
Modeling Multi-Agent Systems using UML
Carla Silva1, João Araújo2, Ana Moreira2, γγγγJaelson Castro1, 3, Patrícia Tedesco1,

ξFernanda Alencar4 and Ricardo Ramos1

1Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil

{ctlls, jbc, pcart, rar2}@cin.ufpe.br
2Departamento de Informática, FCT, Universidade Nova de Lisboa, Portugal

{ja, amm}@di.fct.unl.pt
3Istituto Trentino di Cultura, Ist. per la Ricerca Scientifica e Tecnologica, Italy

jaelson@itc.it
4Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco

fmra@ufpe.br

Abstract. Tropos is a framework which offers an approach to guide the
development of multi-agent systems (MAS). It relies on the i* notation to
describe both requirements and architectural design. However, the use of i*
as an architectural description language (ADL) is not suitable, since it
presents some limitations to capture all the information required for designing
MAS architectures. Recognizing that the Unified Modeling Language 2.0
(UML) supports software architectural description, in this work we present an
extension to the UML metamodel to capture the features of agency to support
MAS modeling at the architectural level. In doing so, we define a notation to
model MAS architectures. Furthermore, we provide a set of heuristics to
describe MAS using our UML-based notation derived from an architectural
description using i*. We illustrate our approach by modeling a Conference
Management System.

Resumo. Tropos é um framework que fornece uma abordagem para guiar o
desenvolvimento de sistemas multi-agentes (SMA). Ele utiliza a notatção i*
para descrever tanto os requisitos como o projeto arquitetural de SMA.
Entretanto, o uso da notação i* como uma linguagem de descrição
arquitetural (LDA) não é adequado porque esta notação apresenta algumas
limitações para capturar toda a informação necessária para projetar a
arquitetura de SMA. Reconhecendo que a Unified Modeling Language 2.0
(UML) suporta a descrição arquitetural de software, neste trabalho
apresentamos uma extensão do metamodelo da UML para capturar as
características de agência de forma a suportar a modelagem de SMA ao nível
arquitetural. Com isto, definimos uma notação para modelar a arquitetura de
SMA. Além disso, oferecemos um conjunto de heurísticas para descrever SMA
usando nossa notação baseada em UML a partir da descrição arquitetural do
SMA usando i*. A nossa abordagem é ilustrada usando um Sistema
Gerenciador de Conferência.

γ Currently on leave of absence from Universidade Federal de Pernambuco.
ξ Currently on leave of absence at FCT / Universidade Nova de Lisboa, Portugal.

XX Simpósio Brasileiro de Engenharia de Software

81

1. Introduction

One of the most promising paradigms for developing complex software systems is the
agent orientation. However, the benefits promised by the agent paradigm cannot be fully
achieved yet because it lacks suitable methodologies to enable designers to clearly
specify and structure their applications as agent-oriented systems. To address this issue,
we are working on the improvement of Tropos [Castro et al. 2002] - a framework aimed
at developing multi-agent systems. Tropos supports the four following phases of
software development: Early Requirements, Late Requirements, Architectural Design
and Detailed Design.

In this work, our focus is on the architectural design phase. Software architecture
defines, at a high level of abstraction, the system in terms of components, the interaction
between them as well as the attributes and functionalities of each component
[Sommerville 2001]. Tropos relies on the i* notation [Yu 1995] to describe MAS
architectural design. However, the use of i* as an architectural description language
(ADL) is not suitable, since it presents some limitations to describe the detailed
behaviour required for software architectural design, such as protocols, connectors,
ports and interfaces. In [Silva et al. 2003] we have proposed an approach to use the
UML-RT (UML-Real Time) [Selic and Rumbaugh 1998] as an ADL for Tropos. Part of
the UML-RT concepts have been incorporated as architecture description constructs in
UML 2.0 [OMG 2005]. Hence, in this paper we present an approach for using UML 2.0
based notation to describe MAS architecture in Tropos which is originally described
using the i* notation [Yu 1995]. UML 2.0 is a standard with large tool support, which is
tailored for architectural description.

This paper is organised as follows. Section 2 introduces our extension to the
UML metamodel to support MAS modelling. Section 3 presents our notation to describe
MAS architectural design and a process to use this notation in the context of Tropos.
Section 4 illustrates our approach using a case study. Section 5 discusses related work.
Finally, section 6 summarises our work and points out directions for future work.

