction to C6.caller
C6.callee to Data.transactionService

Distribution.saveInfro to C4.caller
C4.callee to Business.services
….

Persistence

GUI

storeInfo

listComplaint

saveInfo

services

updateComplaint

recoverInfo

C1

C6

registerComplaint

updateStateControl

Data
transactionService

updateBusinessEntity

Business

restoreInfo

Persist

Trans

DistributionsaveInfo

distributedBusinessServices

restoreInfo

transactionControl

searchComplaint

useTransaction

C5

C4

C3

C2

Aspectual

Connector

Provided Port

Required Port

Connector

Key:

Component

registerUser
Component Persistence =
{Port updateStateControl
Port updateBusinessEntity
Port transactionControl
Port useTransaction }

Component Distribution =
{Port distributedBusinessService
Port saveInfo
Port restoreInfo }

Connector Persist=
{ baseRole sink

crosscuttingRole source
glue source after sink }

Connector Trans=
{ baseRole sink

crosscuttingRole source
glue source around sink }

Connector C1,C2,C3, C4, C5,C6 =
{ Roles caller, callee }
Attachments
Persistence.updataStateControl to Persist.source
Persist.sink to GUI.register*

Persistence.updateBusinessEntity to C1.caller
C1.callee to Distribution.distributedBusinessService

Persistence.transactionControl to Trans.source
Trans.sink to Business.services

Persistence.useTransaction to C6.caller
C6.callee to Data.transactionService

Distribution.saveInfro to C4.caller
C4.callee to Business.services
….

Persistence

GUI

storeInfo

listComplaint

saveInfo

services

updateComplaint

recoverInfo

C1

C6

registerComplaint

updateStateControl

Data
transactionService

updateBusinessEntity

Business

restoreInfo

Persist

Trans

DistributionsaveInfo

distributedBusinessServices

restoreInfo

transactionControl

searchComplaint

useTransaction

C5

C4

C3

C2

Aspectual

Connector

Provided Port

Required Port

Connector

Key:

Component

Aspectual

Connector

Provided Port

Required Port

Connector

Key:

Component

registerUser

Fig. 6 HW AspectualACME Description with Persistence

 The composition of the Persistence component with the Business component is
modeled by the Trans aspectual connector. It connects the services with the
transactionControl. It defines that whenever a service is requested, a transaction control
mechanism acts during this action. The idea is that the transaction control mechanism of
the Persistence component uses the transactional operations (begin_transaction,
comit_transaction, and rollback) provided by the transactionService provided port of
the Data component. However, again, as this information is not specified in the
architectural description since it is internal to the transactionControl implementation.
This interaction is modeled by a conventional connector (C6) and it can be explicitly
described by means of ACME properties.

 The second configuration shows both Persistence and Distribution modeled as
aspectual components addressing crosscutting concerns (Figure 7). This configuration
corresponds to the architectural modeling presented by an aspect-oriented
implementation of the HW system (Soares et al. 2002). Persistence is responsible only
for the transactional demarcation of the Business services. The Distribution aspectual
component modularizes: (i) the transparent configuration of the calls from the GUI
component to the Business to be realized through remote access; and (ii) the update
protocol that persists information modified by the GUI component. This functionality is

XX Simpósio Brasileiro de Engenharia de Software

27

now implemented by the Distribution component because it requires the remote
invocation of the Business component.

Component Persistence =
{ Port transactionControl

Port useTransaction
}
Component Distribution =
{Port remoteUpdateStateControl
Port remoteAccess
Port useBusinessServices

}
Connector Persist=
{ baseRole sink

crosscuttingRole source
glue source after sink }

Connector Trans=
{ baseRole sink

crosscuttingRole source
glue source around sink }

Connector Distrib=
{ baseRole sink

crosscuttingRole source
glue source around sink }

Connector C3, C4, C5 =
{ Roles caller, callee }
Attachments
Persistence.transactionControl to Trans.source
Trans.sink to Business.services
Persistence.useTransaction to C5.caller
C5.callee to Data.transactionService

Distribution.remoteUpdateStateControl to Persist.source
Persist.sink to GUI.register*
Distribution.remoteAccess to Distrib.source
Distrib.sink to GUI.*Entity
Distribution.useBusinessSerivce to C3.caller
C3.callee to Business.services
…

