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Abstract. With the emergence of Aspect-Oriented Software Development 

(AOSD), there is a need to understand the adequacy of Architecture 

Description Languages (ADLs) connection abstractions for capturing the 

crosscutting nature of some architectural concerns. In this paper, we present 

the Aspectual Connector (AC), a special kind of architectural connector, as 

the only necessary enhancement to an ADL in order to support a seamless 

integration of AOSD and Software Architecture. We also present 

AspectualACME, an extension to ACME that incorporates ACs and additional 

facilities to modularize architectural crosscutting concerns. We use a Web-

based information system as the main case study.

Resumo. Com o amadurecimento das pesquisas em Desenvolvimento de 

Software Orientado a Aspectos (DSOA) é necessário investigar se as 

abstrações das Linguagens de Descrição de Arquitetura (ADLs) são 

adequadas para modelar interesses arquiteturais transversais. Nesse artigo 

apresentamos o conceito de Conector Aspectual (AC), um tipo especial de 

conector arquitetural, como a única abstração adicional necessária em ADLs 

para permitir a integração entre DSOA e arquitetura de software. 

Apresentamos também AspectualACME, uma extensão de ACME que 

incorpora ACs e mecanismos adicionais para modularizar interesses 

arquiteturais transversais. Um sistema de informação Web é usado como 

estudo de caso para ilustrar a expressividade de AspectualACME. 

1. Introduction 

Aspect-Oriented Software Development (AOSD) (Filman et al. 2005) aims to provide 
systematic support for the identification, modularization, and composition of 
crosscutting concerns throughout the software lifecycle. At the architecture design 
level, a crosscutting concern can be any concern that cannot be effectively modularized 
using the given abstractions of Architecture Description Languages (ADLs) (Shaw and 
Garlan 1996), leading to increased maintenance overhead, reduced reuse capability and 
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generally resulting in architectural erosion over the lifetime of a system. Since the 
emergence of Software Architecture as a discipline, the main focus of ADLs has been 
on the conception of architectural connection abstractions, such as interfaces, 
connectors, and configurations (Shaw and Garlan 1996). Hence, there is a pressing need 
for understanding to what extent these abstractions are able to capture the crosscutting 
interaction of certain architectural components. Ideally, ADL designers should promote 
a natural blending of conventional architectural abstractions and aspects. 
 Some Aspect-Oriented Architecture Description Languages (AO ADLs) 
(Navasa et al., 2002)(Pérez et al., 2003)(Pessemier et al., 2004)(Pinto et al., 2005) have 
been proposed, either as extensions of existing ADLs or developed from scratch 
employing AO abstractions commonly adopted in programming frameworks and 
languages, such as aspects, joinpoints, pointcuts, advice, and inter-type declarations. 
Although these AO ADLs provide interesting first contributions and viewpoints to the 
field, there is little consensus on how AOSD and ADLs should be integrated, especially 
with respect to the interplay of aspects and architectural connection abstractions. The 
main problem is that existing proposals typically provide heavyweight solutions (Batista 
et al. 2006), thereby hardening their adoption and the exploitation of the available tools 
for supporting ADLs. 
 In a previous work (Batista et al. 2006) we have discussed seven issues relating 
to the integration of AOSD and ADLs. We have discussed how and why extensions are 
required or not to conventional interconnection ADL elements, such as interfaces, 
connectors, and architectural configurations. Our conclusion was that ADLs promote 
the principle of Separation of Concerns (SoC) by explicitly separating components from 
their interactions (described by connectors). A systematic integration of architectural 
abstractions and AOSD would enhance the existing support  for separation and modular 
representation of crosscutting concerns at the architectural level. The idea is to reuse the 
abstractions provided by conventional ADLs, with minor adaptations to support 
effective modeling of crosscutting concerns without introducing additional complexity 
into architecture specification.

