
Implementing Framework Crosscutting
Extensions with EJPs and AspectJ

Uirá Kulesza1, Roberta Coelho1, Vander Alves2, Alberto Costa Neto2,
Alessandro Garcia3, Carlos Lucena1, Arndt von Staa1, Paulo Borba2

1Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
{uira, roberta,lucena,arndt}@inf.puc-rio.br

 2 Centro de Informática – Universidade Federal de Pernambuco
{vra, acn, phmb}@cin.ufpe.br

3Lancaster University, Computing Department, Lancaster - United Kingdom
garciaa@comp.lancs.ac.uk

Abstract. In a previous work, we proposed a framework extension approach based
on the use of a new concept, called Extension Join Points (EJPs). EJPs enable the
framework systematic extension by means of variability and integration aspects. In
this paper, we show how EJPs can be implemented using the mechanisms of the
AspectJ language. To evaluate the usefulness of the EJPs in the framework
extension process, we have used them in the development of three OO frameworks
from different domains. As a result of our case studies, we present: (i) an initial
categorization of different kinds of contracts between frameworks, EJPs and aspects
which can be implemented in AspectJ; and (ii) a set of lessons learned when
specifying the EJPs.

Resumo. Uma abordagem para extensão de frameworks baseada em um novo
conceito, denominado Extension Join Points (EJPs), tem sido proposta
anteriormente. EJPs possibilitam a extensão sistemática de frameworks, através do
uso de aspectos de variabilidade e integração. Neste artigo, nós mostramos como os
EJPs podem ser implementados usando os mecanismos da linguagem AspectJ. Para
avaliar a utilidade dos EJPs no processo de extensão de frameworks, nós os
utilizamos no desenvolvimento de 3 frameworks OO de diferentes domínios. Como
um resultado de nossos estudos de caso, nós apresentamos: (i) uma categorização
inicial de diferentes tipos de contratos entre frameworks, EJPs e aspectos, os quais
podem ser implementados em AspectJ; e (ii) um conjunto de lições aprendidas
quando especificando os EJPs.

1. Introduction
Object-oriented (OO) frameworks [11] represent nowadays a common and important
technology to implement program families. They enable modular, large-scale reuse by
encapsulating one or more recurring concerns of a given domain, and by offering different
variability and configuration options to the target applications. In the framework based
development, applications are implemented by reusing the architecture defined by the
frameworks and by extending their respective variation points or hot-spots [11]. Hence, the
adoption of the framework technology brings in general significant productivity and quality in
the development of applications. Besides their advantages, some researchers [5, 8, 23, 24, 28]
have recently described the inadequacy of OO mechanisms to address the modularization and
composition of many framework features, such as, optional [5], alternative and crosscutting
composition features [23, 24]. As a consequence, the limited modularity provided by the OO

XX Simpósio Brasileiro de Engenharia de Software

177

mechanisms brings difficulties to configure many framework features for specific needs, thus
impeding the framework adaptation and reuse [5, 8, 23, 24, 28].

Aspect-oriented software development (AOSD) [12, 17] has been proposed as a
technology which aims to offer enhanced mechanisms to modularize crosscutting concerns.
Crosscutting concerns are concerns that often crosscut several modules in a software system.
AOSD has been proposed as a technique for improving the separation of concerns in the
construction of OO software, supporting improved reusability and ease of evolution. Recent
work [2, 18, 19, 20, 21, 25, 27, 31] has explored the use of aspect-oriented (AO) techniques to
enable the implementation of flexible and customizable software family architectures. In these
research works, aspects are used to modularize crosscutting variable (optional or alternative)
and integration features. In a previous work [19], we have proposed an approach which aims
to improve the extensibility of object-oriented frameworks using aspect-oriented
programming. Our approach proposes the definition of extension join points in the framework
code, which can be extended by means of variability and integration aspects. These aspects
are responsible to implement optional, alternative and integration features in the framework.
Since the aspects can be automatically unplugged from the framework code, our approach
makes easier to customize the framework to specific needs.

This paper shows and evaluates how the framework extension join points (EJPs) from
our approach can be implemented in the AspectJ language. The EJPs codification in AspectJ
gives us the advantages of explicitly exposing some framework join points and writing
contracts that must be satisfied when extending those join points. Hence, it gives more
systematization and robustness for our approach in the process of framework extension. To
evaluate the usefulness of the EJPs in the framework extension process, we have used them in
the development of three OO frameworks from different domains. As a result of our case
studies, we present: (i) an initial categorization of different kinds of contracts between
frameworks, EJPs and aspects which can be implemented in AspectJ; and (ii) a set of lessons
learned when specifying the EJPs.

The remainder of this paper is organized as follows. Section 2 presents background by
detailing framework modularization problems addressed by our approach and by introducing
AOSD basic concepts. Next, Section 3 gives an overview of our approach for framework
development with aspect-oriented programming based on the specification of EJPs. Section 4
then details how our EJPs can be implemented using AspectJ, including the specification of
their contracts. This section also presents a categorization of contracts that need be defined
when adopting our approach. Subsequently, Section 5 illustrates the implementation of EJPs
using AspectJ for two different case studies. Section 6 presents the lessons learned from our
case studies. Related work is discussed in Section 7. Finally, Section 8 summarizes our
contributions and provides directions for future work.

2. Background
This section briefly revisits research work that describes the inadequacy of object-oriented
mechanisms to modularize specific framework features. We also present the basic concepts of
AOSD and discuss emerging aspect-oriented design approaches.

2.1 Issues in Modularizing Framework Features
Despite the well-known benefits of OO frameworks in implementing program families, recent
research has exposed the inadequacy of framework technology in modularizing features with
particular properties, such as optional [5] and crosscutting composition [23, 24] features.
These issues hinder the framework instantiation process to meet specific user needs. As a

XX Simpósio Brasileiro de Engenharia de Software

178

result, framework reuse can become unmanageable or even impracticable. Next, we describe
these two problems of framework feature modularization.