2. Agency Profile

To enable the creation of UML profiles, a profile package has been specifically defined
in the UML 2.0 specification [OMG 2005] for providing a lightweight extension
mechanism to the UML standard. It contains mechanisms that allow metaclasses from
existing metamodels to be extended and adapted for different purposes. This includes
the ability to tailor the UML metamodel for different platforms (such as J2EE or .NET)
or domains (such as real-time or business process modeling). The profile mechanism is
consistent with the OMG Meta Object Facility (MOF) [OMG 2004]. This paper uses
this mechanism to adapt an existing UML metamodel with constructs that are specific to
the agent paradigm. Such adaptation is grouped in a profile, called Agency Profile.

For simplicity, the metamodel defining the agency features is divided into two
categories: intentional and interaction. The intentional category concepts are described
in Figure 1 while the interaction category concepts are described in Figure 2. The usage
of the concepts and relationships has been motivated by a previous work [Silva et al.
2004] where we have established some agent properties required to specify MAS.

In the intentional category a MAS can be conceived as an Organization which is
composed of a number of Agents. The Agent concept extends the UML metaclass Class

XX Simpósio Brasileiro de Engenharia de Software

82

from the StructuredClasses package which extends the metaclass Class (from the Kernel
package) with the capability to have an internal structure and ports. Norms are required
for the Organization to operate harmoniously and safely. They define a policy and
constraints that all the organizational members must be compliant with [Minsky and
Muarata 2004]. The Organization is typically immersed in exactly one Environment that
the agents may need to interact with, in order to access Resources according to the agent
Rights [Zambonelli et al. 2003]. The Organization, Norm, Environment, Right and
Resource concepts are extensions (and more exactly, specializations) of the UML
metaclass Class.

Figure 1. Agency metamodel reflecting intentional concepts

A Goal is a concrete desire of an agent [Braubach et al. 2004]. A Plan
encapsulates the recipe for achieving some goal. Beliefs represent the information the
agent has about its current environment and itself [Wooldridge 2002] and are conditions
for executing plans. These concepts also extend the UML metaclass Class. An
AgentAction determines the steps to perform a plan and extends both the Action and
Operation UML metaclasses. The description of both Beliefs and Goals must comply
with the Ontology used in the Organization, i.e. the vocabulary of concepts which
belongs to the system domain. We define the MAS ontology by extending the UML
metaclass Class. The rationale is that most of the technology available to define an
ontology in MAS is based on object orientation. For example, an ontology in a specific
agent platform, called JADE (Java Agent Development Framework) [Bellifemine et al.
2003], is an instance of jade.content.onto.Ontology class, in which a set of schemes is
added to define the structure of concepts which belongs to the domain being modeled.

Since agents are going to be used in the system architectural design, we will
define them by using the organizational architectural features defined in [Silva et al.
2003]. These features, defining the interaction category, are depicted in Figure 2 and
include: OrganizationalPort, AgentConnector, Dependum, Dependee, Depender and

XX Simpósio Brasileiro de Engenharia de Software

83

AgentConnectorEnd. They extend respectively the UML metaclasses Port, Connector,
Interface, InterfaceRealization, Usage and ConnectorEnd.

Figure 2. Agency metamodel reflecting interaction concepts

A Dependum defines an “agreement” of service providing between two agents
which play the roles of depender and dependee. Thus, the agent responsible for
providing the service possesses an OrganizationalPort playing the role of dependee and
is related to the Dependum through a Dependee relationship. The agent which request
the service possesses an OrganizationalPort playing the role of depender and is related
to the Dependum through a Depender relationship. A dependum can be of four types:
goals, softgoals, tasks and resources [Yu 1995], defined as the enumeration class
DependumKind. Agents need to exchange signals through an AgentConnector to
accomplish the contractual agreement of service providing between them. An
OrganizationalPort specifies a distinct interaction point between the Agent and its
environment. A AgentConnectorEnd is an endpoint of an Agentconnector, which
attaches the AgentConnector to an OrganizationalPort.

