
Aspect-oriented Code Generation

Marcelo Victora Hecht, Eduardo Kessler Piveta,
Marcelo Soares Pimenta, R. Tom Price

Instituto de Informática
Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500 - Campus do Vale - Bloco IV
Bairro Agronomia - Porto Alegre - RS -Brasil

CEP 91501-970 Caixa Postal: 15064

{mvhecht, epiveta, mpimenta, tomprice}@inf.ufrgs.br

Abstract. The maturing of aspect-oriented software modeling approaches provides
support for the automatic generation of aspect-oriented code. In this paper we
describe several means for automatic code generation from Theme/UML models, and
discuss some difficulties involved in this process.
Resumo. O amadurecimento das abordagens de modelagem de software orientado a
aspectos fornece subsídios para a geração automática de código a partir de modelos
UML. Neste artigo são descritos diversos mecanismos para a geração de código a
partir de modelos Theme/UML, e são discutidas algumas dificuldades envolvidas
neste processo.

1. Introduction

High-level programming languages and Code generation are among the oldest and most
widespread techniques to accelerate the transformation process between the design of software
and its implementation in executable code. Programming languages facilitate the expression of
the solution for a given problem, reducing the amount of code needed and increasing the
proximity between the software and the artifacts whose behavior it tries to represent. Code
generation, by its turn, reduces the amount of code that has to be written, eliminating the
necessity of manual labor, in addition to reduce the chance of accidental programming errors
and simplifying the propagation of changes in design.

In the context of programming languages, one of the more recent advances is aspect-
oriented programming [Kiczales, et al. 1997]. It allows an explicit separation of concerns that
affect several parts of a software system, like security, persistence and tracing. In traditional
analysis and design methods, those concerns end up scattered throughout a system and tangled
with its functional requirements – this is called crosscutting. Aspect-oriented software
development allows those concerns to be modeled and implemented independently from each
other and from the main concerns of the system, improving several software quality factors such
as extensibility, maintainability and reusability.

In automatic code generation, extensive use has been made of standard system modeling
languages as UML [OMG UML 2004], allowing software specifications that are detailed,
understandable and with less ambiguities. Currently, a major topic of research within code
generation is MDA (Model-Driven Architecture) [OMG MDA 2001], a normalization of the
code generation concept using UML models, as well as other elements associated to them, such
as MOF [OMG MOF 2006], the metamodel on which UML itself is defined, and XMI [OMG
XMI 2005], the standard for interchange of UML data using XML documents. The goal of
MDA is to reduce as much as possible the cognitive distance between a system’s design and its
final implementation.

XX Simpósio Brasileiro de Engenharia de Software

209

The use of aspect-oriented programming generated a demand for software design
techniques that support its characteristics. One of the proposals for this is the Theme/UML
approach [Clarke 2001, Clarke and Baniassad 2004] using Composition Patterns. It has been
continuously developed since 1998 [Rashid, et al. 2005], aiming at managing the separation of
concerns earlier in the development cycle. Initially focused on subject-oriented programming
[Clarke, et al. 1999], it evolved to become the most general proposal currently available, and at
the same time compatible with several aspect-oriented programming languages [Clarke and
Walker 2001, 2002].

The existence of this type of model, and of its computer-understandable versions
(through XML-based representations), opens up the path to several possibilities, such as quality
metrics analysis, bad smell detection, refactoring, aspect extraction from traditional object-
oriented programs, and automatic aspect-oriented code generation.

The goal of this paper is to describe a way to generate code in the AspectJ language
[Kiczales, et al. 2001], the most extensively used aspect-oriented programming language today,
from UML models extended according to Theme/UML [Clarke 2001]. To this purpose, we
developed a XML representation of Theme/UML models, to serve a the input for a code
generator programmed using XSLT (Extensible Stylesheet Language Transformations) [XSLT
2.0 2005].