Modularizing Optional Framework Features. Batory et al [2] address the issues of the
framework technique in modularizing optional features. An optional feature is a framework
functionality that is not used in every framework instance. According to such research,
developers typically deal with this problem either by implementing the optional feature in the
code of concrete classes during the framework instantiation process, or by creating two
different frameworks, one addressing the optional feature and the other one without it. As a
result, many framework modules are replicated just for the sake of exposing optional features,
thus leading to “overfeatured” frameworks [8], in which several instance-specific
functionalities can be present.

By analyzing a number of available frameworks (such as JUnit and JHotDraw), we note
that the most widespread practice in implementing framework optional features is the use of
inheritance mechanisms to define additional behavior in the framework classes. In the JUnit
framework, for example, inheritance relationships are used to define a specific kind of test
case as well as additional and optional extensions to test cases and suites.

Crosscutting Feature Compositions in Frameworks Integration. Mattsson et al [23, 24] have
analyzed the issues in integrating OO frameworks and proposed several OO solutions. Their
research relates the composition of two frameworks to the composition of a new set of
features (represented as a framework) in the structure of another framework. For example,
suppose we need to extend the JUnit framework to send specific failures that occur to
software developers. A specific test failure report could be send by e-mail to different
software developers, every time a specific and critical failure happens. Imagine we have
available an e-mail framework to support our implementation. The problem here is how we
could implement this functionality in the JUnit framework. It involves the integration of the
JUnit and the e-mail framework. This composition could be characterized as crosscutting
since we are interested to send a failure report by e-mail during the execution of the tests.

Based on a case study [20] with feature compositions involving four OO frameworks of
varying complexity and addressing concerns from distinct horizontal and vertical domains
[10], we have concluded that the framework integration solutions presented by Mattson et al
[23, 24] are invasive and bring several difficulties to the implementation, understanding, and
maintenance of the framework composition code. Our analysis has shown that 6 out of 9
solutions described by those authors have poor modularity and a crosscutting nature, requiring
invasive internal changes in the framework code.

2.2 Aspect-Oriented Software Development
Aspect-oriented software development (AOSD) [12, 17] is an evolving approach aiming at
modularizing concerns, which existing paradigms are not able to capture explicitly. It
encourages modular descriptions of complex software by providing support for cleanly
separating the basic system functionality from its crosscutting concerns. Crosscutting
concerns are concerns that often crosscut several modules in a software system. AOSD
supports the modularization of crosscutting concerns by providing abstractions to extract
these concerns and later compose them back when producing the overall system. AOSD
proposes the notion of aspect as a new abstraction and provides new mechanisms for
composing aspects and components (classes, methods, etc.) together at specific join points.

AspectJ [3] is an aspect-oriented extension to the Java programming language. The
aspect abstraction in AspectJ is composed of inter-type declarations, pointcuts and advices.
Pointcuts have a name and are collections of join points. Join points are well-defined points in

XX Simpósio Brasileiro de Engenharia de Software

179

the dynamic execution of system components. Examples of join points are method calls and
method executions. Advice is a special method-like construct attached to pointcuts. Advices
are dynamic crosscutting features since they affect the dynamic behavior of components.
Inter-type declarations specify new attributes or methods to be introduced in specific classes.
In this work we will focus on the use of aspect-oriented abstractions to modularize framework
extensions which implement optional, alternative or crosscutting composition features.

2.2.1 Obliviousness and Crosscutting Interfaces (XPIs)
Filman and Friedman [13] have identified two properties, quantification and obliviousness,
which they believe are fundamental for aspect-oriented programming. The Quantification
property refers to the desire of programmers to write programming statements with the
following form: “In programs P, whenever condition C arises, perform action A”. The
AspectJ programming language, for example, supports this property by means of the pointcut,
join point and advice mechanisms described above. Obliviousness establishes that
programmers of the base code – the classes which will be affected by the aspects – do not
need to be aware of the aspects which will affect it. It means that programmers do not need to
prepare the base code to be affected by the aspects. The following sentence from the authors
synthesizes both properties [13]: “AOP can be understood as the desire to make quantified
statements about the behavior of programs, and to have these quantifications hold over
programs written by oblivious programmers.”

In a recent study, Sullivan et al [30] have compared the obliviousness methodology with
a new approach to AO development based on design rules [4]. In their approach, the authors
propose the specification of interfaces between the base code and the aspects, which
determine the anticipated definition of join points from the base code before its
implementation. These join points are used subsequently in the implementation of the system
aspects. The design rule based approach [30] addresses the decoupling of the base and aspect
code by offering a clear specification of the interaction and contracts between them and by
allowing their parallel development. In the study, the authors have also observed how their
approach helps to reduce or eliminate several disadvantages of the obliviousness approach,
such as, the codification of complex and fragile pointcuts expressions and the tight coupling
of the aspects to changeable and complex details from the base code.

Griswold et al [16] have recently shown how the interfaces between the base code and
the aspects, called crosscutting interfaces (XPIs) and previously proposed by the design rules
based approach, can be partially implemented in AspectJ. The XPIs are used to abstract a
crosscutting behavior existing in the base code. The implementation of XPIs in AspectJ is
composed of: (i) a syntactic part – which allows to expose specific join points by specifying
pointcuts in aspects; and (ii) a semantic part – which details the meaning of the exposed join
points and it can also define constraints (such as, pre- and post-conditions) that must be
satisfied when extending those join points. This semantic part can be partially implemented
with enforcement aspects (implemented with declare error and declare warning AspectJ
constructs) [9] or by defining contract aspects which guarantee specific constraints are
satisfied before and after the advices execution.

The definition of XPIs has inspired the central idea of our approach to extend object-
oriented frameworks by exposing a set of extension join points (EJPs) present in their
implementation. Next section gives an overview of the approach. Section 4 details our study
of implementation of framework EJPs in AspectJ.