Each Agent can interact with other agents according to an InteractionProtocol
determined by the AgentAction performed by the Agent. An InteractionProtocol
describes a sequence of CommunicationMessages that can be sent or received by agents.
In addition, the InteractionProtocol must comply with an Ontology, i.e. the vocabulary
of the terms used in the message contents and their meaning (both the sender and the
receiver must ascribe the same meaning to symbols for the communication to be

XX Simpósio Brasileiro de Engenharia de Software

84

effective). The InteractionProtocol concept extends the UML metaclass Interaction.
The CommunicationMessage concept extends the UML metaclass Message and can be
of several types including REQUEST, INFORM and REFUSE, among others (defined
as the enumeration class MessageKind). These are the defined by the Foundation for
Intelligent Physical Agents [FIPA 2004] which indicate what the sender intends to
achieve by sending the message.

A Profile has been defined in the UML 2.0 specification as a specific meta-
modeling technique in which a stereotype defines how an existing metaclass may be
extended. The intention of profiles is to give a straightforward mechanism for adapting
an existing metamodel with constructs that are specific to a particular domain, platform,
or method. For example, in our approach we have extended some UML metaclasses to
address agent-oriented concepts. An extension (a kind of association) is used to indicate
that the properties of a metaclass are extended through a stereotype. In Figure 3, we
present some extensions we have made, such as the stereotype Agent extending the
UML metaclass Class (from StructuredClasses package), the stereotype
OrganizationalPort extending the UML metaclass Port, the stereotype Dependum
extending the UML metaclass Interface, the stereotype Depender extending the UML
metaclass Usage, the stereotype Dependee extending the UML metaclass
InterfaceRealization and the stereotype AgentConnector extending the UML metaclass
Connector.

Figure 3. Agency stereotypes

3. Agent-Oriented Modeling

In this section, we present the MAS modeling diagrams specified according to our
agency metamodel. These diagrams were conceived to model four views of MAS
design: Architectural, Communication, Environmental and Intentional.

3.1. Architectural diagram

The architectural diagram reflects the client-server pattern [Shaw and Garlan 1996]
tailored for MAS. It is defined in terms of agents which possess goals achievable by
plans. Since an agent is not omnipotent, it needs to interact with other agents in order
accomplish its responsibilities. An Agent possess OrganizationalPorts which enable the
exchange of messages with other agents through AgentConnectors in order to
accomplish some Dependum (i.e., service contract). For example, in Figure 4 we have
the Provider agent which is responsible for performing the service defined in the
Dependum. This agent aims at achieving the ServicePerformed goal by executing the
PerformPlan plan, which, in turn, consists of performing the service() AgentAction. The
Client agent aims at achieving the ServiceRequest goal by executing the RequestPlan

XX Simpósio Brasileiro de Engenharia de Software

85

plan, which, in turn, consists of performing the request() AgentAction. Therefore, the
Client agent is responsible for requesting the service defined in the Dependum. Both the
message for requesting the service execution and the message for confirming whether
the service was successfully concluded are sent through the AgentConnector.

Figure 4. MAS Architectural Diagram

3.2. Communication diagram

The communication diagram is defined in terms of instances of agents and the messages
exchanged between them to achieve a service providing. For example, the Figure 5
shows an interaction involving the Client and Provider agents. The Client sends a
message requesting the execution of some service while the Provider sends a message
informing the requested service has been performed. The interaction specified using the
communication diagram is asynchronous.

Figure 5. MAS Communication Diagram

3.3. Environmental diagram

The environmental diagram is defined in terms of agents composing an organization
which is situated in an environment. This environment is composed of resources which
are accessed by the agents according to their rights in order to accomplish their
responsibilities. For example, in Figure 6 we have the Provider agent composing the
Org organisation which is situated in the Env environment.

Figure 6. MAS Environmental Diagram

XX Simpósio Brasileiro de Engenharia de Software

86

The Provider agent needs to access a Res resource available in the Env
environment to fullfil its responsibilities. The Provider agent can only read the Res
resource, according to its P-R Access right (read Provider-Res Access right)).

3.4. Intentional diagram

The intentional diagram is defined in terms of agents, their beliefs, goals, plans, as well
as the norms and the ontology used in the organization. For example, in Figure 7 we
have the Provider agent composing the Org organisation which must comply with the
OrganizationalNorm norms. The Provider agent has a belief about if some request
message has been received. Hence, the Request Received is a belief the Provider agent
has.

