
A Component Based Infrastructure to Develop Software
Supporting Dynamic Unanticipated Evolution

Hyggo Almeida 1, Angelo Perkusich1, Evandro Costa2, Glauber Ferreira1,
Emerson Loureiro 1, Loreno Oliveira1, Rodrigo Paes3

1Embedded Systems and Pervasive Computing Lab
Electrical Engineering and Informatics Center

Federal University of Campina Grande – Campina Grande – PB – Brazil
2Institute of Computing – Federal University of Alagoas

Maceió – AL – Brazil
3Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro – RJ – Brazil
{hyggo,perkusic,glauber,emerson,loreno}@dee.ufcg.edu.br

Abstract. This paper presents a component based infrastructure for develop-
ing software supporting dynamic unanticipated software evolution. We propose
a component model providing mechanisms for managing unpredicted software
changes, even at runtime. A Java implementation of the proposed model is also
presented. Moreover, a performance evaluation model and an Eclipse-based tool
to support composition activities are described. Finally, a pervasive computing
middleware application developed using the proposed infrastructure is presented.

Resumo. Neste artigo apresenta-se uma infra-estrutura baseada em compo-
nentes para o desenvolvimento de software com suporte à evolução dinâmica não
antecipada. Propõe-se um modelo de componentes que provê mecanismos para
gerenciar alterações no software não previstas em projeto, inclusive em tempo
de execução. Apresenta-se uma implementação em Java do modelo de compo-
nentes e um modelo analı́tico para avaliação de desempenho. Para dar suporte às
atividades de desenvolvimento, propõe-se uma ferramenta baseada na plataforma
Eclipse. Por fim, apresenta-se uma aplicação da infra-estrutura proposta para o
desenvolvimento de um middleware para computação pervasiva.

1. Introduction
Various studies have pointed evolution as responsible for up to 90% of the total cost of
software development [Ebraert et al. 2005]. The impact of evolution on existing design
and code is more significant when software requirement changes have not been anticipated.
Unanticipated software evolution is a key issue on software engineering, since it is strongly
related to software development and maintenance cost and time.

By definition, “unanticipated software evolution is not something for which we can
prepare during the design of a software system” 1. This way, any support for unanticipated
software evolution must not require developers to specify which part of the software could
evolve. Any part of the software must inherently support evolution, and developers should
not bother themselves about the mechanisms that allow this evolution. Moreover, in the
case of systems with frequent requirement changes or when the execution of such systems
cannot be interrupted, evolution must be managed at runtime.

This seamless evolution support is not provided by existing techniques of Software
Engineering, such as application frameworks [Fayad et al. 2000], component based sys-
tems [Crnkovic 2001], service oriented architectures [Papazoglou 2003], and plug-in based
development [Mayer et al. 2003]. Although some of these approaches provide flexibility

1FUSE Workshop - http://www.informatik.uni-bonn.de/˜gk/use/fuse2004/

XX Simpósio Brasileiro de Engenharia de Software

145



for changes even at runtime, they have not been conceived to support unanticipated changes.
Developers have to point out potential parts to be changed in the future through extension
points, services interfaces, framework hot spots, plug-in interfaces, etc.

The major problem arises when a part of the software which was thought to be
fixed has to change. Unanticipated changes force developers to extensively modify existing
software architecture, design, and code. A change is considered “unanticipated” when its
implementation does not depend on hooks encoded in previous versions of the changed
software [Kniesel et al. 2002].

In this paper we introduce a component based infrastructure to develop software
supporting dynamic unanticipated evolution. We propose a component model, named
COMPOR COMPONENT MODEL SPECIFICATION (CMS), which allows changing any part
of the software, by removing and/or adding components, even at runtime. CMS promotes
dynamic unanticipated software evolution through a simple and lightweight design model.
Component based concepts, such as containers and components, are used to build applica-
tions based on a hierarchical composition. We present a Java implementation of the CMS,
called JAVA COMPONENT FRAMEWORK (JCF). Due to the simplicity of the object oriented
framework model, it can be implemented using other programming languages. An imple-
mentation based on Python and another one in C++ are discussed in the concluding remarks
of this paper. By using JCF, it is possible to develop Java applications that can be changed
during runtime, even for unpredicted changes. A performance evaluation model for CMS-
based architectures is also described. This performance model is very useful to define which
CMS architecture is more suitable for a specific application. Moreover, we present a set of
Eclipse-based tools (http://www.eclipse.org) for supporting the software composi-
tion activities, called COMPONENT COMPOSITION TOOLS (CCT). Finally, a case study
for the proposed infrastructure is described: a pervasive computing middleware.

The remainder of this paper is organized as follows. Section 2 describes the CMS.
Section 3 introduces the JCF. In Section 4 we describe a performance evaluation model
for the CMS. Section 5 introduces the CCT. The pervasive computing middleware devel-
oped using CMS/JCF is presented in Section 6. Related works are discussed in Section 7.
Finally, concluding remarks are presented in Section 8.