 This work presents the Aspectual Connector (AC) as the only necessary 
enhancement to an ADL in order to support a seamless integration between AOSD and 
Software Architecture. The AC specializes the conventional connector abstraction to 
support the description of interactions among components that have a crosscutting 
impact and other components.  Instead of defining a new AO ADL, we extend ACME 
(Garlan et al 1997), a well-known ADL, with aspectual connectors. The resulting 
extension is AspectualACME, an ADL that supports the seamless exploitation of AOSD 
composition mechanisms in architecture design. To illustrate and evaluate 
AspectualACME, we present a web-based information system that exhibits some 
traditional crosscutting concerns in architecture description, such as persistence and 
distribution. We also assess the simplicity and generality of our approach with respect 
to related work and according to an evaluation framework that is also proposed in this 
paper.
   The remainder of this paper is organized as follows. Section 2 presents 
background concepts related to AOSD and ADLs, and introduces the example that will 
be used throughout the paper. Section 3 presents an evaluation framework for AO 
ADLs that encompasses seven important issues related to aspects and architectural 
connection. Section 4 presents the notion of Aspectual Connectors.  Section 5 illustrates 
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how to incorporate ACs into ACME. Section 6 compares our proposal with related 
work and Section 7 presents the final remarks. 

2. ADLs and Aspect-Oriented Software Development

Architecture Description Languages (Sections 2.1 and 2.2) and Aspect-Oriented 
Software Development (Section 2.4) encompass abstractions and techniques that 
promote the principle of separation of concerns (SoC). In this section, we also present 
an initial description of an example used in this paper to illustrate the manifestation of 
crosscutting concerns in ADL representations.

2.1 Architecture Description Languages 

Architectural concerns are typically expressed by using abstractions supported by 
Architecture Description Languages (ADLs). According to a well-known conceptual 
framework (Medvidovic and Taylor, 2000), the building blocks of an architectural 
description are components, connectors, and architectural configurations. In fact, ADLs 
enforce the SoC principle by explicitly distinguishing architectural elements used to 
specify computation (components) from those used to express interaction between 
components (connectors). Components are the units of computation, while connectors

are the locus of interaction. Components and connectors may have associated interfaces, 
types, semantics and constraints, but only explicit component interfaces are a required 
feature for ADLs. A component’s interface is a set of interaction points between it and 
the external world. An interface specifies the services (messages, operations, and 
variables) a component provides and also the services it requires from other 
components. Component types are templates that encapsulate functionality into reusable 
blocks and can be instantiated many times.  Connectors model interactions among 
components and specify rules that govern those interactions. Similarly, connector types 
are templates that encapsulate component communication, coordination, and mediation 
decisions. A connector’s interface specifies the interaction points between the 
connector and the components attached to it. A connector enables proper connectivity 
between components by exporting as its interface those services it expects from its 
attached components. Configurations define architectural structure and how 
components and connectors are connected. 

2.2 ACME 

ACME (Garlan et al. 2000) supports the definition of: (i) architectural structure, that is, 
the organization of a system into its constituent parts, (ii) properties of interest, 
information about a system or its parts that allow one to reason abstractly about overall 
behavior, both functional and nonfunctional, and (iii) types and styles, defining classes 
and families of architecture. Architectural structure is described in ACME with 
components, connectors, systems, attachments, ports, roles, and representations. 
Components are potentially composite computational encapsulations that support 
multiple interfaces known as ports. Ports are bound to ports on other components using 
first-class intermediaries called connectors which support so-called roles that attach 
directly to ports. Systems are the abstractions that represent configurations of 
components and connectors. A system includes a set of components, a set of connectors, 
and a set of attachments that describe the topology of the system. Attachments define a 
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set of port/role associations. Representations are alternative decompositions of a given 
element (component, connector, port or role) to describe it in greater detail. Thus, the 
representation may be seen as a more refined depiction of an element. For instance, 
ports may have a representation to encapsulate a large set of API calls as a single port. 
Inside the representation, a set of ports is used to represent individual API calls.

 Other ACME elements support more sophisticated architectural features. 
Properties of interest are <name, type, value> triples that can be attached to any of the 
above ACME elements as annotations. Properties are a mechanism for annotating 
designs and design elements with detailed, generally non-structural, information. 
Architectural styles define sets of types of components, connectors, properties, and sets 
of rules that specify how elements of those types may be legally composed in a reusable 
architectural domain. The ACME fragment in Figure 1 illustrates the main ACME 
elements.  These architectural elements organize software architecture as a graph of 
components and connectors. However, they do not provide the adequate means to 
capture some architectural crosscutting concerns, as discussed in the next section.  