Figure 7. MAS Intentional Diagram

3.5. Mapping i* to UML at the architectural level

To support modeling and analysis during the architectural design phase, Tropos adopts
the concepts and models offered by the i* framework [Yu 1995]. However, the use of i*
as an architectural description language is not suitable, since it does not support MAS
architectural features, such as ports, connectors, protocols and interfaces. In section 3,
we have provided a UML-based notation which supports MAS specification at the
architectural level. In order to identify the information related to this notation, it is
necessary to perform a means-end analysis [Yu 1995] of each actor which belongs to
the MAS architecture represented in i*. This analysis helps identify the
reasons/motivations associated with each dependency that an actor possesses. However,
the process for performing the means-end analysis of the actors is a specialization of the
original process, since we begin by establishing a main goal and from this goal we
refine the actor responsibilities. The main goal is operationalized by one or more tasks
through the means-end link. Each task corresponding to a means element in some
means-end relationships must be further decomposed. The task can be subdivided into
other tasks, (soft) goals and resources. Subtasks cannot be further decomposed. The end
element in the means-end relationship can only be a (soft)goal.

In [Silva et al. 2006], we have presented some heuristics to map the i* concepts
to both agency and UML-RT concepts [Selic and Rumbaugh 1998]. However, at that

XX Simpósio Brasileiro de Engenharia de Software

87

stage we did not take into account the architectural concepts supported by UML 2.0.
Hence, in this work, we redefine these heuristics to consider the MAS architectural
concepts (Figure 4) extended from UML 2.0. The following heuristics guide the
mapping of i* description of MAS architecture to our UML-based notation:

1. Each actor in the i* model becomes an «Agent» class in the architectural diagram.

2. Each dependum in the i* model becomes a «Dependum» interface in the
architectural diagram. Observe that a «Dependum» can be of four types (goals,
softgoals, tasks and resources) according to the agency metamodel Figure 2. This
type is not provided explicitly in the model since it is a property of the model
element.

3. Each depender in the i* model becomes a «Depender» dependency in the
architectural diagram.

4. Each dependee in the i* model becomes a «Dependee» realization in the
architectural diagram.

5. Each dependency (depender -> dependum -> dependee) in the i* model becomes a
«Connector» association in the architectural diagram. Ports are added to the agents
to enable the link through the connector.

6. Each resource related to the actor in the i* model becomes a «Resource» in the
architectural diagram. It represents an environmental resource which the agent needs
to access to perform its responsibilities. In this work we do not provide guidelines to
define the agent rights to access the resources.

7. Each goal (or softgoal) in the i* models becomes a «Goal» in the architectural
diagram. It represents the objectives the agent intends to accomplish.

8. Each task in the i* models becomes a «Plan» in the architectural diagram. It
represents the means through which a goal is going to be achieved.

9. Each leaf task in the i* models becomes an «AgentAction» in the architectural
diagram. It represents each step which composes a plan.

10. A «Belief» is some condition for performing a task (i.e, a «Plan» or an
«AgentAction»). It represents the knowledge the agent has about both the
environment and itself.

11. The «Organization» is the MAS the agent belongs to.

In fact, a preliminary mapping of i* concepts into agent, goal, belief, plan and
resource concepts were originally proposed in [Castro et al. 2002]. However, here we
did not provide a process or a notation to capture the mapped information. This new
work, introduces a notation to be used in the MAS specification at the architectural
level. Finally, we define a specialization of the original means-end analysis process
which is appropriate for specifying the rationale of each agent before the mapping of the
i* concepts to the agency concepts.

4. Case Study

To illustrate the usage of our approach, we consider the domain of conference
management introduced in [Zambonelli et al. 2003] and modeled using the Tropos
framework in [Silva et al. 2006]. A conference involves several individuals. During the

XX Simpósio Brasileiro de Engenharia de Software

88

submission phase, Authors submit papers, and are informed that their papers have been
received and have been assigned a submission number. In the review phase, the Chair
has to handle the review of the papers by contacting potential Reviewers and asking
them to review a number of papers according to their expertise. Eventually, reviews
come in and are used to decide about the acceptance or rejection of the submissions. In
the final phase, Authors need to be notified of these decisions and, in case of
acceptance, will be asked to produce and submit a revised version of their papers. The
Publisher has to collect these final versions and print the proceedings. Figure 8 presents
the Conference Management System, a solution developed as an example of MAS for
the conference management domain. The structure-in-5 architectural style [Kolp et al.
2002] has been chosen and applied to the MAS architectural design, but due to lack of
space we do not show how we made the choice. Our focus is on the design of the MAS
architecture according to agent modeling diagrams (Section 3).