XX Simpósio Brasileiro de Engenharia de Software

180

3. An Approach to Extending OO Frameworks with Aspects

This section gives an overview of our framework development approach [19]. Section 4
details our study of realization of the approach using AspectJ.

3.1 Extension Join Points (EJPs)

In our approach, an OO framework specifies and implements not only its common and
variable behavior using OO classes, but it also exposes a set of extension join points (EJPs)
which can be used to also extend its functionality. Similar to XPIs [16, 30], EJPs establish a
contract between the framework classes and a set of aspects extending the framework
functionality. Unlike XPIs, however, EJPs aims at increasing the framework variability and
integrability. Accordingly, we propose to use the XPI concept in the framework development
context, in which EJPs serve three different purposes:

(i) to expose a set of framework events that can be used to notify or to facilitate a
crosscutting integration with other software elements (such as, frameworks or components);

(ii) to offer predefined execution points spread and tangled in the framework into which
the implementation of optional features can be included;

(iii) to expose a set of join points in the framework classes that can have alternative
implementations of a crosscutting variable functionality.

In this context, EJPs document crosscutting extension points for software developers that
are going to instantiate and evolve the framework. They can also be viewed as a set of
constraints imposed on the whole space of available join points in the framework design,
thereby promoting safe extension and reuse. A key characteristic of EJPs is that framework
developers and users do not need to learn totally new abstractions to use them, as they can
mostly be implemented using the mechanisms of AOP languages (Section 4).

3.2 Framework Core and Extension Aspects

Our approach promotes framework development as a composition of a core structure and a set
of extensions. A framework extension can define one of the following: (i) the implementation
of optional or alternative framework features; or (ii) the integration with an additional
component or framework. The composition between the framework core and the framework
extensions is accomplished by different types of extension aspects, each one defining a
crosscutting composition with the framework by means of its exposed EJPs. We next describe
the main concepts of our approach:

(i) framework core implements the mandatory functionality of a software family.
Similar to a traditional OO framework, this core structure contains the frozen-spots that
represent the common features of the software family and hot-spot classes that represent non-
crosscutting variabilities from the domain addressed;

(ii) variability aspects implement optional or alternative features existing in the
framework core. These elements extend the framework EJPs with any additional crosscutting
behavior;

(iii) integration aspects define crosscutting compositions between the framework core
and other existing extensions, such as an API or an OO framework. These elements also rely
on the EJPs specification to define their implementation.

The design of an OO framework with aspects following our approach is shown in Figure
1. According to this figure, both variability and integration aspects intercept only join points
matched by pointcuts in the EJPs provided by the framework; further, such aspects must
comply with all the constraints defined by the EJPs. This brings systematization to the

XX Simpósio Brasileiro de Engenharia de Software

181

framework extension and composition with other artifacts, providing a number of benefits
[19], such as enhanced understandability and evolution of the framework core, safe
framework reuse, and pluggable/unpluggable crosscutting framework extensions.

Framework Core

Hot Spots

Hot Spot Instances

Frozen Spots
EJPs

EJPs
<<crosscuts>>

Integration
Aspect

Aspect

Framework
or API

<<calls>>

Variability
Aspects

Aspect

<< uses >>

<<crosscuts>>

<<uses>> <<uses>>

Aspect

Legend:
Class

Aspect
Aspect with EJPs

Framework Core

Hot Spots

Hot Spot Instances

Frozen Spots
EJPs

EJPs
<<crosscuts>>

Integration
Aspect

Aspect

Framework
or API

<<calls>>

Variability
Aspects

Aspect

<< uses >>

<<crosscuts>>

<<uses>> <<uses>>

Aspect

Legend:
Class

Aspect
Aspect with EJPs

Figure 1. Elements of our Framework Development Approach

4. Implementing Extension Join Points with AspectJ
In this section, we explore the use of AspectJ language to specify the framework extension
join points. The EJP codification in AspectJ language brings the following advantages to the
framework extension process: (i) it enables the developer to expose a set of join points that
are spread in the framework in a single aspect, that can be used to extend the framework
functionality with integration and variability aspects; and (ii) it allows the representation of
many constraints – that must be satisfied when extending those join points – in a way that
they will not just be stated but they will be enforced during compilation and runtime. Next
sections detail how we have implemented our EJPs in AspectJ.

4.1 EJPs Structure
The way we codified the EJP in AspectJ-style was inspired in the way Griswold et al [16]
codified the XPIs. Each EJP is represented by an aspect comprising a set of pointcut
descriptors that represents the set of extension join points of a framework. The EJP
constraints which regulate the relationships between the framework, EJPs and extension
aspects (mentioned in Section 3.1) are represented, in our approach, by separate aspects.
However, we have defined a different methodology from the proposed by Griswold et al [16]
to specify these constraints. We have classified them in the following categories: (i)
framework internal contracts - contracts between the framework and its EJPs – and (ii)
framework extension contracts - contracts between the EJPs and its extension aspects. The
next section describes in detail the kinds of contracts defined in our categorization. Table 1
presents the main elements which comprises an EJP in AspectJ.

4.2 EJPs Contracts
During the definition of the EJPs` contracts, we first categorized the kinds of contracts that
should exist between the elements of our approach (Figure 1); we next evaluated different
ways to specify them in AspectJ. In the following, we detail our categorization of contracts
and the guidelines on their implementation.

The framework internal contracts define constraints whose purpose is to assure that
framework refactorings and evolution do not affect the functionality of its extension aspects.
They are classified in the following categories: (i) structural – which aims to guarantee the

XX Simpósio Brasileiro de Engenharia de Software

182

framework implements specific interfaces defined by the EJPs; and (ii) behavioral – which
assures the framework EJPs comprises all and only the framework events (or states) that the
EJP is intended to expose.

The framework extension contracts are used to assure that each extension aspect respects
constraints and invariants of the framework. The following categories were defined: (i)
structural – these contracts assure that aspects only extend the framework join points exposed
by the EJPs; (ii) behavioral – specify the framework classes’ methods that can be invoked by
the extension aspects; and (iii) invariants – define specific pre- and pos-conditions that must
be preserved before and after the execution of extension aspect advices.