2. Component Model Specification

According to the COMPOR COMPONENT MODEL SPECIFICATION (CMS), a component
based system is described as a composition of two kinds of entities: functional components
and containers. Functional components are software entities implementing application-
specific functionalities, making them available by means of services and events. A func-
tional component is not composed of other components, that is, it has no child components.
Functional components represent the atomic architectural elements of the software applica-
tion according to the CMS.

Containers are software entities that implement no application-specific functionali-
ties. A container controls the access to the services and events provided by its child com-
ponents, which may be functional components or other containers. Functional components
are made available by inserting them into containers. It is necessary to have at least one
container, named root container, in order to insert functional components into it, and then
run the application. Each container has tables of services provided by and events of interest
to its child components.

2.1. Component Deployment Model

After inserting a new component into a given container, the tables of services and events for
each container up to the root of the hierarchy must be updated accordingly. This is necessary
in order to make available the services provided by the inserted component as well as to
allow the notification of the occurrence of events that are of interest to the component.
Figure 1 depicts the component deployment process and its steps are detailed as follows.

XX Simpósio Brasileiro de Engenharia de Software

146



Container 1

Container 2

X Y

1

Service
4

Component

calculate
print

X

Y

Service Component

calculate
print

Container 2

Container 2

3

2

Figure 1. Component deployment - updating service and event tables.

1. A component X implementing the “calculate” service is added to Container 2.

2. Container 2 updates the service table adding the services provided by the component
X (the same occurs for the event table).

3. Container 2 asks its parent container, Container 1 in this case, to update its service
table, by adding the services provided by Container 2.

4. Container 1 updates its service table.

After the execution of these steps, the services provided by the component X can
be accessed from any component in the hierarchy without an explicit reference to it. Note
that a component has only reference to its parent container. In the case of two or more
components having services or events with the same identifier, an alias is used. Thus, it
is possible to register a nickname for each service, allowing services providers to coexist
within the same application and be diversified in terms of non-functional features. The
remove operation is similar to the deployment, but after removing a component the next
invocations for its services will not work.

2.2. Interaction Model

The interaction model is based on services and events. In the first case any component
may invoke a service of another component, even when the component belongs to other
container. The interaction based on events focuses on the announcement of a state change
in a given component to all the interested components. In both cases there is no explicit
reference among components.

2.2.1. Service based interaction

As said before, after inserting a component into a given container, its services are made
available to any other component in the application. Therefore, assuming the existence of
a service named “save” implemented by a component K of the application, the execution
of this service can be requested by a component X, without an explicit reference to K. In
Figure 2 such an interaction process is illustrated and detailed as follows.

1. Component X requests the execution of the “save” service to its parent container.

2. Based on its service table, Container 2 verifies that no child component implements
the “save” service.

3. Container 2 forwards the request to its parent container, in this case Container 1.

XX Simpósio Brasileiro de Engenharia de Software

147



Container 1

Container 2

X Y

1

Service Component

X

Y

Container 3

K

“save”?

Service Component

calculate
print

Container 2
Container 2

Container 3save

Service Component

save K

There are no references between X and K.

calculate
print

3
5

62

4

7

Figure 2. Service based interaction - No explicit references.

4. Container 1, according to its service table, verifies that one of its children imple-
ments the “save” service, Container 3 in this case. The Container 1 sees Container
3 as the component that implements the requested service.

5. Container 1 then forwards the service request to the Container 3.

6. Container 3 does not implement the service but has a reference to the component
that implements the requested service, and forwards the request to it, in this case
component K.

7. Component K executes the “save” service and returns the result following the re-
verse path, back to the requester.

It is important to point out that there are no references between the component
requesting the service (X) and the component that provides it (K). Thus, it is possible to
change the component that provides the “save” service without modifying the rest of the
structure.

2.2.2. Event based interaction

When an event is announced by a given functional component, all the components in the
hierarchy of the application that are interested in the event must be notified. The interaction
based on events is also controlled by containers, and thus there are no direct references
among functional components. This process is shown in Figure 3 and the steps are detailed
as follows.

1. The component X announces an event named “Event A”.

2. The announcement is directly received by its parent container (Container 2), which
verifies if any of its child components have to be notified about the event, by in-
specting the event table.

3. Container 2 forwards the event to the interested components, in this case only the
component Y.

4. Container 2 then forwards the event to its parent container (Container 1).

5. Container 1, according to its event table, forwards the event to those interested on
it, except the one that announced the event (Container 2). Since Container 1 is the
root of the hierarchy, there is no parent container to forward the event. Thus, the
event is only forwarded to Container 3.

XX Simpósio Brasileiro de Engenharia de Software

148



Container 1

Container 2

X Y
1

Container 3

K

There are no references
between X,Y and K

Event Components

Y

X

EventA

EventB

Event Components

Cont.2, Cont.3

Container 2

EventA

EventB

Event Components

KEventA

3

5

6

4

2

Figure 3. Event based interaction - event notification without explicit references.