Figure 8. Conference Management System Architecture

The initial version of the Conference Management System supports the
submission, review and notification phases of the conference process. The Conference
Management System architecture is decomposed into four actors: Submission Manager,
Review Manager, Notification Manager and Reviewer. Each of these actors is linked to

XX Simpósio Brasileiro de Engenharia de Software

89

the system through an is-part-of relationship (see Figure 8). The Submission Manager is
responsible for handling the submission phase of the process. The Review Manager is
responsible for distributing the set of submitted papers to at least n reviewers according
to their research area. The Notification Manager is in charge of handling the notification
phase process. The Reviewer actor is responsible for evaluating a paper proposal
according to the reviewer preferences and skills.

4.1. From i* to UML

The process presented in Section 3.5 is going to be used to produce MAS UML-based
models at the architectural level in the context of Tropos. We begin by performing the
means-end analysis for each actor which belongs to the MAS architecture described
using the i* notation. Then, we rely on the mapping heuristics to specify each diagram
presented in Section 3. For example, in our case study we perform the specialized
means-end analysis of the Reviewer, Review Manager, Notification Manager and
Submission Manager actors in order to capture their rationale when pursuing their goals
and dependencies. The Review Manager expects to have Papers Reviewed. One
alternative to satisfy this goal is to perform the Manage Review Phase task. This task is
decomposed into four sub-tasks (see the refined model in Figure 9): Collect Papers
Review, Select ”n” Reviewers of Paper Research Area, Propose Paper Review and
Assign Paper Reviewer.

Figure 9. Means-end analysis for Review Manager

Analogously, the Reviewer actor expects to get hold of Proposal for Review
Evaluated and, to achieve this goal, it has the alternative of performing the Evaluate
Proposal for Review task. To carry out this task it is necessary to perform several
subtasks: Evaluate Relevance of Conference, Evaluate Time Availability, Evaluate
Interest in Paper Subject and Set Personal Profile. The Submission Manager actor is in
charge of having the Papers Submission Managed and to accomplish this goal it has one
alternative which is performing the Manager Submission Phase task. This task is
decomposed into the Assign Submission Number and Collect Paper Submission sub-
tasks. The Notification Manager actor expects to obtain the Papers Notification
Managed and to reach this goal it has one alternative which is performing the Manager
Notification Phase task. This task is decomposed into the Notify Authors and Collect
Revised Version of Accepted Papers sub-tasks. The means-end analysis models of the
Reviewer, Submission Manager and Notification Manager actors have been omitted
here due to the lack of space

XX Simpósio Brasileiro de Engenharia de Software

90

4.2. Architectural diagram

Having concluded the means-end analysis of Reviewer, Submission Manager,
Notification Manager and Review Manager actors, we can now move on to identifying
the properties that characterize that agent according to the MAS modeling diagrams
(Section 3). The heuristics presented at Section 3.5 can be of some assistance to
describe the Reviewer, Submission Manager, Notification Manager and Review
Manager actors according to the architectural diagram (Figure 4). For example, the
Papers Reviewed goal present in the means-end analysis of the Review Manager actor
becomes a «Goal» associated to the Review Manager «Agent» class (colored area of
Figure 10). The Manage Review Phase task becomes a «Plan» associated to both the
Review Manager «Agent» class and Papers Reviewed «Goal» class. Each of the Collect
Papers Review, Select ”n” Reviewers of Paper Research Area, Propose Paper Review
and Assign Paper Reviewer tasks becomes an «AgentAction» in the Manage Review
Phase «Plan» class.

Figure 10. Conference Management Architectural Diagram

Each dependum of the Review Manager actor’s dependencies becomes a
«Dependum» interface. For example, the dependum of the Submited Papers resource
dependency, between Review Manager and Submission Manager agents, becomes a
Submited Papers «Dependum» interface, typed as a resource (colored area of Figure
10). The depender and dependee roles of the Submited Papers dependency become the

XX Simpósio Brasileiro de Engenharia de Software

91

«Depender» dependency from Review Manager «Agent» class and the «Dependee»
realization from Submission Manager «Agent» class, respectively. The Submited
Papers resource dependency itself becomes a «Connector» between Review Manager
and Submission Manager «Agent» classes. Ports are added to these «Agent» classes to
enable the link through the «Connector». The same guidelines are applied to the other
actors present in the i* model. As a result several classes are incorporated in the MAS
architectural diagram depicted in Figure 10.