Tables 2 and 3 present the EJP contracts categorization. They also show the different
mechanisms of AspectJ that we have used to implement them. AspectJ offers several
mechanisms that can be used to specify our different contracts. When choosing mechanisms
for each contract type, we prefer static mechanisms to dynamic ones, since only the former
can be verified in compilation time, which is the case of the declare parents, declare
error and declare warning statements. Some kinds of contracts, however, depend on
dynamic information to be implemented. For these specific cases (such as verification of
framework invariants), we have used the adviceexecution pointcut designator of AspectJ,
which allows to intercept the execution of advices. Next section details the specification of
EJPs for our case studies, including the implementation of their respective contracts.

Element Name Purpose
Name Specifies the name of the EJP, and is represented by the aspect’s name in

AspectJ.

Scope
Defines all the framework elements that are “encapsulated” by the EJP. It is
represented by an AspectJ pointcut descriptor using the within designator
including all the packages that comprises the framework (a scope example can be
seen in Figure 2).

Crosscutting
Extension Points

Quantifies the framework join points that represent relevant events or transition
states occurring during the execution of the framework functionalities.

Accessors

Defines a set of pointcuts whose goal is to act for an aspect like accessor methods
acts for a class. They expose EJP-specific information, which is useful for the
definition of EJP contracts, such as:

• EJP main purpose: each EJP should have a main purpose which can be, for
example, to expose a specific event or an abstract state of the system.

• All exposed join points
They are defined as protected because they should be used only by EJP
contracts.

Framework Internal
Contracts

These contracts constrain the framework developer to expose in the EJP all the
events that are expected to be exposed and to implement (in the framework) any
interface, which is necessary for the exposure of such events.

Framework Extension
Contracts

These contracts regulate the interaction between extension aspects and EJPs.
The internal and extension contracts are defined in a separate aspect, in AspectJ.

Table 1. EJP Main Elements

Contract Type AspectJ Implementation

Structural
Specification of interfaces that must be implemented by framework classes. The
obligation to implement these interfaces is assigned by the EJPs using the declare
parents inter-type construction of AspectJ. The interfaces are also declared inside
the aspects that represent the EJPs.

Behavioral
Implementation of enforcement policies guaranteeing that the extension join points
are called only and in all appropriate places inside the framework. This contract can
be specified using declare warning and declare error AspectJ statements.

Table 2. Framework Internal Contracts

XX Simpósio Brasileiro de Engenharia de Software

183

Contract Type AspectJ Implementation

Structural
This contract can not be implemented in AspectJ, due to a current limitation of the
language which does not allow the developer to restrict specific join points to be
affected. Hence, to assure that extension aspects can only extend the EJPs, the
developers must follow the programming practice of using only pointcuts specified in
the EJP aspects.

Behavioral

This kind of contract restricts the framework classes’ methods that can be accessed
inside the extension aspects. There are two different ways to specify it: (i) using
declare warning and declare error AspectJ statements, which allow the
static verification of policies; and (ii) by defining advices which intercept every advice
execution that realizes calls to the framework classes’ methods. The
adviceexecution() pointcut designator is used to intercept the advices
execution.

Invariants
This contract defines pre- and pos- conditions that must be assured before and after
the advice execution. These contracts are also defined using adviceexecution()
pointcut designator to intercept the advices execution.

Table 3. Framework Extension Contracts
5. Case Studies
We have conducted three different case studies in which we analyze the use and suitability of
AspectJ language to codify our framework EJPs. We selected frameworks from different
domains and codified their EJPs and extension aspects using AspectJ language. Due to space
limitation, the following sections briefly describe the implementation of EJPs for two case
studies. For a complete description of the implementation of EJPs and extensions aspects for
these case studies, please refer to [18]. Section 6 discusses lessons learned and guidelines
derived from our case studies.

5.1 JUnit
The main purpose of the JUnit framework is to allow the design, implementation and
execution of the unit tests in Java applications. According to the JUnit framework, each unit
test is responsible for exercising one class method in order to assure that it performs as
expected. The JUnit main functionalities are: the definition of test cases or suites to be
executed; the execution of a selected test case or suite; and the collection and presentation of
the test results. However, different extensions can be implemented to add new functionalities
into the JUnit framework core. Some examples of simple extensions are the following:

(i) enable JUnit to execute each test suite in a separate thread, and wait until all tests
finish. In order to implement this extension we need to observe the event when the test suite
starts running, the event when each test method runs, and the event when the test suite stops
running.

(ii) enable JUnit to run each test repeatedly. In order to implement this extension we
need to observe the event when each test method runs.

These extensions need to observe JUnit internal events, which are spread over JUnit
classes. In other words, such extensions are not well modularized in the object-oriented
design. In our approach, an EJP was used to expose such key events that are not adequately
captured by the OO design and that are useful for crosscutting compositions scenarios. Figure
2 presents an EJP, called TestExecutionEvents, which exposes a set of join points in the
JUnit framework. Some of these join points were discovered by checking them against these
anticipated crosscutting extension scenarios. Based on this first set of discovered join points,
we could foresee other relevant events that may be of interest when extending JUnit.

The TestExecutionEvents EJP facilitates the definition of JUnit framework crosscutting
extensions, since we can implement the extension aspects by reusing join points exposed by
it. If necessary, extension aspects can also define more specific EJP-based pointcuts.
Therefore, it is possible to codify aspects that affect only specific test cases or suites defined
to test an application. In order to do it, it is only necessary to append a sub-expression to the

XX Simpósio Brasileiro de Engenharia de Software

184

EJP pointcuts when defining an advice (e.g. <EJP_pointcut> && within(<AppTestCase>)).
Besides the public pointcut descriptors, the EJP also contains a set of protected pointcuts
which represents the EJP scope and the EJP accessors detailed in Section 4.1.