The paper has been divided as follows: in Section 2, we revise the requirements to build
a code generator, as well as the state of the art in this area, including MDA; in Section 3, we
briefly investigate possible intersections between code generation and aspect-oriented
programming; in section 4, we present a case study of the implementation of a aspect-oriented
code generator based on Theme/UML; Section 5 cites related work in the area of code
generation and aspect-oriented programming; and Section 6 contains our conclusions.

2. Code Generation

Code generation is the process of transforming high level artifacts – closer to the problem
domain – in lower-level ones – nearer to the solution’s architecture [Krueger 1992]. Although
the term is used in various contexts, in this paper we will assume that it refers to the automatic
conversion of a specification, in the form of high level models (like UML), into code (high level
or binary), circumventing costly and error-prone cycles of manual programming.

2.1. Requirements for code generation

A code generator has some prerequisites. A model of the desired system has to be provided and

Generator Specification

Production
Rules

Code
fragments

Metamodel

System

Generated System

Modules

Figure 1. Typical structure of a code generator.

XX Simpósio Brasileiro de Engenharia de Software

210

described within a metamodel that is sufficiently detailed and free of ambiguities to provide the
structure to be generated. Also necessary is a specification of the elements of the target domain
that will be composed to shape the final product, and rules, based on the contents of the
metamodel, specifying how this composition is accomplished (see Figure 1).

The metamodel is a data model able to store other system models in a way that a
computer can understand. It has to be specific to the generator’s purpose: a metamodel used by
an interface generator stores information about forms, fields, and user messages, while a
metamodel for object-oriented software contains specifications of packages, classes, properties
and methods. In Figure 2 we describe a metamodel regarding a simplified Java class model.

A code generator specification can be divided in two main pieces: the code fragments
and the production rules. Code fragments are usually pieces of programs, in the generator’s
target language, that will be assembled to generate the source code that will be the output of the
generator. They may have sections that are replaced with information contained in the
metamodel, such as element names. Production rules define how the structure described in the
metamodel will be converted to the structure of the composed code fragments in the output files.
It usually contains alternative, iterative and recursive elements.

Simpler code generators, usually developed for use by a small team to solve a specific
problem, such as creating object-relational mapping classes, generally don’t make a clear
distinction between the two parts. Code fragments are strings embedded in statements of an all-
purpose programming language that shape the production rules. More mature generators divide
the two parts more clearly, and frequently provide a form o programming devised specifically
for the definition of production rules.

Many modeling tools commercially available have integrated code generators ([Rational
Software 2005, ArgoUML 2005, Poseidon 2005]). They usually generate code according to a
fixed structure, or allow limited modification. There are also several tools available that are
designed specifically to build code generators ([codegen 2005, Velocity 2005, autogen 2005,
CodeSmith 2005]). Practically all of them combine a script language for the programming of the
production rules, and code fragments either embedded in the script or in separate files. One
alternative, with the increasing popularity of the XML metalanguage for data interchange, is its
use both to declare code fragments and to store the metamodel, and the use of XSLT [XSLT 2.0
2005], a programming language specialized in the transformation of XML documents, to define
production rules [Dodds 2005].

Figure 2. Metamodel for a simplified Java class model.

XX Simpósio Brasileiro de Engenharia de Software

211

2.2. Difficulties in Code Generation

The adoption of code generators can be hard, despite the gains this technology can convey. The
first difficulty is economical: for something to be reused, it first must be developed, and
sometimes this expense can’t be justified [Biddle, et al. 2003]. Other common demands for to
any kind of software, like the necessity of a detailed documentation, and concern for changes
that can cause collateral effects with interacting systems, become especially important with code
generators [Krueger 1992]. To maximize the gain offered by the generator, it is important to
educate as many users as possible about its capabilities. And a badly planned modification in a
code generator might impact the entire code base that depends on it.