2.3. Crosscutting Concerns in ADL Representations: An Example 

Figure 1. ACME Description of the HealthWatcher System 

The HealthWatcher (HW) system is a Web-based information system developed by the 
Software Productivity research group from the Federal University of Pernambuco 
(Soares et al. 2002). The HW system supports the registration of complaints to the 
Public Health System. The HW is composed of the three main architectural 
components: (i) the GUI (Graphical User Interface) component provides a web 
interface for the system, (ii) the Business component defines the business rules, and (iii) 
the Data component stores the information to be processed. Figure 1 depicts ACME 
textual and graphical descriptions for this example. The interactions between the HW 
components are modeled using provided and required ports, and connectors. In Figure 
1, for example, the GUI component uses the functionalities provided by the Business

component by means of the connector C1. This connector has two roles which are used 
to attach the component ports. The attachment textual description for the HW system 
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(Figure 1) shows, for example, the binding of: (i) the updateComplaint required port to 
the caller role from the C1 connector; and (ii) the services provided port to the callee 
role from the C1 connector. 

 However, some architectural concerns cannot be modularly captured with 
traditional abstractions supported by ADLs, such as ACME. Some concerns are 
crosscutting even at the architectural design level, since they cannot be easily localized 
and specified with individual architectural units such as traditional interfaces, 
components, connectors, and configurations. Similar to the notion of aspect at the 
programming level (Kiczales et al., 1997), we say that these concerns crosscut the 
architectural units and denote the so-called architectural aspects (Araújo et al.,
2005)(Baniassad et al., 2006)(Chitchyan et al., 2005)(Cuesta et al., 2005)(Krechetov et

al., 2006).

 Three crosscutting concerns affect the components of the HW system: (i) 
Persistence – supports issues related to the data management in web-based systems 
(transaction management, data update, repository configuration); (ii) Distribution – 
supports the distribution of the Business component services; (iii) Concurrency – 
specifies mechanisms to apply different concurrency strategies to the functional 
components. The problem is that, very often, the crosscutting property of these 
architectural concerns remains either implicit or is described in informal ways leading 
to reduced uniformity, impeding traceability and hindering detailed design and 
implementation decisions. 

2.4  Aspect-Oriented Software Development 

Aspect-Oriented Software Development (AOSD) (Filmann et al., 2005) provides new 
abstractions and composition mechanisms to support the explicit representation of 
aspects through software development stages, including software architecture design. 
The use of such new abstraction and composition mechanisms supports the 
encapsulation of crosscutting concerns into separated modular units, which are 
composed with other system modules at well-defined join points. Hence AOSD 
supports the modularization of structures and behaviors relative to a concern, which 
otherwise would be tangled and scattered through the representation of other concerns 
in software artifacts. Structural and behavioral enhancements can be typically applied 
before, after and around certain join points. In general, some quantification mechanism 
is provided to specify the extent of validity of such enhancements, that is, the extent to 
which each enhancement holds over a range of join points. 

3. A Framework for Evaluation of Aspect-Oriented ADLs

This section presents a conceptual framework that subsumes a set of core issues that 
need to be considered while dealing with architectural aspects. Our goal is to use such a 
conceptual framework to support the systematic evaluation of existing aspect-oriented 
(AO) ADLs with respect to their proposed abstractions and extensions on the top of 
existing non-AO ADLs. The proposed framework is a result of a conceptual blending 
involving an AOSD glossary (van den Berg et al., 2005) and a widely-recognized 
terminology for software architecture descriptions (Medvidovic and Taylor, 2000). The 
conceptual framework was also derived from our extensive experience on: (i) the design 
of aspect-oriented software architectures in different application domains (Garcia et al,
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2004)(Kulesza et al., 2004)(Kulesza et al., 2006)(Kulesza et al., 2006b), (ii) the 
development of modeling approaches to handle different categories of crosscutting 
concerns at the architectural stage (Chavez et al., 2006)(Garcia et al., 2006)(Krechetov 
et al., 2006)(Kulesza et al., 2004), and (iii) analysis of the suitability of existing ADLs 
to support architectural aspects (Chitchyan et al., 2005)(Batista et al., 2006).

Our comparison framework is composed of seven main elements, which are 
described in Table 1. The first column lists the framework issues, while the second 
column defines the purpose of the respective issue and describes potential choices in the 
design of an AO ADL. The first issue is dedicated to understanding which architectural 
elements (e.g. components and interfaces) in an architectural description are typically 
affected by a crosscutting concern. The following six issues correlate AOSD concepts 
with conventional abstractions of ADLs (Section 2.1). For example, the fourth issue is 
related to the specification of aspect interfaces. The last issue is particularly concerned 
with the need of a new abstraction for aspects at the architectural level. We recommend 
that the interested readers explore the details of our extensive discussion on the issues 
that inspired the conception of our evaluation framework (Batista et al., 2006). 