Figure 2. The AspectJ code of one EJP for JUnit framework

Figure 3. Corresponding contract of TestExecutionEvents EJP.

As discussed in the previous sections, each EJP contains a set of contracts regulating the
internal and extension constraints. Figure 3 illustrates the TestExecutionEventsContracts
aspect. This aspect contains one internal contract constraining the designer to assure that the
pointcut descriptors (PCD) defined in the EJP comprises all and only the join points that
results in test method executions. In other words, if any method not specified in an EJP
pointcut (!TestExecutionEvents.EJPMethodsScope()) tries to call a unit test
(TestExecutionEvents.MainPurpose()) a contract violation will be signed at compilation time.

1. public aspect TestExecutionEventsContracts {
2. //Behavioral Internal Contract
3. declare error:
4. (!TestExecutionEvents.EJPMethodsScope() &&
5. TestExecutionEvents.MainPurpose()):
6. "Contract violation: Test execution should occur "+
7. "through one of the methods: Test.run(), TestSuite.run(),"+
8. "TestSuite.runTest(),TestCase.run(), TestCase.runTest()";
9. //Behavioral Extension Contract
10. public pointcut variabilityaspects(): within(variabilityaspects..*);
11. before() : cflow (adviceexecution() && !variabilityaspects()) &&
12. (call(* *(..)) && TestExecutionEvents.FWScope()){
13. throw new RuntimeException("Contract Violation: no aspects, except" +
14. " variability aspects, can access the elements of JUnit framework.");
15. }
16. ...
17.}

public aspect TestExecutionEvents {
 //Needed by: RepeatAllTests extension

public pointcut testExecution(Test test):
 target(test) && call (void Test.run(TestResult));
 //Needed by: ActiveTestSuite extension

public pointcut testSuiteExecution (TestSuite ts,TestResult rs):
 target(ts) && call (void TestSuite.run(TestResult)) && args(rs);
 //Needed by: ActiveTestSuite extension

public pointcut testExecutionFromSuite(TestSuite ts,Test t,TestResult rs):
 target(ts) && call (void TestSuite.runTest(Test, TestResult)) &&
 args(test, result);
 //It is not already used any anticipated extension

public pointcut testCaseExecution (TestCase tc, TestResult rs):
 target(tc) && call (void TestCase.run(TestResult)) && args(rs);
 //AUXILIARY METHODS:
 protected pointcut EJPMethodsScope():
 withincode (void TestSuite.runTest(Test, TestResult)) ||
 withincode (void TestCase.runTest()) ||
 withincode (void TestSuite.run(TestResult));
 withincode (void Test.run(TestResult));
 // Framework Scope

protected pointcut FWScope(): within(junit..*);
 //The main propose of this EJP is to expose all the points in the
 // framework that result in a test execution.

protected pointcut MainPurpose(): call (void TestResult.run(Test));
}

XX Simpósio Brasileiro de Engenharia de Software

185

The extension contract illustrated in Figure 3, assures that: no aspect, except the variability
ones, can directly or indirectly, call a method, create an instance, or access an attribute of an
element defined inside JUnit framework. The adviceexecution() matches the join points
representing the execution of any advice. The expression adviceexecution() &&

!variabilityaspects(), defined in line 11, matches join points that occur during the
execution of an advice and that are not defined inside a variability aspect – we defined, in line
10, that every variability aspect will be stored on packages matching the pattern
variabilityaspects..*. This expression surrounded by cflow designator, matches the advice
execution of non-variability aspects, or any method in the control flow of the advices defined
in such aspects. Finally, the expression call(* *(..)) && TestExecutionEvents.FWScope()
matches any method call, instance creation, or access an attribute of an element defined inside
JUnit framework. Figure 4 shows the TestExecutionEvents EJP, which crosscuts JUnit
elements and is used by a set of extension aspects.

Figure 4. Overview of JUnit Framework and some crosscutting extensions.

5.2 J2ME Game Software Product Line
In this case study, we implemented variant features of an industrial J2ME game Software
Product Line1 based on EJPs. J2ME games are mainstream mobile applications of
considerable complexity [2]. Their overall structure and behavior are defined by a framework
known in this domain as the game engine. Essentially, this is a state machine whose state
change is driven by elapsed time and user input through the device keypad. State changes
affect the state of various drawing objects (game actors) and how they interact. Then, these
objects are drawn again after such state changes. Typical hot-spots of this framework include
some abstract classes defining basic drawing capability for game actors.

The case study implementation exposed game engine EJPs in order to allow the
composition of crosscutting extensions in its basic functionality. Some interesting EJPs are
the following: (i) how images are initialized and used; (ii) drawing of specific images; and
(iii) game startup and changing screens. We have chosen these EJPs because they represent
relevant events that can be of interest when extending the game engine core workflow. The
resulting SPL architecture is shown in Figure 5. Package rain.core denotes the SPL core,

1 Access to the game SPL instances was provided by Meantime Mobile Creations/CESAR.

XX Simpósio Brasileiro de Engenharia de Software

186

i.e. the game engine. Package extension join points encapsulate all the EJPs, which are
used by variability aspects and integration aspects in corresponding packages to implement
crosscutting extensions.

Figure 5. Architecture of the J2ME Game Product Line.

For example, the DrawingEvents and the ResourceEvents EJPs were composed with
variability aspects to implement the alternative features for drawing some images. Specific
images may be drawn at various locations and, under certain circumstances, may be
transformed (rotated, flipped), which may be accomplished either manually (ManualFlip
variability aspect) by using fresh new images or automatically (AutomaticFlip variability
aspect) by transforming the original ones by calling device proprietary drawing API. In fact,
this latter aspect also behaves as an integration aspect, due to the interaction with the
proprietary API (another framework). Therefore, the fact that such aspect is in two packages
is merely a logical, but not a physical view. By exposing these EJPs and composing them with
variability and integration aspects, we provide modular implementation for the variant
features the aspects represent.