6. Container 3 forwards the event according to its event table that in this case is com-
ponent K.

As can be seen in Figure 3, there are no references between the component that
announced the event (X) and those interested on it (Y and K). Thus, the component that
announces the event can be changed without modifying the rest of the structure.

2.3. Overriding Services: the Black-Box Inheritance Mechanism
Due to the container-mediated deployment and interaction models, CMS provides mech-
anisms to override services via “black-box inheritance”. In other words, it is possible to
reuse component services without extending the component code, even at runtime. This
is possible because a component can require a service implemented by itself. Since the
services provided by functional components are accessed via the container, it is only neces-
sary to publish internal component functionalities as external services and access them via a
container. Figure 4.a illustrates an example of this process. Consider the “readFile” service,
which is implemented by the sequence of functionalities: “buffering” and “IOoperation”.
If the internal functionalities are published as services, Component1 can access them via
container. Then, the “readFile” service is decoupled from “buffering” and “IOoperation”
functionalities.

Container

Component 1

“readFile”

service

Buffering
I/O operation

Internal Functionalities

deploy
(externalize functionalities )

readFile
buffering

io-op

Component1
Component1
Component1

Container

Component 1

readFile
buffering

io-op

Component1
Component2
Component1

Component 2

deploy
(“buffering service”)

Overriden
Service

a b

Figure 4. Service overriding - internal functionalities as component services.

To override the “buffering” internal functionality, for example, it is only necessary
to deploy a component that provides a service with the same name. Figure 4.b presents

XX Simpósio Brasileiro de Engenharia de Software

149



the service overriding process. In this figure, Component2 overrides the service “buffer-
ing” of the Component1. Since there are no references to the Component1, this process,
which is based on the Template Method and Strategy design patterns [Gamma et al. 1995],
can be performed at runtime. After deploying the Component2, the “readFile” service of
Component1 becomes based on the “buffering” service implemented by the Component2.
It is important to note that Component2 does not have to extend Component1, it is only
necessary to know the provided and required services.

2.4. Recursive Composition: Applications as Components
One can think that a flat architecture could be always better. It could be more interesting
in terms of performance and will not require the usage of several containers. Also, it will
work similarly to service oriented architectures, like Jini [Waldo 1999]. However, the main
motivation for a hierarchy of containers is that it allows to maintain cohesion of function-
alities provided by their child components. It makes possible to reuse entire containers
without needing to understand the internal components or other containers, at any level of
the hierarchy. Also, it allows recursive composition of applications, since root containers
can be viewed as components for other containers. Therefore, an application can be built
by integrating containers of various CMS based applications (Figure 5).

Application A Application B

New Application

Figure 5. Composition of applications.

Based on the service and event models, black-box inheritance and recursive com-
position, the CMS supports all kinds of evolution scenarios: component change, addition,
and removal; service and event changes; and architectural changes. In face of unantici-
pated evolution, an entire application could be dynamically changed. It is only necessary:
i) to identify which components will change; ii) to identify which are their dependencies
(services and events) and, if necessary, change them; iii) and finally change the identified
components. The effort needed to perform this evolution depends on the functional cohe-
sion and complexity of the application. In fact, it could be hard but using the CMS it will
be possible.

3. Java Component Framework
The JAVA COMPONENT FRAMEWORK (JCF) is a Java implementation of the CMS. The
JCF design is based on the Composite design pattern [Gamma et al. 1995], which can be
applied to hierarchical architectures. Figure 6 shows a simplified version of the JCF class
diagram, describing its main methods. Container and FunctionalComponent classes
are instantiated for containers and functional components, respectively. The abstract class
AbstractComponent assures the recursive composition [Gamma et al. 1995]. Thus,
containers are not aware if their children are functional components or other contain-
ers. Additionally, it implements the accessor methods. The methods declared in the
class AbstractComponent are differently implemented by FunctionalComponent and
Container classes, for both the service and the event interaction models.

The service interaction model is implemented through iterative invocations of the
doIt and receiveRequest methods. Such methods are invoked by the components and
containers of the hierarchy until the service provider component is located. The func-
tion of the doIt method is to forward the service request, in a bottom-up way, until
reaching the container that contains the reference to the provider. When this occurs, the
receiveRequest method is invoked, in a top-down way, until reaching the functional

XX Simpósio Brasileiro de Engenharia de Software

150



AbstractComponent

<<abstract>>

doIt(ServiceRequest):
(ServiceRequest)

ServiceResponse
receiveRequest :ServiceResponse
announceEvent(Event)
receiveEvent(Event)
void start()
void stop()

FunctionalComponent Container

doIt(ServiceRequest):

(ServiceRequest)

ServiceResponse
doItAsynchronous(ServiceRequest):ServiceRequestId
receiveRequest :ServiceResponse
receiveServiceResponse(ServiceResponse)
announceEvent(Event)
receiveEvent(Event)
void start()
void stop()

doIt(ServiceRequest):
(ServiceRequest)

ServiceResponse
receiveRequest :ServiceResponse
announceEvent(Event)
receiveEvent(Event)
void start()
void stop()

*

Figure 6. Simplified JCF class diagram.

component that implements the service (Figure 7). The syntax for the service invoca-
tion methods are doIt(ServiceRequest) and receiveRequest(ServiceRequest),
where ServiceRequest is an object that encapsulates a service name and the parameters
needed to execute the service. The result of those methods is a ServiceResponse, which
encapsulates the service execution result or the exception, if it occurs.