Architectural
Issue

Description

Base Elements An AO ADL must define which architectural building blocks may be affected by aspects. 
The main architectural building blocks are components, connectors, configurations and 
interfaces. Hence, the design of an AO ADL is expected to define a subset or all of them 
as base elements. 

Aspectual
Composition

An AO ADL must support the composition between base elements and aspects. The issues 
here are whether and where the aspectual composition should be defined. 

Quantification An AO ADL can support or not quantification mechanisms over join points. If so, it must 
define where and how quantification should be specified. 

Aspect
Interfaces

An AO ADL should allow the explicit description of aspect interfaces. The issue is 
whether the conventional notion of architectural interfaces should be changed or not to 
express the boundaries of aspects. 

Join point 
Exposition

An AO ADL must support join point exposition. Architectural join points are the instances 
of base elements in an ADL-based specification that can be affected by a certain aspect. 
The issue is whether the base elements should have a different interface exposing the join 
points to the aspectual components. 

Interface
Enhancements

Interface enhancement is the enrichment of component interfaces with new elements, such 
as services and attributes. An AO ADL may support or not interface enhancements.  

Aspect An AO ADL must support the description of aspects. The issue is whether it should 
provide or not a new architectural abstraction for describing them. 

Table 1.  An Evaluation Framework for Aspect-Oriented ADLs 

 In a previous work (Batista et al., 2006), we used our conceptual framework to 
evaluate several AO and non-AO ADLs. We analyzed how different ADLs address each 
issue of the framework. One of the main conclusions of our analysis was that no 
additional architectural abstractions were needed to represent aspects. We proposed 
extensions to the connector abstraction and to the configuration abstraction to support 
the modeling of the composition mechanism used in the crosscutting concern 
representation at the architectural level. These extensions are related with the need to 
support new ways of composition, as well as the quantification  supported by a number 
of AO approaches. Next section describes aspectual connectors as the core of our 
proposal.
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4. Aspectual Connectors

As already stated, software architecture descriptions rely on a connector to express the 
interactions between components. This section discusses why crosscutting interactions 
(Section 4.1) involving architectural components can be localized through the use of an 
extended notion of traditional connectors, called Aspectual Connectors (Section 4.2). 
From herein, we use the term aspectual component to refer to a component that 
implements a crosscutting concern (architectural aspect). 

4.1. Modularizing Crosscutting Interactions in ADL Representations 

A connector is a fundamental building block to model simple or complex interaction 
protocols as discussed in the taxonomy of connectors (Mehta et al. 2000). In addition, 
since ADLs (Section 2.1) explicitly distinguish components (units of computing) from 
connectors (units of interaction), this SoC approach should also play a key role in the 
integration of ADLs and AOSD. First of all, the component abstraction should be 
enough to model any kind of architectural concern independently from its crosscutting 
interaction with other components. In fact, a central goal of architecture specifications is 
to come up with a unifying abstraction – the component – to capture different types of 
computing units defined in specific architectural styles (Medvidovic and Taylor, 2000), 
such as objects, layers, meta-objects, and aspects.  The key distinction between 
aspectual and regular components is in the way aspects compose with the rest of the 
system – the scope of the composition is broad and affects multiple components or 
multiple architectural elements.  
 Second, as connectors are widely used for different interconnection purposes, 
they are enough to model the interaction between traditional components and 
components that represent a crosscutting concern. However, the way that an aspectual 
component composes with a regular component is slightly different from the 
composition between traditional components. A crosscutting concern is represented by 
a provided service of an aspectual component and it can affect provided or required 
services of other components. As in ADLs valid configurations are those that connect 
provided and required services, it is impossible to represent a connection between a 
provided service of an aspectual component and a provided service without extensions 
to the traditional notion of architectural connections.