In particular, the FlipBase aspect depends on the DrawingEvents EJP, which specifies
all relevant events needed by such aspect, namely the drawing of images of game objects
(Figure 5). We sketch this EJP in Figure 6:

Figure 6. Structure of the DrawingEvents EJP.

public abstract aspect DrawingEvents {
 /* The purpose of the drawingImage PCD is to expose all and only
 drawing requests of images associated to game items that move around the
 game screen. All such requests must be implemented by call to a method
 matching the PCD. We require aspects advising this PCD to access only
 some framework objects through the Drawable or Graphics types. */

public interface Drawable {
 public void drawImg(Graphics g, int ofsX);

...
}
declare parents: Enemy implements Drawable;
declare parents: Fire implements Drawable;
public pointcut drawingImage(Drawable d, int offSetX, Graphics g) :

 execution(public void Drawable.drawImg(Graphics, int))
 && this (d) && args(g, offSetX);
 ...

}

XX Simpósio Brasileiro de Engenharia de Software

187

The comment in the EJP is a semantic specification of the framework internal contract
and the framework extension contract. In the former, the core must signal its intent of drawing
image of game items by calling specific methods of the Drawable interface, which it must
implement (declare parents constructs), thus forcing the contract; in the latter, the
variability aspect should access framework context only through the EJP; further, such aspect
cannot access internal framework details. This constraint can be checked with the declare
warning construct in the aspect in Figure 7.

Figure 7. Contract checking for EJP.

The FWScopeNotAllowed() pointcut denotes calls to framework internal types, where
we assume that the Drawable interface and the Graphics class should be visible to the
variability aspects. The aspectsPackages()denotes calls within such aspects.

Figure 5 also shows other EJPs in the SPL, representing additional crosscutting
extensions; it further illustrates that one EJP may be used by more than on variability or
integrability aspects, and, conversely, that each such aspect may extend more than one EJP.

6. Discussion and Lessons Learned
This section provides further discussion of issues and lessons we have learned in the
evaluation of our approach and the use of AspectJ to implement our EJPs.

6.1 EJP-based Approach Analysis
EJPs stability. EJPs specify not only a set of extension join points in which frameworks can
be extended, but they also represent the interfaces between the framework classes and
extension aspects. In this sense, they have the same purpose of the XPIs, proposed by
Griswold et al [16]. Hence, the implementation of EJPs gives us the benefit to evolve the
framework classes without break the aspects that extend its functionality. However, to achieve
this benefit is important that joins points exposed by EJPs and their respective contracts
remain working when refactoring the framework classes. EJPs can also evolve to
accommodate new requirements required by the extension aspects, such as, the exposition of
new framework join points or the exposition of additional arguments in the existing join
points exposed. All the contracts defined by the EJPs must be revalidated and if necessary
rewritten during the refactoring and evolution of EJPs due to change in the framework classes
or new demands in the extension aspects.

EJPs modeling. EJPs can also be considered framework hot-spots [11]. They represent
flexible points in the execution of specific framework scenarios that can have a crosscutting
extension inserted. We have encountered in our case studies that although the modeling of
EJPs is dependent on the framework domain, they in general represent relevant events or
transition states occurring during the execution of the framework functionalities. Since the
EJPs are modeled to accommodate the insertion of optional, alternative and integration

public aspect DrawingExternalContractChecker {
 // Framework Scope – Calls Not Allowed
 public pointcut FWScopeNotAllowed():

call (* !(Drawable+||Graphics).*(..)) && call (* raincore.*.*(..));

 public pointcut aspectsPackages(): within(variabilityaspects..*);

 declare warning: FWScopeNotAllowed() && aspectsPackages():
"Extension aspects are accessing internal framework details";

}

XX Simpósio Brasileiro de Engenharia de Software

188

features in the framework, the early identification of these elements in the domain analysis
[10] also helps the EJPs modeling.

EJPs as Architectural Enforcement. In our approach, framework classes and extension
aspects are constrained to interact in a manner that respects EJPs’ contracts. Since EJPs
provide a way for the definition of inter-module interactions, it can also be useful for the
enforcement of architectural properties in general. Architectural properties, like the extension
join points, are not localized in a single system module, they must be observed in many of
them. Using EJPs contracts to enforce architectural policies can bring more robustness to
aspect oriented systems.

EJPs Specialization. EJPs expose framework join points in which can be inserted new
crosscutting behaviors by means of the extension aspects. Since many of these join points can
be some of the hook methods of framework hot-spots, EJPs can also be specialized to affect
only specific hot-spots instances. In JUnit case study (Section 5.1), for example, we have
presented an example of EJP pointcut which can be customized to affect only specific
instances of test cases and suites. In that case, the pointcut defined in the EJP need be
redefined by the developer implementing the extension aspect that will use it.

6.2 EJPs Implementation in AspectJ
Contracts Implementation in AspectJ. The AspectJ available mechanisms allowed the
implementation of four kinds of EJP contracts defined in our category (Section 4.2). Three
different mechanisms were used to implement them: (i) the declare error and declare
warning statements to enforce policies between the framework, EJP and aspects; (ii) the
declare parents statement that guarantees framework classes implement interfaces defined
by the EJPs; and (iii) adviceexecution pointcut designator which allows to intercept advices
and define specific contracts to be validated before and after their executions. There are
specific constraints that cannot be checked with aspects; for example, fields introduced into
core classes by means of inter-type declaration should not be accessed by the core (thus
resulting in a dependency of the core into the aspects). This cannot be checked statically by
aspects, thus requiring an enhanced analysis tool.

Join Point Encapsulation. The only kind of contract not implemented in AspectJ language
was the extension contract which determines that aspects can only extend the framework join
points exposed by the EJPs. Currently, there is no existing mechanism in AspectJ to restrict
advices to extend specific join points. The programming practice to allow developers to only
reuse the join points exposed in the EJPs was used in our case studies to guarantee this kind of
contract. Larochele et al [22] have proposed a mechanism, called join point encapsulation,
which aims to prevent selected join points from being modified by aspects. They extend the
AspectJ language to support their restrict statement whose implementation allows to
prevent the access to specific join points. Since this mechanism was implemented only to
previous versions of AspectJ, we did not have the chance to experiment it in our case studies.