The architectural design of the Conference Management system (Figure 10) is
performed by using the MAS architectural pattern depicted in Figure 4 to assign the
system’s responsibilities to the architectural components. The Conference Management
system is composed of four agents: Submission Manager, Review Manager, Reviewer
and Notification Manager. For example, in Figure 10 the colored area corresponds to
the interaction between the Review Manager and Submission Manager agents to
achieve the service Submitted Papers. The Review Manager agent intends to achieve the
Papers Reviewed goal by means of the Manage Review Phase plan. However, to get the
papers reviewed the Review Manager agent has to request the Submission Manager
agent to perform the Submitted Papers service. This service provides to the Review
Manager agent the submitted papers collected by the Submission Manager agent. The
Submission Manager performs the requested service because it does not conflict with
the achievement of the Submission Phase Managed goal. Hence, both the requested
service and the goal achievement are accomplished by means of the Manage
Submission Phase plan. The description of the Proposal Review Accepted and Papers
Review services is achieved in a similar way.

4.3. Communication diagram

The communication diagram is defined in terms of instances of agents and the messages
exchanged between them to achieve their responsibilities. For example, Figure 11
shows an interaction involving the Notification Manager, the Review Manager, the
Reviewer and the Submission Manager agents.

Figure 11. Conference Management Communication Diagram

The interaction specified using the communication diagram is asynchronous.
Hence, the Review Manager agent sends a message requesting the submitted papers
which are going to be provided through the execution of Submitted Papers service.
Then, the Submission Manager answers by informing if the requested service has been
performed successfully. The Review Manager agent sends a message to the Reviewer
agent proposing a paper to review. If the Reviewer agent answers by accepting the
proposal to review the paper, then the Proposal Review Accepted service is assumed to
be achieved. The Notification Manager agent, in turn, sends a message to the Review
Manager agent requesting the reviews of the papers which are going to be provided

XX Simpósio Brasileiro de Engenharia de Software

92

through the execution of Papers Review service. Then, the Review Manager answers by
informing if the requested service has been performed successfully.

4.4. Environmental diagram

The environmental diagram is defined in terms of agents composing an organization
which is situated in an environment composed by resources which are accessed by the
agents according to its rights. The heuristics presented in Section 3.5 continue to be
used here to identify the properties which characterize that agent according to this
diagram. Hence, all Submited Papers, Papers Review, List of Reviewers resource
elements related to the Review Manager actor (Figure 9) become a «Resource»
associated to the Review Manager «Agent» class in the environmental diagram
presented in the Figure 12. In this diagram we have the Review Manager and
Submission Manager agents composing the Conference Management organisation
which is situated in the Conference Management environment. The Notification
Manager and Reviewer agents have been omitted here due to the lack of space.

Figure 12. Conference Management Environmental Diagram

The Submission Manager agent needs to access the Submitted Papers resource
available at the Conference Management environment to perform the Manage
Submission Phase plan. The Submission Manager agent can only read the Submitted
Papers resource, according to its SM-SP Access right (read Submission-Manager-
Submitted Papers Access right). The Review Manager agent needs to access a Papers
Review resource available in the Conference Management environment to perform the
Manage Review Phase plan. The Review Manager agent can only read the Papers
Review resource, according to its RM-PR Access right (read Review Manager-Papers
Review Access right). The Review Manager agent also needs to access a Submitted
Papers resource to perform the Manage Review Phase plan. His permission is for only
reading the Submitted Papers resource, according to its RM-SP Access right (read
Review Manager-Submitted Papers Access right). The description of the agent’s rights
to access the other resources is achieved in a similar way.

XX Simpósio Brasileiro de Engenharia de Software

93

4.5. Intentional diagram

The intentional diagram is defined in terms of agents, their beliefs, goals, plans, norms
and ontology. The heuristics presented in Section 3.5 are used here to identify the
properties which characterize that agent according to this diagram. Hence, the condition
to perform the Collect Papers Review task (Figure 9) is that the Review Deadline should
have passed. The circumstance to perform the Select ”n” Reviewers of Paper Research
Area, Propose Paper Review and Assign Paper to Reviewer tasks is that the Submission
Deadline should have passed. Each of these conditions becomes a «Belief» associated to
the Review Manager «Agent» class. However, the intentional diagram is not shown in
this paper because we have not defined yet the heuristics to derive both the MAS
ontology and norms. These issues will be addressed in future work.