4.2. The Structure of Aspectual Connectors 

In order to address the issues mentioned in Section 4.1, we propose an innovative 
abstraction, called Aspectual Connector (AC), which is a regular connector with a new 
interface. The purpose of such a new interface is twofold: to make a distinction between 
the elements playing different roles in a crosscutting interaction – i.e. affected base 
components and aspectual components; and to capture the way both categories of 
components are interconnected. The AC interface contains: (i) a base role, (ii) a 
crosscutting role, and (iii) a glue clause. Figure 2 depicts a high-level view of the 
composition between an aspectual component and two components. C1 and C2 are 
examples of aspectual connectors. Note that we do not have a distinct abstraction to 
represent architectural aspects, which are similarly represented as regular components; 
the different colors in Figure 2 are only to emphasize which one is playing the role of 
aspectual component in the crosscutting collaborations. 

XX Simpósio Brasileiro de Engenharia de Software

23



 The base role is specified to be connected to a port of the regular component and 
the crosscutting role is specified to be connected to a port of an aspectual component. 
The pair base-crosscutting roles do not impose the constraint of connecting provided 
and required ports. A crosscutting role defines the place at which an aspectual 
component joins a connector. In Figure 2 the aspectual connector C1 connects a 
provided port of the aspectual component with a provided port of Component 1. C2 
connects another provided port of the aspectual component with a required port of 
Component 2. The glue clause specifies the details about a connection such as the place 
where the connector joins the component – after, before, around, and others. 

Aspectual Connector

Provided Port

Required Port

Key:

Component 1

Aspectual

Component
Component 2

C1

C2

Crosscutting role

Base role

Aspectual Connector

Provided Port

Required Port

Key:

Component 1Component 1

Aspectual

Component
Component 2

C1

C2

Crosscutting role

Base role

Figure 2. Aspectual Composition

4.3 Aspectual Composition

In ADLs, the connections between components and connectors are defined in the 
configuration section. The configuration description picks up architectural join points at 
which an aspectual component acts. The join points of interest are certain elements of 
the component interfaces, which are captured and associated with a base role of a 
specific AC. Thus, such elements of component interfaces are the collection of join 
points where the regular components and aspectual connector are combined. In fact, the 
concept of configuration already defines the point where a component joins a connector. 
Thus, we are just taking advantage of this concept to identify the join points affected by 
a crosscutting interaction.   Wildcards and logical expressions can be used in the 
configuration part to specify several join points in a single statement, or to quantify over 
join points. 

5. AspectualACME: An Aspect-Oriented ADL

This Section presents the description of AspectualACME, an extension of ACME with 
the goal of supporting a seamless integration of aspects and ADLs. In Section 5.2 we 
evaluate AspectualACME according to the framework presented in Section 3.  

5.1. Extending ACME 

We address the integration of aspects and ADLs to conform to the issues discussed in 
Sections 3 and 4, by extending ACME to introduce aspectual connectors and 
quantification support at the configuration level. Additionally, AspectualACME is 
expected to support simplicity, expressiveness, and to provide a conservative extension 
so that software architects can foster reuse of ACME libraries and tools. We have 
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selected ACME as our base ADL because it presents a relatively simple core set of 
concepts for defining system structure and it captures the essential elements of 
architectural modeling (Medvidovic and Taylor 2000). In addition, unlike most ADLs, 
ACME is not domain-specific and provides generic structures to describe a wide range 
of systems. It comes with tools that provide a good basis for designing and manipulating 
architectural descriptions and generating code. The complete BNF of AspectualACME 
is available at (AspectualACME, 2006). 

5.1.1. ACME extension for aspectual connectors 

The first extension that we propose is a specialization of ACME’s connector 
abstraction. This extension allows the expression of aspectual connectors and their inner 
constructs: base roles, crosscutting roles, and the composition between them denoted by 
glue. We extend the connector interface in order to support the specification of base and 
crosscutting roles. The base role may be connected to the port of a component (provided 
or required) and the crosscutting role may be connected to a port of an aspectual 
component. The distinction between base and crosscutting roles addresses the constraint 
typically imposed by many ADLs about the valid configurations between provided and 
required ports. An aspectual connector must have at least one base role and one 
crosscutting role. Figure 3a and 3b present examples of a regular connector and an 
aspectual connector in ACME. 