Annotation-based Pointcuts. AspectJ [3] has recently incorporated mechanisms to specify join
points using Java annotations. EJPs can benefit from this mechanism by allowing inserting the
annotations directly in the framework classes’ join points being affected. This implementation
decision can give more stability (Section 6.1) to the EJPs, since signature-based pointcuts are
subject to changes when the framework needs to be constantly refactored. In other words,
annotation-based pointcuts now available in AspectJ can become the EJPs more robust in
scenarios where the use of the signature-based model generates pointcuts complex and
difficult to maintain.

XX Simpósio Brasileiro de Engenharia de Software

189

Interface-based Contracts. EJP can define interfaces and specify that types in the framework
implement these interfaces by means of the declare parents static crosscutting construct
available in AspectJ. This structural internal contract is important for promoting higher
abstraction for the extension aspects, since these will intercept events on generic rather than
specific types, thus leading to reduced coupling with the framework and to higher reuse of
extension aspects.

7. Related Work

Our concept of EJPs is inspired by Sullivan et al’s work [30] on specification of crosscutting
interfaces (XPIs). XPIs abstract crosscutting behavior, isolating aspect design from base code
design and vice-versa. Continuing this work, Griswold et al show how to represent XPIs as
syntactic constructs [16]. EJPs play a similar role to XPIs, but specifically in the context of
framework development, by exposing a set of framework events for notification and
crosscutting composition, and by offering predefined execution points for the implementation
of optional and alternative features. In the specification of the semantic part of EJPs, however,
we have defined a different methodology to specify the constraints which regulate the
relationships between the framework, EJPs and extension aspects.

Open Modules [1] introduces a strong form of encapsulating join points occurring inside
a module. It permits defining an interface composed by set of pointcuts that can be advised by
clients. Any other join point that occurs inside the module is protected from external advising.
It permits evolution of a module implementation without considering the aspects advising
exported pointcuts, since no changes are made on the interface. It’s possible because the
aspects are coupled with the module exclusively by the module’s interface. However, Open
Models has a limitation on the pointcuts that can be written on the interfaces. These poincuts
can only intercept join points occurring inside the module, making impossible writing an
interface that crosscuts more than one module. Our approach doesn’t have this limitation,
since an EJP can declare pointcuts (extension points) involving join points occurring in any
number of classes. We use contracts based on AspectJ’s inter-type constructions (declare
error and warning) to control coupling between framework core, EJPs and extension aspects.

Feature oriented approaches (FOAs) have been proposed [29] to deal with the
encapsulation of program features that can be used to extend the functionality of existing base
program. Batory et al [5] argue the advantages that feature-oriented approaches have over OO
frameworks to design and implement product-lines. Mezini and Ostermann [25] have
identified that FOAs are only capable of modularizing hierarchical features, providing no
support for the specification of crosscutting features. These researchers propose CaesarJ [26],
an AO language that combines ideas from both AspectJ and FOAs, to provide a better support
to manage variability in product-lines. Our approach is directly related those authors work,
since we believe that the design of product-line architectures may benefit from the
composition and extension of different frameworks using integration and variability aspects.
Additionally, we propose the definition of EJPs as a form of reducing and exposing coupling
between the framework core and its extensions, witch are implemented using aspects.

Zhang and Jacobsen [30] propose the Horizontal Decomposition method (HD), a set of
principles guiding the definition of functionally coherent core architecture and customizations
of it. They suggest dividing the middleware in core and aspects that customize the core with
orthogonal functionality. HD adopts obliviousness as a principle, suggesting that framework
core should be unaware of the aspects. Our approach suggests that is necessary to use some
mechanism to control and expose coupling between framework core and its extension, witch
we called EJPs.

XX Simpósio Brasileiro de Engenharia de Software

190

Mortensen and Ghosh [27] investigate how AOP helps using and extending object-
oriented frameworks in VLSI CAD applications. They suggests that in general the code
necessary for integrating the framework into the application is crosscutting, and shows that
using AOP it was possible to better modularize that code, reducing the number of lines of
code and also improving the application structure. They propose using AOP for constructing a
reusable library of framework-based aspects useful in a family of framework-based
applications. Our approach suggests using aspects not only for integrating frameworks into
applications, but also for composing independent frameworks. Another difference is that we
advocate using aspects inside the frameworks to capture crosscutting concerns and expose
these extension points.

8. Conclusions and Future Work
In a previous work, we proposed a framework extension approach based on the use of
Extension Join Points (EJPs). EJPs enable the framework systematic extension by means of
variability and integration aspects. In this paper, we have shown how EJPs can be
implemented using the mechanisms of the AspectJ language. Our EJPs were implemented by
exposing specific framework join points using AspectJ pointcuts and by defining a set of
contracts specified using different static and dynamic AspectJ mechanisms. These contracts
play a fundamental role in our approach because they help to govern the relationships
between the framework and extension aspects by ensuring that important constraints
respected.

As future work, we intend to continue the evaluation of the approach in the development
and refactoring of object-oriented frameworks. We also plan to realize quantitative studies [6,
15] to compare the approach with the use of OO techniques with respect to traditional
software metrics. In order to enable the adoption of our approach, we intend to derive a more
systematic implementation method which offers more detailed steps and guidelines to the
design and implementation of extensible OO frameworks with aspects. Finally, we plan to
explore the extension of current domain analysis and design methods [10] to support the early
modeling of extension join points and framework extension aspects. This also involves to
investigate the suitability of UML-based notations to represent the EJPs, such as the aSideML
crosscutting interfaces [7].