Container 1

Container 2

X Y

Container 3

K
save

doIt(...“save”...);

doIt(...“save”...); receiveRequest(...“ ”...);save

receiveRequest(...“ ”...);save

Figure 7. Execution of the doIt and receiveRequest methods.

The JCF also implements an asynchronous version of the service based model.
The asynchronous interaction implementation is based on the ActiveObject design pat-
tern [Vlissides et al. 1996]. A component asynchronously invokes a service through the
method doItAsynchronous and receives a request identifier (ServiceRequestId).
Then, a new thread is started to request the service through the method doIt. When the
return from doIt occurs, it invokes the method receive ServiceResponse for the ser-
vice requester component, forwarding the service request and the service identifier. Based
on the service identifier, the requester component identifies to which invocation the reply
refers to.

The implementation of the event based interaction model is based on the
Observer [Gamma et al. 1995] and ActiveObject [Vlissides et al. 1996] design patterns.
The functionality is implemented through the asynchronous invocation of the method
announceEvent to announce events to the parent containers (bottom-up). On the other
hand, the invocation of the method receiveEvent notifies the events to the interested
components (top-down), as occurs with services.

Besides the interaction models specified by the CMS, the JCF implements initial-
ization properties for components. Moreover, JCF provides a mechanism for starting and
stopping the execution of the components. The initialization properties are stored in a ta-
ble for each functional component and can be accessed through the getInitialization

XX Simpósio Brasileiro de Engenharia de Software

151



Parameter(String) method, whose argument is the name of the required initialization
parameter. The component initialization is implemented by the start and stop meth-
ods. For containers, these methods start/stop all of its components through the invocation
of their respective start and stop methods. For functional components, these methods
are template methods [Gamma et al. 1995] that invoke abstract methods implemented by
the component developer. These methods initialize/interrupt the execution according to the
component needs.

3.1. Security Support
As described in Section 2.1, an alias is used to uniquely identify services and events with
the same name for different components. However, such a strategy introduces a security
problem into the model. For example, it is possible to interpose a provider X between
another provider Y and its clients in order to intercept the client requests towards Y. This
may represent an intrusive way to make something undesirable in the system, since the
interposed provider X may be seen as an intruder.

As this security issue is not tackled by the component model, the JCF must pro-
vides means for dealing with security policies for the interaction and deployment models.
Such policies must then be satisfied when some service is requested or an event is an-
nounced as well as a component is inserted or removed from a container. This security
infrastructure, shown in Figure 8, was developed using aspect oriented programming, with
AspectJ [Kiczales et al. 2001]. Aspects have allowed to hide the complexity of the security
mechanism from the developer as well as to simplify the development of systems with-
out security requirements. The security mechanism illustrated in Figure 8 is explained as
follows.

Crosscutted aspect

securityActive = true;

SecurityManager.activeSecurity();

Encrypted
Password FileLoad

System
Password

script.start();

Container 1

Container 2

X Y

Container 3

K

ExecutionScript

receiveRequest(...)
doIt(SecurityRequest)SecurityAspect

SecurityManager

System
Developer

2

4

5

6

7

C
h

e
c
k

p
a

s
s
w

o
rd

3

Password
File

“password”

1

Cryptography
API

Figure 8. Aspect oriented security architecture.

1. The application developer creates a “.security” file containing the password for ac-
cessing the system as well as the service access policies. Then, uses the Java cryp-
tography API to encrypt the file.

2. When developing the application, the security mechanism should be activated call-
ing the activeSecurity() method of the SecurityManager singleton class.
This operation defines that all service invocations, event announcements and com-
ponent additions must be verified.

XX Simpósio Brasileiro de Engenharia de Software

152



3. The SecurityManager retrieves the password and the policy information and
stores them in memory.

4. After starting the root container, all of its components are also started and the appli-
cation runs by means of a sequence of service invocations and event announcements.

5. A component invokes a service. With the security activated, the service requester
component must forward a SecurityServiceRequest instance as parameter,
containing the system password.

6. The component receives the request via the receive Request method, then the
SecurityAspect aspect intercepts the method invocation and asks the Security
Manager to verify the request password.

7. SecurityManager verifies the request password and allows the service execution.
Otherwise, a ComporSecurity Exception is thrown.

4. Performance Analysis

There is a trade-off between flexibility and performance in the CMS. Although it allows
dynamic composition of components, both its deployment and interaction models introduce
an impact on the software performance when requesting services and announcing events.
Considering performance a critical non functional requirement for some application do-
mains, we propose a performance evaluation model that allows evaluating the performance
of an application with specific architectures based on the CMS. Through this evaluation
model, it is possible to identify and reduce potential overheads caused by the architectural
design.