5. Related Work

Several languages for MAS modeling have been proposed in the last few years, such as
AUML [Odell et al. 2000], MAS-ML [Silva and Lucena 2004] and SKwyRL-ADL
[Mouratidis et al. 2005].

The work presented in [Mouratidis et al. 2005] proposes a metamodel to define
an architectural description language (ADL) to specify secure MAS. In particular
SKwyRL-ADL includes an agent, a security and an architectural model and aims at
describing secure MAS, more specifically those based on the BDI (belief-desire-
intention) model [Rao and Georgeff 1995]. Moreover, the Z specification language is
used to formally describe SkwyRL-ADL concepts. Our notation to model MAS also
supports the BDI agent model. Furthermore, we also define a process to use the
proposed notation in the MAS architectural design.

The proposal of a multi-agent system modeling language called MAS-ML is
presented in [Silva and Lucena 2004]. It extends the UML metamodel according to the
TAO (Taming Agents and Objects) metamodel concepts [Silva and Garcia et al. 2003].
TAO provides an ontology that defines the static and dynamic aspects of MAS. The
MAS-ML includes three structural diagrams – Class, Organization and Role diagrams –
which depict all elements and all relationships defined in TAO. The Sequence diagram
represents the dynamic interaction between the elements that compose a MAS — i.e.,
between objects, agents, organizations and environments. However, this approach does
not provide a detailed process for guiding the use of that modeling language in MAS
development as we do.

AUML [Odell et al. 2000] provides extensions of UML, including representation
in three layers of agent interaction protocols, which describe the sequence of messages
exchanged by agents as well as the constraints in messages content. However, AUML
does not provide extensions to capture the agent’s cognitive map (individual structure)
or the agent’s organisation (system structure). We provide UML-based diagram to
capture the agent internal structure and the MAS structure, as well as a detailed process
for guiding the use of these diagrams in MAS modeling.

Summarizing, we are concerned with detailing the MAS architectural design by
providing a standard notation and process to guide the specification of MAS
architecture. The notation we have proposed here captures both the static and dynamic
architectural agent features and considers the intentions associated with each agent
communication protocol.

XX Simpósio Brasileiro de Engenharia de Software

94

6. Conclusions and Future Work

This paper focuses on the Tropos architectural design phase and aims at providing a
notation for designing MAS as well as a process to describe MAS architecture using
such notation. To achieve this, we have defined an extension of UML metamodel to
support agency features to provide a notation for specifying MAS design. This notation
supports the specification of architectural features in the context of multi-agent systems.
Moreover, we outline a process to guide the description of agents according to our
notation in the context of the Tropos framework. We also applied our approach to a
Conference Management System to illustrate its feasibility.

For future work we plan to investigate whether other UML 2.0 diagrams are
useful for designing MAS. For example, the work presented in [Silva et al. 2005] could
be used to complement our approach to model agent plans and actions using UML 2.0
activity diagrams in Tropos. We also need to improve the heuristics to (i) derive the
system ontology from i* models and (ii) describe the MAS organizational norms.
Applying our approach to other case studies is required to address these open issues.

Acknowledgements

This work was supported by several research grants (CNPq Proc. 304982/2002-4,
CAPES Proc. BEX 1775/2005-7, Proc. BEX 3003/05-1, Proc. BEX 3014/05-3, Proc.
BEX 3478/05-0 & CAPES/ GRICES Proc. 129/05).

8. References

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G. (2003) “JADE - A White Paper”,
Special issue on JADE of the TILAB Journal EXP.

Braubach, L., Pokahr, A., Lamersdorf, W. (2004) “Jadex: A Short Overview”, In 5th
Annual International Conf. on Object-Oriented and Internet-based Technologies,
Concepts, and Applications for a Networked World (Net.ObjectDays’04), AgentExpo

Castro, J. Kolp, M., Mylopoulos, J. (2002) “Towards Requirements-Driven Information
Systems Engineering: The Tropos Project”, Information Systems Journal. Volume 27.
Elsevier, p. 365 – 89.

FIPA (2004) FIPA (The Foundation for Intelligent Physical Agents), Available:
http://www.fipa.org

Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J. (2005) “Tropos: A Requirements-
Driven Methodology for Agent-Oriented Software”, In Henderson-Sellers, B. et al.
(eds.): Agent-Oriented Methodologies. Idea Group, p. 20 – 45.