Connector aConnector = { 

Role aRole1; 

  Role aRole2; 
}

Connector aConnector = { 

Base Role aBaseRole; 

Crosscutting Role aCrosscuttingRole; 

Glue glueType; }

(a) regular connector in ACME (b) aspectual connector in AspectualACME

Fig. 3. Regular and Aspectual Connectors 

 We also introduce a new construct - the glue clause - to specify details about the 
composition between components and aspectual components, such as the place where 
the port from an aspectual component will affect the regular component. There are three 
types of aspectual glue: after, before, and around. The semantics are similar to that of 
advice composition from AspectJ (AspectJ Team, 2006). For binary aspectual 
connectors (only one crosscutting role and one base role), the glue clause is simply a 
declaration of the glue type (Figure 3b), but whenever more than one base role and one 
crosscutting role are declared inside an aspectual connector, the glue clause must be 
more elaborated (Figure 4). 
Connector aConnector = { 

Base Role aBaseRole1, aBaseRole2; 

Crosscutting Role aCrosscuttingRole1, 
                    aCrosscuttingRole2; 
Glue { aCrosscuttingRole1 before aBaseRole1; 

         aCrosscuttingRole2 after aBaseRole2; 
  } 
}

Fig. 4. Glue Clause 
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5.1.2. ACME extension for quantification 

The second extension addresses quantification to avoid the need to refer explicitly to 
each join point in an architectural description. Since the Attachments part is the place 
where structural join points are identified in ACME, we have decided for defining the 
quantification mechanism by extending the configuration part. It is also possible to use 
wildcards in order to denote names or part of names of components and their ports. The 
quantification must be used in the attachment of a base role with target component(s). 
In Figure 5, the star symbol (‘*’) is used to specify that aConnector.aBaseRole is 
bound to all components that offer a port with a name that begins with prefix.

System Example = { 

Component aspectualComponent = { Port aPort }

Connector aConnector = { 

baseRole aBaseRole; 

  crosscuttingRole aCrosscuttingRole;

  glue glueType; 
}
Attachments {

 aspectualComponent.aPort to aConnector.aCrosscuttingRole

 aConnector.aBaseRole to *.prefix* }
}

Fig. 5 ACME Description of the Composition

5.1.3. Example 

In this section, we present the modeling of the Distribution and Persistence concerns in 
the context of the HealthWatcher (HW) system (Section 2.2). We discuss two different 
configurations of the HW system architecture. This allows us to illustrate the flexibility 
and expressivity of AspectualACME to represent different architectural decisions when 
modeling an architecture.  Figures 6 and 7 show the modeling of the two HW 
configurations using AspectualACME. 

 In the first system configuration (Figure 6) Persistence is modeled as a 
crosscutting concern and Distribution is specified as a non-aspectual component which 
allows the GUI component to remotely access the services provided by the Business 
component. The Persistence aspectual component addresses: (i) the modularization of 
an update protocol in order to persist information that is modified by the GUI 
component; and (ii) the transaction demarcation of the services provided by the 
Business component using a transaction service available in the Data component. 

 Figure 6 depicts the AspectualACME description of the HW system including 
the Persistence concern. Persistence affects the GUI component and the Business 
component. The composition of the Persistence component with the GUI component is 
modeled by the Persist aspectual connector. In the attachments section, the Persist

connector connects updateStateControl with registerUser and with registerComplaint

(both are referred by the * wildcard in the attachments description). The glue clause of 
Persist specifies that the element bound to the crosscutting role (source) acts after the 
execution of the element bound to the base role (sink). This means that, whenever a user 
or a complaint is registered, a function is activated by the Persistence component. The 
internal implementation of updateStateControl needs to invoke the service of the 
Distribution Component, modeled by the C3 connector. However, this internal feature 
is not explicit in the AspectualACME description. The reason is that in ACME, as well 
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as in other ADLs, implementation details are not described by the architectural 
specification. Nevertheless, if the architect decides to expose some internal feature, 
ACME properties can be used for this purpose.

Component Persistence =
{Port updateStateControl
Port  updateBusinessEntity
Port transactionControl
Port useTransaction }

Component Distribution =
{Port distributedBusinessService
Port saveInfo
Port restoreInfo }

Connector Persist= 
{ baseRole sink

crosscuttingRole source 
glue source after sink }

Connector Trans= 
{ baseRole sink

crosscuttingRole source 
glue source around sink }

Connector  C1,C2,C3, C4, C5,C6 = 
{ Roles caller, callee }
Attachments
Persistence.updataStateControl to Persist.source
Persist.sink to GUI.register*

Persistence.updateBusinessEntity to C1.caller
C1.callee to Distribution.distributedBusinessService