There are three main operations defined in the CMS to be evaluated: component de-
ployment, service request, and event announcement. As mentioned before, the architecture
of an application according to the CMS can be represented by a tree. Thus, the performance
evaluation for these operations is based on a tree structure. The performance is measured
based on the time spent to perform the two main operations for implementing the CMS:
method invocations and accesses to data structures. Each tree edge represents a method
invocation operation, followed by the invocation of a set of related methods, and accesses
to data structures that store the event and service tables. To exemplify the application of the
evaluation model, the mean time of method invocations and access to Java hash tables are
considered.

4.1. Component Deployment Analysis

The component deployment operation is concerned with the insertion of functional compo-
nents into containers, making their services and events available to other components. As
mentioned before, after the insertion of a component, the tables of services and events for
each container up to the root of the hierarchy is updated accordingly. Therefore, the deploy-
ment operation time can be evaluated as: Td = tr +d× (ts + te), where: tr is the mean time
to register the new component on its parent container; d is the depth of the new component
(the depth of a node is the length of the path from the root to that node); ts is the mean
time to register the provided/required services to the new component on all the containers
between its parent and the root; and te has the same meaning as ts, but announced/interested
events are registered instead.

For instance, Figure 9 presents the deployment of the component n, which results in
registering the component to its parent, and registering its provided/required services and
announced/interested events to two containers. Thus, supposing tr = 20µs and ts = te =
22µs, the time of the operation using the JCF is estimated as Td = 20µs + 2 × (22µs +
22µs) = 108µs.

XX Simpósio Brasileiro de Engenharia de Software

153



n

n

Container Node

Functional Component

New Component

d = 2n

Figure 9. Component deployment performance evaluation.

4.2. Service Request Analysis
According to the CMS, when a service request is performed, the request is propagated
through the hierarchy reaching the service provider, if it exists. Thus, the time for a service
request operation can be given by Ts = tn + (dr + dp + 1)× tm, where: tn is the mean time
to create a new service request; dr is the depth of the node of the requester component; dp is
the depth of the node of the provider component; the constant (+1) refers to an extra query,
performed by the requester component to itself (for the scenarios where, possibly, the own
component implements some desired service); and tm is the mean time to access the data
structures. Figure 10 illustrates the computation time of a service request in the JCF. In
this case, the component r requests a service provided by the component p. Supposing
tn = 25µs and tm = 30µs, the time for this operation is given by Ts = 25µs + (3 + 2 +
1) × 30µs = 205µs.

r

p

r

Container Node

Provider Component

Requester Component

Functional Component

d = 3r

p

d = 2p

Figure 10. Service request performance evaluation.

4.3. Event Announcement Analysis
Unlike the service request operation, when an event is announced, the announcement is
propagated through the hierarchy until reaching all the interested components. Since several
components can be interested in the same event, various event targets may exist. If the
formula for service request evaluation is used, an edge could be counted twice or more. In
order to deal with this problem, besides containers and functional components, the concept
of common container node is defined.

A common container node is a container node that: (i) contains two or more child
nodes; (ii) it is composed of at least two “k nodes” (interested, announcer, or another com-
mon node), where each “k node” belongs to different subtrees. Furthermore, even if there
are no interested components, the event is propagated to the root node. In this way, every
root node is also defined as a common container node. The time for an event announcement
operation is defined as: Te = ta + tt +

∑n
i=1 gki

× tc, where: ta is the mean time to create
a new event announcement; tt is the mean time to create and fire a new thread to deliver
the event to all the interested components; gki

is the number of edges from each “k” to
its common container node; and tc is the mean time to query data structures about event
interests.

For example, consider the tree representing an architecture of an application shown
in Figure 11. In this figure, there is one component that announces an event and six com-
ponents that are interested in it. According to this hierarchy and supposing ta = 20µs,

XX Simpósio Brasileiro de Engenharia de Software

154



tt = 80µs and tc = 30µs, the time of the operation is Te = 20µs+80µs+
∑11

i=1 gki
×30µs =

550µs.

i

ii

i

i

i

a

i

a

Common Container Node

Container Node

Interested Component

Announcing Component

Functional Component

g = 2k1

g = 1k3

g = 1k2

g = 1k6

g = 1k8

g = 1k4

g = 1k7

g = 1k10
g = 1k9

g = 2k5

g = 3k11

Figure 11. Event announcement performance evaluation.

4.4. JCF Code Profiling
In order to validate the evaluation model and obtain real performance evaluation measures
we have performed a code profiling on the JCF, making possible to compare real data with
the analytical evaluation results. The JProfiler (http://www.ej-technologies.
com) profiler was used to verify the real cost for component deployment and execution
of events and services. A dedicated Pentium IV 2.8 GHz machine, with 512MB of main
memory, running Sun Java Virtual Machine version 1.4.2 and Windows XP Service Pack 2
were used to execute code profiling. Figure 12 presents the comparison between the results
of the performance evaluation model and the profiling results. The x-axis should be read as:
depth of new nodes, for the deployment of components; total path length, for the service
requests; and number of edges, for the event announcement.