Kolp, M., Giorgini, P., Mylopoulos, J. (2002) “Information Systems Development
through Social Structures”, In 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE), Ischia, Italy.

Minsky, N and Muarata, T. (2004) “On Manageability and Robustness of Open Multi-
Agent Systems”, In: Lucena, C. et al. (eds.): Soft. Eng. for Multi-Agent Systems II:
Research Issues and Practical App.. LNCS, Vol. 2940, Springer-Verlag, p. 189 – 206.

Mouratidis, H., Faulkner, S., Kolp, M., Giorgini, P. (2005) “A Secure Architectural
Description Language for Agent Systems”, In 4th Autonomous Agents and Multi-
Agent Systems (AAMAS’05). Uthrecht, The Netherlands.

XX Simpósio Brasileiro de Engenharia de Software

95

Odell, J., Parunak, H. V. D, Bauer, B. (2000) “Extending UML for agents”, In Proc. of
the 2nd Int. Bi-Conf. Workshop on Agent-Oriented Information Systems at the 17th
National Conf. on Artificial Intelligence, Austin, USA. iCue Publishing, p. 3 – 17.

Rao, A. S. and Georgeff, M. P. (1995) “BDI agents: from theory to practice”, Technical
Note 56, Australian Artificial Intelligence Institute.

Selic, B. and Rumbaugh, J. (1998) “Using UML for Modeling Complex Real - Time
Systems”, Rational Whitepaper, Available: www.rational.com.

Silva, C., Castro, J., Mylopoulos, J. (2003) “Detailing Architectural Design in
Requirements Driven Software Development: The Tropos Case”, In Proceedings of
the XVII Simpósio Brasileiro de Engenharia de Software, Manaus, Brasil, p. 85 – 93.

Silva, V., Garcia, A., Brandão, A., Chavez, C., Lucena, C., Alencar, P. (2003) “Taming
Agents and Objects in Software Engineering”, In: Garcia, A. et al. (eds.): Soft. Eng.
for Large-Scale Multi-Agent Systems. LNCS, Vol. 2603. Springer-Verlag, p. 1 – 25.

Silva, V. and Lucena, C. (2004) “From a Conceptual Framework for Agents and
Objects to a Multi-Agent System Modeling Language”, In: Sycara, K. et al. (eds.):
Journal of Autonomous Agents and Multi-Agent Systems. Kluwer Academic
Publishers, 9, 1-2, p. 145 – 189.

Silva, C., Tedesco, P., Castro, J., Pinto, R. (2004) “Comparing Agent-Oriented
Methodologies Using a NFR Approach”, In Proc. of the 3rd Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS’04). Edinburgh, Scotland, p. 1 – 9.

Silva, V., Noya, R., Lucena, C. (2005) “Using the UML 2.0 activity diagram to model
agent plans and actions”, In 4th Autonomous Agents and Multi-Agent Systems
(AAMAS’05). Uthrecht, The Netherlands, p. 594 – 600.

Silva, C., Castro, J., Tedesco, P., Araújo, J., Moreira, A., Mylopoulos, J. (2006)
“Improving the Architectural Design of Multi-Agent Systems: The Tropos Case”, In
5th Soft. Engineering for Large-Scale Multi-Agent Systems at ICSE’06 (to appear).

Shaw, M. and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall.

Sommerville, I. (2001) Software Engineering – Ed.6. Addison Wesley.

OMG (2004) Meta Object Facility (MOF) 2.0 Core Specification, Available:
http://www.omg.org/docs/ptc/04-10-15.pdf.

OMG (2005) Unified Modeling Language (UML): Superstructure. Version 2.0,
Available: www.omg.org/docs/formal/05-07-04.pdf.

Wooldridge, M. (2002) An Introduction to Multiagent Systems. John Wiley and Sons,
Ltd. England, p. 15 – 103.

Yu, E. (1995) Modelling Strategic Relationships for Process Reengineering. Ph.D.
thesis. Department of Computer Science. University of Toronto, Canada.

Zambonelli, F., Jennings, N., Wooldridge, M. (2003) “Developing Multiagent Systems:
the Gaia Methodology”, In ACM Transactions on Software Engineering and
Methodology, 12, 3, p. 317 – 370.

XX Simpósio Brasileiro de Engenharia de Software

96