Distribution

Data

GUI

storeInfo

listEntity

updateEntity

recoverInfo

C2

registerComplaint

remoteUpdateStateControl

transactionService

Persist

Trans

BusinesssaveInfo

services

restoreInfo

remoteAcess

searchEntity

registerUser

C1

C4

C3

C5

useBusinessServices

Persistence

transactionControl

useTransaction

Distrib

Aspectual

Connector

Provided Port

Required Port

Connector

Key:

Component

Component Persistence =
{ Port transactionControl

Port useTransaction
}
Component Distribution =
{Port remoteUpdateStateControl
Port remoteAccess
Port useBusinessServices

}
Connector Persist=
{ baseRole sink

crosscuttingRole source
glue source after sink }

Connector Trans=
{ baseRole sink

crosscuttingRole source
glue source around sink }

Connector Distrib=
{ baseRole sink

crosscuttingRole source
glue source around sink }

Connector C3, C4, C5 =
{ Roles caller, callee }
Attachments
Persistence.transactionControl to Trans.source
Trans.sink to Business.services
Persistence.useTransaction to C5.caller
C5.callee to Data.transactionService

Distribution.remoteUpdateStateControl to Persist.source
Persist.sink to GUI.register*
Distribution.remoteAccess to Distrib.source
Distrib.sink to GUI.*Entity
Distribution.useBusinessSerivce to C3.caller
C3.callee to Business.services
…

Distribution

Data

GUI

storeInfo

listEntity

updateEntity

recoverInfo

C2

registerComplaint

remoteUpdateStateControl

transactionService

Persist

Trans

BusinesssaveInfo

services

restoreInfo

remoteAcess

searchEntity

registerUser

C1

C4

C3

C5

useBusinessServices

Persistence

transactionControl

useTransaction

Distrib

Component Persistence =
{ Port transactionControl

Port useTransaction
}
Component Distribution =
{Port remoteUpdateStateControl
Port remoteAccess
Port useBusinessServices

}
Connector Persist=
{ baseRole sink

crosscuttingRole source
glue source after sink }

Connector Trans=
{ baseRole sink

crosscuttingRole source
glue source around sink }

Connector Distrib=
{ baseRole sink

crosscuttingRole source
glue source around sink }

Connector C3, C4, C5 =
{ Roles caller, callee }
Attachments
Persistence.transactionControl to Trans.source
Trans.sink to Business.services
Persistence.useTransaction to C5.caller
C5.callee to Data.transactionService

Distribution.remoteUpdateStateControl to Persist.source
Persist.sink to GUI.register*
Distribution.remoteAccess to Distrib.source
Distrib.sink to GUI.*Entity
Distribution.useBusinessSerivce to C3.caller
C3.callee to Business.services
…

Distribution

Data

GUI

storeInfo

listEntity

updateEntity

recoverInfo

C2

registerComplaint

remoteUpdateStateControl

transactionService

Persist

Trans

BusinesssaveInfo

services

restoreInfo

remoteAcess

searchEntity

registerUser

C1

C4

C3

C5

useBusinessServices

Persistence

transactionControl

useTransaction

Distrib

Aspectual

Connector

Provided Port

Required Port

Connector

Key:

Component

Aspectual

Connector

Provided Port

Required Port

Connector

Key:

Component

Fig. 7 HW AspectualACME Description with Persistence and Distribution

 Figure 7 shows the AspectualACME description for the second configuration of
the HW. In order to support the update protocol, the Distribution aspectual component
affects the registerComplaint and registerUser by quantifying over them using wildcard
expressions (register*). The protocol is localized within the Persist aspectual connector.
The Persist glue clause states that the service bound to the crosscutting role is invoked
after the execution of the services bound to the base role. The Distribution component
also models the transparent distributed access of the Business component by the GUI
component. The Distrib aspectual connector is responsible for this task. The
attachments section defines that the remoteAccess service affects updateEntity and
searchEntity. The idea is that internally, the remoteAccess service redirects (using
around) every invocation to services to be executed by means of the C3 connector. As
this information represents implementation details of the remoteAccess service, it is not
described in the AspectualACME specification. The Persistence aspectual component
models the transaction control as described previously (first configuration).