Figure 12. Model results vs. Profiling results.

For our experiments we have performed some changes in the component structures
presented in the sections 4.1, 4.2, and 4.3. To evaluate the performance of component de-
ployment, we have changed the tree depth. For the service requests, we have changed the
tree depths for the requester and provider and explored different configuration of compo-
nents for each combination of provider and requester depths. Finally, for event announce-
ments, we have changed the number of interested components, exploring different configu-
rations of components for each number of interested components.

XX Simpósio Brasileiro de Engenharia de Software

155



4.5. Discussion of the Evaluation Results

The result of the evaluation indicates that the performance impact can be minimized by
managing the depth of the container hierarchy. For example, consider an architecture
where there is only one container (the root) and all its children are functional compo-
nents, i.e, their depth is one. In this case: a component deployment operation is per-
formed through only one service/event registering operation; a service request is per-
formed via three accesses to the data structures; and an event announcement is per-
formed through (number of interested components + 1) accesses to data structures,
with only one extra method execution compared to an usual Observer pattern implementa-
tion [Gamma et al. 1995].

Although improving the performance of the operations, a flat hierarchy reduces
modularity, cohesion, and flexibility of the software architecture. It occurs because the use
of containers allows the modularization of related components, making possible to change
entire containers to other containers or components, as described in Section 2.4.

On the other hand, the deeper a hierarchy is, the higher is the number of method ex-
ecutions and accesses to data structures, and consequently the performance is reduced. An
example of this kind of “deep hierarchy” is illustrated in Figure 11, where fifteen accesses
to data structures occur for announcing an event to six interested components.

Based on the analysis of profiling results, we conclude that the measures obtained
are very close to the analytical results, with mean errors around 5% for all operations.
Probably, these errors are related to potential optimization operations performed by the Java
Virtual Machine. Therefore, depending on the performance and flexibility requirements of
an application, either a deeper or flatter hierarchy is more suitable. The evaluation model is
useful for evaluating the performance of specific architectures still at design time.

5. Component Composition Tools

The Component Composition Tools (CCT) is a set of Eclipse plug-ins to develop soft-
ware supporting dynamic unanticipated evolution based on the CMS. The main motivation
for building the CCT was the significant effort required to compose a system using the JCF.
For large scale applications, the programming effort to build several components, to com-
pose various containers, and to define many services and events can be very high without
automation tools.

The CCT main tools have been built over the Eclipse platform core: compo-
nent pallete/manager, to deploy and make components available to be reused; component
tree/inspector, to manage and configure the application components; component test, to per-
form integration tests; and a component description wizard, to describe new components.
Moreover, a component editor is being constructed over the AspectJ Development Tools
(http://www.eclipse.org/ajdt) to ease the component development activities. The
support for aspects provided by the CMS is not covered in this paper.

Eclipse Platform

Java Development Toolkit (JDT)

Java Editor... ...

CCT Architecture

C
o
m

p
o
n
e
n
t
P

a
lle

te
/

M
a
n
a
g
e
r

C
o
m

p
o
n
e
n
t
T
e
s
t

C
o
m

p
o
n
e
n
t
D

e
s
c
ri
p
ti
o
n

W
iz

a
rd

C
o
m

p
o
n
e
n
t
T

re
e
/

In
s
p
e
c
to

r

... ...
AspectJ Development Toolkit (AJDT)

AspectJ Editor

Component Editor

Figure 13. Architecture of the CCT.

XX Simpósio Brasileiro de Engenharia de Software

156



The graphical interface of the CCT is implemented as a set of Eclipse views and
wizards. A CCT perspective and project nature were created to provide a customized com-
position workspace for the developer. Figure 14 depicts the main screen of the CCT per-
spective.

Figure 14. CCT perspective on the Eclipse platform.

With CCT, it is possible to compose CMS applications by assembling pre-existing
components. However, it does not provide support for running and monitoring applica-
tions. For that, we are working on developing a Component Application Server (CAS) that
runs on top of Oscar – an implementation of the Open Services Gateway Initiative (OSGi)
(http://www.osgi.org). CAS provides an execution environment for the deployment
and execution of CMS/JCF components and applications. Also, it manages component life
cycle and controls component versioning. Oscar/OSGi is used for managing functionalities
related to dynamic class loading. Using CCT and CAS, developers have full support for
developing, composing and running applications based on CMS.

6. Case Study: Wings Pervasive Middleware

Wings is a middleware for pervasive computing that is guided by three issues: context-
sensitivity; networking support flexibility; and interoperability both in terms of networking
protocol stack and programming language [Loureiro et al. 2005]. The basis of the middle-
ware lies on the concepts of resource, context and peer. We define a resource as an entity
with a description, through which it can be shared, discovered and downloaded, such as an
audio file. A context encapsulates information about a local peer and the environment in
which it is immersed. Finally, peers are defined as network nodes having the following set
of capabilities: search and sense other peers; share, discover, and download resources, as
well as deliver context information.