Persistence.transactionControl to Trans.source
Trans.sink to Business.services

Persistence.useTransaction to C6.caller
C6.callee to Data.transactionService

Distribution.saveInfro to C4.caller
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Fig. 6 HW AspectualACME Description with Persistence   

 The composition of the Persistence component with the Business component is 
modeled by the Trans aspectual connector. It connects the services with the 
transactionControl. It defines that whenever a service is requested, a transaction control 
mechanism acts during this action. The idea is that the transaction control mechanism of 
the Persistence component uses the transactional operations (begin_transaction,
comit_transaction, and rollback) provided by the transactionService provided port of 
the Data component. However, again, as this information is not specified in the 
architectural description since it is internal to the transactionControl implementation. 
This interaction is modeled by a conventional connector (C6) and it can be explicitly 
described by means of ACME properties. 

 The second configuration shows both Persistence and Distribution modeled as 
aspectual components addressing crosscutting concerns (Figure 7). This configuration 
corresponds to the architectural modeling presented by an aspect-oriented 
implementation of the HW system (Soares et al. 2002). Persistence is responsible only 
for the transactional demarcation of the Business services. The Distribution aspectual 
component modularizes: (i) the transparent configuration of the calls from the GUI 
component to the Business to be realized through remote access; and (ii) the update 
protocol that persists information modified by the GUI component. This functionality is 
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now implemented by the Distribution component because it requires the remote 
invocation of the Business component.  
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Fig. 7 HW AspectualACME Description with Persistence and Distribution  

 Figure 7 shows the AspectualACME description for the second configuration of 
the HW. In order to support the update protocol, the Distribution aspectual component 
affects the registerComplaint and registerUser by quantifying over them using wildcard 
expressions (register*). The protocol is localized within the Persist aspectual connector. 
The Persist glue clause states that the service bound to the crosscutting role is invoked 
after the execution of the services bound to the base role. The Distribution component 
also models the transparent distributed access of the Business component by the GUI 
component. The Distrib aspectual connector is responsible for this task. The 
attachments section defines that the remoteAccess service affects updateEntity and 
searchEntity. The idea is that internally, the remoteAccess service redirects (using 
around) every invocation to services to be executed by means of the C3 connector. As 
this information represents implementation details of the remoteAccess service, it is not 
described in the AspectualACME specification. The Persistence aspectual component 
models the transaction control as described previously (first configuration). 

5.2. Evaluation 

We have evaluated the applicability of Aspectual Connectors (Section 4) and the 
extensions supported by AspectualACME (Section 5.1) in the context of two case 
studies: the HealthWatcher system (Section 2.3), which has been partially discussed in 
the previous section, and a context-sensitive tourist guide system described in (Batista 
et al., 2006). The second case study encompasses the manifestation of three 
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architectural aspects: replication, security, and performance. In fact, the choice of such 
systems was driven by the heterogeneity of the aspects, and the way they affect regular 
components and each other.  

 Our approach has scaled up well in both case studies mainly by the fact that ACs 
and AspectualACME are following a symmetric approach, i.e., we assume that there is 
no explicit distinction between regular components and aspectual components. The 
modularization of the crosscutting interaction into connectors has promoted, for 
example, the reuse of the persistence component description in the second case study. 
Persistence was described as a crosscutting concern only in the HealthWatcher 
architecture (Figure 6). Hence, we have not applied an aspectual connector in the 
second case. The definition of quantification mechanisms (Section 5.1.2) in attachments 
also has shown to be the right design choice as it improves the reusability of connectors. 
Furthermore, it is possible to determine how multiple interacting aspects affect each 
other by looking at a single place in the architectural description: the attachments 
section.

AspectualACME
Base Elements Aspectual components affect components through aspectual connectors. 

Aspectual Composition Modeled by aspectual connectors with base and crosscutting  roles and by 
configurations.

Quantification Supported by wildcards defined at the configuration section. 

Aspect Interfaces No extension required 

Join Point Exposition Components can expose their internal events 

Interface Enhancement Not supported 

Aspects Aspects are modeled by means of connectors, crosscutting roles, base roles, and 
components.