5.2. Evaluation

We have evaluated the applicability of Aspectual Connectors (Section 4) and the
extensions supported by AspectualACME (Section 5.1) in the context of two case
studies: the HealthWatcher system (Section 2.3), which has been partially discussed in
the previous section, and a context-sensitive tourist guide system described in (Batista
et al., 2006). The second case study encompasses the manifestation of three

XX Simpósio Brasileiro de Engenharia de Software

28

architectural aspects: replication, security, and performance. In fact, the choice of such
systems was driven by the heterogeneity of the aspects, and the way they affect regular
components and each other.

 Our approach has scaled up well in both case studies mainly by the fact that ACs
and AspectualACME are following a symmetric approach, i.e., we assume that there is
no explicit distinction between regular components and aspectual components. The
modularization of the crosscutting interaction into connectors has promoted, for
example, the reuse of the persistence component description in the second case study.
Persistence was described as a crosscutting concern only in the HealthWatcher
architecture (Figure 6). Hence, we have not applied an aspectual connector in the
second case. The definition of quantification mechanisms (Section 5.1.2) in attachments
also has shown to be the right design choice as it improves the reusability of connectors.
Furthermore, it is possible to determine how multiple interacting aspects affect each
other by looking at a single place in the architectural description: the attachments
section.

AspectualACME
Base Elements Aspectual components affect components through aspectual connectors.

Aspectual Composition Modeled by aspectual connectors with base and crosscutting roles and by
configurations.

Quantification Supported by wildcards defined at the configuration section.

Aspect Interfaces No extension required

Join Point Exposition Components can expose their internal events

Interface Enhancement Not supported

Aspects Aspects are modeled by means of connectors, crosscutting roles, base roles, and
components.

Table 2. An Evaluation of the Proposed ADL

 Table 2 presents an evaluation of the proposed ADL according to the framework
presented in Section 3. Our proposal advocates that no new architectural abstractions
are needed to represent aspects. Regular components are used for this purpose. In
addition, we have argued that no changes are required in components interfaces.
AspectualACME defines a composition model that takes advantage of existing
architectural connection abstractions – connectors and configurations – and extends
them to support the definition of some composition facilities. In this way,
AspectualACME promotes simplicity and avoids introducing complexity in the
architectural description. Compared to existing solutions (Section 6), AspectualACME
proposes a smaller set of required extensions to deal with architectural crosscutting
concerns. As a result, the architects can model crosscutting concerns using the same
abstractions, with minor adaptations, used in the conventional ADL description.

6. Related Work

There is a diversity of viewpoints on how aspects (and generally concerns) should be
represented by ADLs. However, so far, the introduction of AO concepts into ADLs has
been experimental in that researchers have been trying to incorporate mainstream AOP
concepts into ADLs. In contrast, we argue that most of existing ADLs abstractions
suffice to model crosscutting concerns, with minor adaptations, including the
specialization of connectors and a minor extension to the syntax of attachments.

XX Simpósio Brasileiro de Engenharia de Software

29

 Contrary to AspectualACME, most AO ADLs introduce new abstractions in the
ADL to model AO concepts (aspects, joinpoints, and advices). DAOP-ADL (Pinto et al.
2005) defines components and aspects as first-order elements. Aspects can affect the
components’ interfaces by means of: (i) an evaluated interface which defines the
messages that aspects are able to intercept; and (ii) a target events interface responsible
for describing the events that aspects can capture. The composition between
components and aspects is supported by a set of aspect evaluation rules. They define
when and how the aspect behavior is executed. In the Prisma approach (Perez et al.
2003), aspects are new ADL abstractions used to define the structure or behavior of
architectural elements (component and connectors), according to specific system
viewpoints. Components and connectors include a weaving specification that defines
the execution of an aspect and contains weaving operators to describe the temporal
order of the weaving process (after, before, around). Pessemier et al. (Pessemier et al.
2004) extend the Fractal ADL with Aspect Components (ACs). ACs are responsible for
specifying existing crosscutting concerns in software architecture. Each AC can affect
components by means of a special interception interface. Two kinds of bindings
between components and ACs are offered: (i) a direct crosscut binding by declaring the
component references and (ii) a crosscut binding using pointcut expressions based on
component names, interface names and service names.
 Similarly to our proposal, FuseJ (Suvée et al. 2005) defines a unified approach
between aspects and components. FuseJ provides the concept of a gate interface that
exposes the internal implementation of a component and offers access-point for the
interactions with other components. FuseJ concentrates the composition model in a
special type of connector that extends regular connectors by including constructs to
specify how the behavior of one gate crosscuts the behavior of another gate. However,
differently from our work, FuseJ defines the gate interface that exposes internal
implementation details of a component, while our compositional model works in
conjunction with the component (conventional) interface. We consider that FuseJ
introduces an additional level of complexity for component reuse - the gate interface.
Moreover, the exposition of the component internals is against object-oriented
principles. In addition, configurations are not explicitly dealt by the FuseJ approach.
The connection between components and connectors is defined inside the connector
itself. This contrasts with the traditional way that ADLs work, by declaring a connector
and binding connectors’ instances at the configuration section.