Due to the sensing capability, Wings has been designed for “infrastructureless”
environments. Therefore, the communication between peers must be performed in an
ad-hoc way. This characteristic enhances the applicability of Wings in the world of
pervasive computing, where the infrastructure is something we cannot always count on.
This approach provides the necessary tools to develop applications (Winglets) for ad-hoc
like pervasive environments such as mobile virtual communities and mobile file shar-
ing. Using Wings, pervasive applications could take advantage of multiple configura-
tions by performing host discovery over different network infrastructures, possibly at the
same time. Based on this approach, an application could, for example, discover hosts

XX Simpósio Brasileiro de Engenharia de Software

157



through UPnP (http://www.upnp.org), JXTA (http://www.jxta.org) and Zero-
conf (http://www.zeroconf.org) protocols. This improves the acquisition of context
information, since more hosts can be discovered by the applications.

However, it is very difficult to predict which of such protocols will supply the needs
of different applications. Moreover, mobile devices are still very limited concerning mem-
ory and storage capacities. Therefore, it would not be reasonable to embed in such devices
all the existing network infrastructure protocols for each of their wireless interfaces. It
becomes necessary a mechanism for inserting and removing such implementations from a
device, whenever needed. For that, we use the CMS to encapsulate the peer discovery al-
gorithm and context information mechanisms in software components. Such components,
namely Network Infrastructure Components (NICs), may be plugged in and out from the
middleware even at runtime (Figure 15).

Underlying Platform

CMS/JCF

Ad-hoc networking

Resource sharing
Core

Platform

Execution Environment Execution Environment. . .

Winglet Winglet

NIC NIC NIC NIC

Figure 15. Wings Architecture.

The CMS successfully provides an effective way of changing NICs at runtime, with-
out affecting the rest of the middleware. This is an important feature in a pervasive envi-
ronment, where the networking protocols involved may change, but users do not want to
stop their tasks for replacing one protocol for another. In other words, this process should
be performed transparently.

7. Related Work
Different kinds of component models have been proposed. Some examples are Sun Jav-
aBeans and Enterprise Java Beans (http://java.sun.com), and the CORBA Compo-
nent Model (http://www.omg.org). Such models have been successfully applied for
constructing corporative applications and their middleware implementations provide many
interesting services for enterprise software development. However, these models were not
conceived to support dynamic unanticipated software evolution. In some cases, their mid-
dlewares provide mechanisms and services to perform dynamic changes, but this is not
defined in a component model level. The lack of this feature makes difficult the construc-
tion of systems supporting unanticipated evolution.

CMS has also some similarities with service oriented architectures: service pub-
lishing and provision, transparency of the service provider, flexibility for changes, among
others. For instance, Jini [Waldo 1999] is a Java-based technology for the provision-
ing of services among network nodes. In Jini, services are advertised and discovered in
central repositories, like a distributed CMS single (root) container. The work presented
in [Handorean and Roman 2003] describes a Java middleware for providing services in ad-
hoc networks. Such a middleware is based on a distributed service registry, where each
node of the network is able to provide and use services. Other example is the OpenWings
(http://www.openwings.org) framework, which aims at providing service provision-
ing features targeted to dynamic networks. In these works, dynamic evolution is not pro-
vided. In the work of Piccinelli et al [Piccinelli et al. 2003] the main focus is the dynamic
composition of services, and recursive composition of services is also allowed. However,
dynamic features are only related to service loading, unanticipated changes are not tackled.

XX Simpósio Brasileiro de Engenharia de Software

158



In the context of dynamic composition models, we highlight
HADAS [Ben-Shaul et al. 2001]. In HADAS, the focus is the interoperability be-
tween distributed components. The reflection concept is used to define the dynamic
composition. The developer should define a set of fixed behaviors and another set of
extensible behaviors for the application. Only extensible behaviors can be dynamically
composed and changed. Considering that the changes cannot be predicted, the definition of
fixed components imposes many difficulties and in some cases makes no sense, since any
component can be eventually changed. Another work is Gravity [Cervantes and Hall 2004]
which puts concepts from service and component orientation together for defining a model
that supports the adding and removal of components at runtime. For these works, there
are no mechanisms to provide recursive composition and the dynamic evolution is only
allowed for explicitly defined non fixed parts.

8. Concluding Remarks
This paper presented a component based infrastructure to develop software supporting dy-
namic unanticipated evolution. We introduced a model, named CMS, which provides
mechanisms for managing dynamic changes in the software on the fly, even if they have
not been anticipated. A Java implementation of the CMS that allows developing Java ap-
plications supporting dynamic unanticipated software evolution was also presented. To
make possible a large scale development, an Eclipse-based tool to support the composition
activities, called CCT, was introduced.