Acknowledgments. We would like to thank the members of Software Productivity Group at
Federal University of Pernambuco for valuable suggestions for improving this paper. This
research was partially sponsored by FAPERJ (grant No. E-26/151.493/2005 and No. E-
26/100.061/06), CNPq (grants No. 552068/2002-0, 481575/2004-9 and 141247/2003-7),
MCT/FINEP/CT-INFO (grant No. 01/2005 0105089400), and European Commission Grant
IST-2-004349: European Network of Excellence on AOSD (AOSD-Europe).

References

[1] J. Aldrich, “Open Modules: Modular Reasoning about Advice,” Proceedings of ECOOP’05, LNCS 3586,
Springer 2005, pp. 144–168.

[2] V. Alves, P. Matos, L. Cole, P. Borba, G. Ramalho. “Extracting and Evolving Mobile Games Product
Lines”. Proceedings of SPLC'05, LNCS 3714, pp. 70-81, September 2005.

[3] AspectJ Team. The AspectJ Programming Guide. http://eclipse.org/aspectj/.

[4] C. Baldwin, K. Clark. Design Rules: The Power of Modularity. MIT Press, Cambridge, MA, 2000.

[5] D. Batory, R. Cardone, and Y. Smaragdakis, Object-Oriented Frameworks and Product-Lines. 1st Software
Product-Line Conference (SPLC), pp. 227-248, Denver, August 1999.

[6] N. Cacho, et al. Composing Design Patterns: A Scalability Study of Aspect-Oriented Programming.
Proceedings of AOSD'06, Bonn, Germany,2006.

XX Simpósio Brasileiro de Engenharia de Software

191

[7] C. Chavez, A. Garcia, U. Kulesza, C. Sant’Anna, C. Lucena. Taming Heterogeneous Aspects with
Crosscutting Interfaces. Journal of the Brazilian Computer Society, 2006 (to appear).

[8] W. Codenie, et al. “From Custom Applications to Domain-Specific Frameworks”, Communications of the
ACM, 40(10),October1997.

[9] A. Colyer, et al. Eclipse AspectJ: Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ
Development Tools, Addison-Wesley, 2004.

[10]K. Czarnecki, U. Eisenecker. Generative Programming: Methods, Tools, and Applications, Addison-
Wesley,2000.

[11]M. Fayad, D. Schmidt, R. Johnson. Building Application Frameworks: Object-Oriented Foundations of
Framework Design. John Wiley & Sons, September 1999.

[12]R. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software Development. Addison-Wesley, 2005.

[13]R. Filman, D. Friedman. Aspect-oriented programming is Quantification and Obliviousness. In [12], pp. 21–
35. Addison-Wesley, 2005.

[14]E. Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[15]A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, A. Staa. Modularizing Design Patterns with
Aspects: A Quantitative Study. Proc. 4th Intl. Conference on Aspect-Oriented Software Development,
Chicago USA, March 2005.

[16]W. Griswold, et al, "Modular Software Design with Crosscutting Interfaces", IEEE Software, Special Issue
on Aspect-Oriented Programming, January 2006.

[17] G. Kiczales, et al. Aspect-Oriented Programming. Proc. of`ECOOP’97, Finland, 1997.

[18]U. Kulesza, et al. “Implementing Framework Crosscutting Extensions with EJPs and AspectJ”, Technical
Report, PUC-Rio, Brazil, August 2006.

[19]U. Kulesza, V. Alves, A. Garcia, C. Lucena, P. Borba. Improving Extensibility of Object-Oriented
Frameworks with Aspect-Oriented Programming, Proceedings of ICSR'2006, Springer Verlag, LNCS 4038,
pp. 231-245, Torino, Italy, June 2006.

[20]U. Kulesza, A. Garcia, C. Lucena. “Composing Object-Oriented Frameworks with Aspect-Oriented
Programming”, Technical Report, PUC-Rio, Brazil, April 2006.

[21]U. Kulesza, A. Garcia, C. Lucena, A. von Staa. “Integrating Generative and Aspect-Oriented Technologies”,
Proceedings of SBES’2004, pp. 130-146, Brasilia, Brazil, October 2006.

[22]D. Larochelle, et al., “Join Point Encapsulation,” Proc. Workshop Software Eng. Properties of Languages
for Aspect Technologies (SPLAT), 2003.

[23]M. Mattson, J. Bosch, M. Fayad. Framework Integration: Problems, Causes, Solutions. Communications of
the ACM, 42(10):80–87, October 1999.

[24]M. Mattsson, J. Bosch. Framework Composition: Problems, Causes, and Solutions. In [7], 1999, pp. 467-
487.

[25]M. Mezini, K. Ostermann: “Variability Management with Feature-Oriented Programming and Aspects”.
Proceedings of FSE’2004, pp.127-136, 2004.

[26]M. Mezini, K. Ostermann. “Conquering Aspects with Caesar”. Proc. of AOSD’2003, pp. 90-99, March 17-
21, 2003, Boston, Massachusetts, USA.

[27] M. Mortensen, S. Ghosh. Using Aspects with Object-Oriented Frameworks, Proceedings of AOSD’2006,
Industry Track, Bonn, Germany, March 20-24, 2006.

[28] D. Riehle, T. Gross. “Role Model Based Framework Design and Integration”. Proceedings of
OOPSLA’1998, pp. 117-133, Vancouver, BC, Canada, October 18-22, 1998.

[29]Y. Smaragdakis, D. Batory. Mixin Layers: An Object-Oriented Implementation Technique for Refinements
and Collaboration-Based Designs, ACM TOSEM, 11(2): 215-255 (2002).

[30] K. Sullivan, et al. Information Hiding Interfaces for Aspect-Oriented Design, Proceedings of
ESEC/FSE´2005, pp.166-175, Lisbon, Portugal, September 5-9, 2005.

[31] C. Zhang, H. Jacobsen. “Resolving Feature Convolution in Middleware Systems”. Proceedings of
OOPSLA’2004, pp.188-205, October 24-28, 2004, Vancouver, BC, Canada.

XX Simpósio Brasileiro de Engenharia de Software

192