7. Conclusions

In this paper we have proposed the Aspectual Connector as a central element to support
the integration of crosscutting concerns in ADL descriptions. We have also instantiated
this concept in the context of a general-purpose ADL – ACME – and we have
illustrated the concept with an example that presents two crosscutting concerns. Our
proposal defines a composition model, centered on the concept of an aspectual
connector, which takes advantage of existing architectural connection abstractions –
connectors and configurations – and extends them to support the definition of some
composition facilities such as a quantification mechanism. In this way, our proposal
avoids introducing complexity in the architectural description and comparing with
existing solutions, we identified a reduced set of required extensions to deal with
architectural crosscutting concerns. As a result, architects can model crosscutting

XX Simpósio Brasileiro de Engenharia de Software

30

concerns using the same abstractions, with minor adaptations, used in the conventional
ADL description. As such, our proposal is based on enriching the composition
semantics supported by architectural connectors instead of introducing new abstractions
that elevate programming language concepts to the architecture level. Our proposal,
therefore, supports effective modeling of crosscutting concerns without introducing
additional complexity into the architecture specification. Planned future work includes
evaluating our ADL by modeling a large-size system.

Acknowledgments
This work has been partially supported by CNPq-Brazil under grant No.479395/2004-7 for Christina and
grant No.140214/04-6 for Cláudio. Uirá is partially supported by FAPERJ under grant No. E-
26/151.493/2005. Alessandro is supported by European Commission as part of the grant IST-2-004349:
European Network of Excellence on Aspect-Oriented Software Development (AOSD-Europe), 2004-
2008. The authors are also supported by the ESSMA Project under grant 552068/02-0.

References
Aldrich, J. (2005) “Open Modules: Modular Reasoning about Advice”. In: Proc. of the

European Conf. on Object-Oriented Programming (ECOOP’05), LNCS 3586, pp. 144-168,
July.

Araújo, J. et al. (2005) “Early Aspects: The Current Landscape”. Technical Notes, CMU/SEI
and Lancaster University.

AspectJ Team (2006). “The AspectJ Programming Guide”. http://eclipse.org/aspectj/.

AspectualACME (2006) “AspectualACME”. http://www.teccomm.les.inf.pucrio.br/aspectualacme.

Baniassad, E. et al. (2006) “Discovering Early Aspects”. IEEE Software, 23(1): 61-70, January.

Batista, T. et al. (2006) “Reflections on Architectural Connection: Seven Issues on Aspects and
ADLs”. In: Workshop on Early Aspects, ICSE'06, pp. 3-9, May, Shanghai, China.

van den Berg, K., Conejero, J., Chitchyan, R. (2005), “AOSD Ontology 1.0 – Public Ontology
of Aspect-Orientation”. AOSD-Europe Report, Deliverable D9, 27 May.

Chavez, C., Garcia, A., Kulesza, U., Sant’Anna, C., Lucena, C. (2006). “Crosscutting Interfaces
for Aspect-Oriented Modeling”. Journal of the Brazilian Computer Society, 12(1), June.

Chitchyan, R. et al. (2005) “Survey of Analysis and Design Approaches”. AOSD-Europe
Report, Deliverable D11, 18 May.

Cuesta, C. et al. (2005) “Architectural Aspects of Architectural Aspects”. In: 2nd European
Workshop on Software Architecture (EWSA), LNCS 3527, pp. 247-262.

Filman, R. et al. (2005). “Aspect-Oriented Software Development”. Addison-Wesley.

Garcia, A., Kulesza, U., Lucena, C. (2004). “Aspectizing Multi-Agent Systems: From
Architecture to Implementation”. In: Software Engineering for Multi-Agent Systems III,
Springer-Verlag, LNCS 3390, pp. 121-143, December.