Table 2.  An Evaluation of the Proposed ADL 

 Table 2 presents an evaluation of the proposed ADL according to the framework 
presented in Section 3. Our proposal advocates that no new architectural abstractions 
are needed to represent aspects. Regular components are used for this purpose. In 
addition, we have argued that no changes are required in components interfaces. 
AspectualACME defines a composition model that takes advantage of existing 
architectural connection abstractions – connectors and configurations – and extends 
them to support the definition of some composition facilities. In this way, 
AspectualACME promotes simplicity and avoids introducing complexity in the 
architectural description. Compared to existing solutions (Section 6), AspectualACME 
proposes a smaller set of required extensions to deal with architectural crosscutting 
concerns. As a result, the architects can model crosscutting concerns using the same 
abstractions, with minor adaptations, used in the conventional ADL description. 

6. Related Work 

There is a diversity of viewpoints on how aspects (and generally concerns) should be 
represented by ADLs. However, so far, the introduction of AO concepts into ADLs has 
been experimental in that researchers have been trying to incorporate mainstream AOP 
concepts into ADLs. In contrast, we argue that most of existing ADLs abstractions 
suffice to model crosscutting concerns, with minor adaptations, including the 
specialization of connectors and a minor extension to the syntax of attachments. 
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 Contrary to AspectualACME, most AO ADLs introduce new abstractions in the 
ADL to model AO concepts (aspects, joinpoints, and advices). DAOP-ADL (Pinto et al.
2005) defines components and aspects as first-order elements. Aspects can affect the 
components’ interfaces by means of: (i) an evaluated interface which defines the 
messages that aspects are able to intercept; and (ii) a target events interface responsible 
for describing the events that aspects can capture. The composition between 
components and aspects is supported by a set of aspect evaluation rules. They define 
when and how the aspect behavior is executed. In the Prisma approach (Perez et al.
2003), aspects are new ADL abstractions used to define the structure or behavior of 
architectural elements (component and connectors), according to specific system 
viewpoints. Components and connectors include a weaving specification that defines 
the execution of an aspect and contains weaving operators to describe the temporal 
order of the weaving process (after, before, around). Pessemier et al.  (Pessemier et al.
2004) extend the Fractal ADL with Aspect Components (ACs). ACs are responsible for 
specifying existing crosscutting concerns in software architecture. Each AC can affect 
components by means of a special interception interface. Two kinds of bindings 
between components and ACs are offered: (i) a direct crosscut binding by declaring the 
component references and (ii) a crosscut binding using pointcut expressions based on 
component names, interface names and service names.  
 Similarly to our proposal, FuseJ (Suvée et al. 2005) defines a unified approach 
between aspects and components. FuseJ provides the concept of a gate interface that 
exposes the internal implementation of a component and offers access-point for the 
interactions with other components. FuseJ concentrates the composition model in a 
special type of connector that extends regular connectors by including constructs to 
specify how the behavior of one gate crosscuts the behavior of another gate.  However, 
differently from our work, FuseJ defines the gate interface that exposes internal 
implementation details of a component, while our compositional model works in 
conjunction with the component (conventional) interface. We consider that FuseJ 
introduces an additional level of complexity for component reuse - the gate interface.  
Moreover, the exposition of the component internals is against object-oriented 
principles.    In addition, configurations are not explicitly dealt by the FuseJ approach. 
The connection between components and connectors is defined inside the connector 
itself. This contrasts with the traditional way that ADLs work, by declaring a connector 
and binding connectors’ instances at the configuration section.

7. Conclusions 

In this paper we have proposed the Aspectual Connector as a central element to support 
the integration of crosscutting concerns in ADL descriptions. We have also instantiated 
this concept in the context of a general-purpose ADL – ACME – and we have 
illustrated the concept with an example that presents two crosscutting concerns. Our 
proposal defines a composition model, centered on the concept of an aspectual 
connector, which takes advantage of existing architectural connection abstractions – 
connectors and configurations – and extends them to support the definition of some 
composition facilities such as a quantification mechanism. In this way, our proposal 
avoids introducing complexity in the architectural description and comparing with 
existing solutions, we identified a reduced set of required extensions to deal with 
architectural crosscutting concerns. As a result, architects can model crosscutting 
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concerns using the same abstractions, with minor adaptations, used in the conventional 
ADL description. As such, our proposal is based on enriching the composition 
semantics supported by architectural connectors instead of introducing new abstractions 
that elevate programming language concepts to the architecture level. Our proposal, 
therefore, supports effective modeling of crosscutting concerns without introducing 
additional complexity into the architecture specification. Planned future work includes 
evaluating our ADL by modeling a large-size system.  
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