Moreover, a performance evaluation model was described. Based on the model, the
designer can identify CMS-based architecture that is more suitable for a specific applica-
tion, taking into account performance and flexibility issues, still at design time. Also, we
described the implementation of a complex middleware for pervasive computing, which
uses the CMS as the key technology to provide flexibility.

The infrastructure presented in this paper represents a novel engineering support
for constructing applications supporting to unanticipated evolution. Using CMS, JCF, and
CCT, applications can be developed based on reuse, besides improving flexibility and re-
ducing maintenance and evolution time and costs. In what follows, some current efforts
and future perspectives are discussed.

Multi-Language Implementations
Multi-language implementations are very important to consolidate the CMS , and also to
apply it to different contexts and platforms. For that, besides the Java implementation of
the CMS introduced in this paper, a Python Component Framework (PCF) and a C++
Component Framework (CCF) are being developed. The simplicity of the CMS makes
possible to implement dynamic composition without requiring object oriented languages
complex mechanisms. For Python, which supports threads, dynamic loading, and dynamic
binding as native features, the implementation is even more straightforward. In the case of
C++, we had some problems to integrate these features from different sources. They are
being applied to different contexts: the PCF is useful for rapid prototyping and the CCF is
being applied to Linux-based embedded systems. We are developing the PCF and CCF as
close as possible to the JCF design, to provide the same dynamic software composition
infrastructure for the developer, regardless of the language.

Future Trends
The main feature trends related to the research reported in this paper are the support for
non functional requirements and for formal dependency verification. The former is related
to the description and implementation of non functional requirements of the components.
Operation time, performance, and real-time restrictions, among other information, must be
present in the component description available to the developers. For some domains, it is
very important to define if two components could be interchanged, for example. The last
is concerned with the formal description of the component interface - services and events.

XX Simpósio Brasileiro de Engenharia de Software

159



This allows verifying if the dependencies (required services and events) of all components
are being provided according to the formal specification. Also, it will make possible to
determine if a remove or change operation could be performed while still maintaining the
specification of the components and the system correct.

References
Ben-Shaul, I., Holder, O., and Lavva, B. (2001). Dynamic Adaptation and Deployment of Dis-

tributed Components In Hadas. IEEE Trans. Softw. Eng., 27(9):769–787.

Cervantes, H. and Hall, R. S. (2004). Autonomous Adaptation to Dynamic Availability Using a
Service-Oriented Component Model. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 614–623. IEEE Computer Society.

Crnkovic, I. (2001). Component-based Software Engineering - New Challenges in Software Devel-
opment. In Software Focus, volume 4, pages 127–133. Wiley.

Ebraert, P., Vandewoude, Y., D’Hondt, T., and Berbers, Y. (2005). Pitfalls in unanticipated dynamic
software evolution. In Proceedings of the Workshop on Reflection, AOP and Meta-Data for
Software Evolution(RAM-SE’05).

Fayad, M., Johnson, R., and Schmidt, D. (2000). Building Application Frameworks. Wiley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley.

Handorean, R. and Roman, G.-C. (2003). Secure Service Provision in Ad Hoc Networks. In Proc.
of the First International Conference on Service Oriented Computing, volume 2910 of Lecture
Notes in Computer Science, pages 367–383, Trento, Italy. Springer Verlag.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. (2001). An Overview
of AspectJ. In ECOOP ’01: Proceedings of the 15th European Conference on Object-Oriented
Programming, pages 327–353, London, UK. Springer-Verlag.

Kniesel, G., Noppen, J., Mens, T., and Buckley, J. (2002). 1st Int. Workshop on Unanticipated
Software Evolution. In ECOOP Workshop Reader, volume 2548 of LNCS. Springer Verlag.

Loureiro, E., Oliveira, L., Almeida, H., Ferreira, G., and Perkusich, A. (2005). Improving flexibil-
ity on host discovery for pervasive computing middlewares. In 3rd International Workshop on
Middleware for Pervasive and Ad-hoc Computing, Grenoble, France. ACM Press.

Mayer, J., Melzer, I., and Schweiggert, F. (2003). Lightweight Plug-In-Based Application Devel-
opment. In NODe ’02: Revised Papers from the International Conference NetObjectDays on
Objects, Components, Architectures, Services, and Applications for a Networked World, pages
87–102. Springer-Verlag.

Papazoglou, M. P. (2003). Service-Oriented Computing: Concepts, Characteristics and Directions.
In Proc. of Fourth International Conference on Web Information Systems Engineering, pages
3–12, Rome, Italy. IEEE.

Piccinelli, G., Zirpins, C., and Lamersdorf, W. (2003). The FRESCO Framework: An Overview. In
Proceedings of the 2003 Symposium on Applications and the Internet Workshops, pages 120–123,
Orlando, USA. IEEE Computer Society.

Vlissides, J., Coplien, J., and Kerth, N. (1996). Pattern Languages of Program Design 2. Addison-
Wesley.

Waldo, J. (1999). The Jini Architecture for Network-centric Computing. Communications of the
ACM, 42(7):76–82.

XX Simpósio Brasileiro de Engenharia de Software

160