Garcia, A., Batista, T., Rashid, A., Sant’Anna, C. (2006) “Driving and Managing Architectural
Decisions with Aspects”. Workshop on Sharing and Reusing architectural Knowledge
(SHARK'2006), Torino, Italy.

Garlan, D., Monroe, R., Wile, D (1997) “ACME: An Architecture Description Interchange
Language”. In: Proc. of CASCON '97, Electronic Edition, November.

Garlan, D., Monroe, R., Wile, D. (2000) “ACME: Architectural descriptions of component-
based systems”. In: Foundations of Component-based Systems. Gary T. Leavens and Murali
Sitaraman (eds), Cambridge University Press, pp. 47-68.

Kiczales, G. et al. (1997) “Aspect-Oriented Programming”. European Conference on Object-
Oriented Programming (ECOOP), LNCS 1241, pp. 220-242, Springer, June, Finland.

XX Simpósio Brasileiro de Engenharia de Software

31

Krechetov, I., Tekinerdogan, B., Garcia, A., Chavez, C., Kulesza, U. (2006) “Towards an
Integrated Aspect-Oriented Modeling Approach for Software Architecture Design”. 8th

Workshop on Aspect-Oriented Modeling (AOM’06), AOSD’06, March, Bonn, Germany.

Kulesza, U., Garcia, A., Lucena, C. (2004), “Towards a Method for the Development of Aspect-
Oriented Generative Approaches.” Workshop on Early Aspects, OOPSLA'04, November,
Vancouver, Canada.

Kulesza, U., Garcia, A., Bleasby, F., Lucena, C. (2005) “Instantiating and Customizing Aspect-
Oriented Architectures using Crosscutting Feature Models”. Workshop on Early Aspects,
OOPSLA'05, November, San Diego, USA.

Kulesza, U. et al. (2006) “Quantifying the Effects of Aspect-Oriented Programming: A
Maintenance Study”. In: 22nd IEEE Intl. Conf. on Software Maintenance (ICSM’06), Sept.

Kulesza, U. et al. (2006b) “Improving Extensibility of Object-Oriented Frameworks with
Aspect-Oriented Programming”. In: Proc. 9th Intl. Conf. on Software Reuse, June, Torino,
Italy.

Medvidovic, N., Taylor, R. (2000). “A Classification and Comparison Framework for Software
Architecture Description Languages”. IEEE Trans. Soft. Eng., 26(1), pp.70-93, January.

Mehta N., Medvidovic, N., Phadke, S. (2000) “Towards a Taxonomy of Software Connectors”.
In: Proc. 22nd Intl Conf. on Software Engineering (ICSE’00), pp. 178-187, Limerick, Ireland.

Navasa, A. et al. (2002) “Aspect Oriented Software Architecture: a Structural Perspective”. In:
Workshop on Early Aspects, AOSD’2002, April, The Netherlands.

Pérez, J., Ramos, I., Jaén, J., Letelier, P., Navarro, E. (2003) “PRISMA: Towards Quality,
Aspect-Oriented and Dynamic Software Architectures”. In: Proc. of 3rd IEEE Intl Conf. on
Quality Software (QSIC 2003), November, Dallas, Texas, USA.

Pessemier, N., Seinturier, L., Duchien, L. (2004) “Components, ADL and AOP: Towards a
Common Approach”. In: ECOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE04), June.

Pinto, M., Fuentes, L., Troya, J., (2005) “A Dynamic Component and Aspect Platform”. The
Computer Journal, 48(4), pp. 401-420.

Shaw, M. and Garlan, D. (1996): “Software Architecture: Perspectives on an Emerging
Discipline”. Prentice Hall.

Soares, S. et al. (2002). “Implementing Distribution and Persistence Aspects with AspectJ”. In:
Proc. of the 17th Annual ACM Conf. on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’02), pp. 174-190, November, Seattle, USA.

Suvée, D., De Fraine, B. and Vanderperren, W. (2005) “FuseJ: An Architectural Description
Language for Unifying Aspects and Components”. Software Engineering Properties of
Languages and Aspect Technologies Workshop @ AOSD2005, March, Bonn, Germany.

XX Simpósio Brasileiro de Engenharia de Software

32