Another problem comes up when the standard for the generated artifacts need to be
modified, because changes made to those after the generation may be lost. Code generators can
be divided as passive – creating each artifact only once – or active – designed to generate the
same artifact many times according to changes in the model or in the generator [CGN 2005].
Passive generators create the initial code for the software, but can’t be used for maintenance of
already modified artifacts, and thus don’t have the benefit of propagating changes in the model
or in the generated standard to an existing system. Active generators allow the same code
module to be generated any number of times, by the use of features like protected code sections
that are copied from one version to the next.

Finally, often users of a generator face the need to use newer versions of a generator, in
order to use new features, but to simultaneously keep in place older versions, to keep the
compatibility with existing artifacts. Therefore, code generators are yet another dimension
where maintainability problems can take place.

In section 3 we suggest ways by which AOP can help with some of those issues.

2.3. Model Driven Architecture

The advent of UML as a de facto standard for object-oriented software specification and
modeling made it also the metamodel of choice to feed code generators. Because of that, the
OMG developed the MDA (Model Driven Architecture) [OMG MDA 2005, Miller and Mukerji
2003] standard, with the intention of offering an vendor- and technology-independent platform
for application development. According to OMG, development using MDA focuses in the
functionality and behavior of a system, undistorted by the idiosyncrasies of the technological
platform where it will be used. MDA attempts to separate implementation details from the
business requisites, and consequently it is not necessary to repeat the whole process of modeling
application requisites when there is a technology change.

MDA is based on several OMG specifications: the UML language is used to specify the
system; the MOF (MetaObject Facility [OMG MDA 2005]) is used to store the UML model;
and XMI (XML Metadata Interchange [OMG XMI 2005]) is used for the communication
between the metamodel and the code generator tools.

3. Applying aspect-oriented concepts to code generation

Application generators are one of the most powerful reuse techniques available, able to output
thousands of lines of code from a relatively small input set. On the other hand, they are also one
of the least adaptable techniques, each one being designed to a specific type of output. High-
level programming languages are also a form of reuse, in the sense that they allow more
functions to be included in a system with less lines of code [Biggerstaff 1999].

It is appealing then to investigate how aspect-oriented programming can be combined to
automatic code generators in order to combine the benefits of both technologies. This
intersection may happen in two ways: aspect-oriented programming can be used in the

XX Simpósio Brasileiro de Engenharia de Software

212

development of code generators, and a code generator can have aspect-oriented code as its
target. While our focus in this paper is on the latter approach, in this section we will briefly
investigate the former.

Initially, the advantages that AOP brings to the development of code generators are the
same that it adds to any system: simplified development, ease in maintenance, increased
understandability, etc.

Some ideas from aspect-orientation may be especially useful for the creation of code
generators. It can, for example, be used to parameterize a generator, so that it can generate
different outputs, according to the aspects selected to be weaved with it. This device can be used
even to maintain several versions of the generator active.

Aspects may also be used to simplify the problem of evolving code generators, if the
modification of the generated artifacts is implemented through advices and intertype
declarations. That would allow the base artifacts to be generated again at will without breaking
the modifications (unless join points in the base artifact were modified). For that to be possible,
the generator itself could be unaware of AOP, as long as the programming language of the
generated artifacts contemplates concern separation, or has some extension for that purpose. As
an example, classes created by a Java code generator can be modified by aspects using AspectJ.

Biggerstaff [Biggerstaff 1998] draws a parallel between code generation and aspect-
oriented programming, stating that code generation is a form of weaving code fragments. He
also suggests that aspect-oriented techniques may increase the power of component libraries,
granting the ability to change its components and multiplying their capabilities.

4. Implementing an automatic generator for Aspect-oriented code

In this section, we describe our efforts to implement an automatic code generator capable of
transforming an aspect-oriented model into aspect-oriented code. We do not propose, at this
time, to contemplate the contents of methods and advices, although, with sufficiently detailed
interaction diagrams, it might be possible.

4.1. Challenges in generating aspect-oriented code

Figure 3. UML model of the example system (without Theme/UML extensions)

XX Simpósio Brasileiro de Engenharia de Software

213

A problem in generating aspect-oriented code is the lack of a standard modeling form that
explicitly contemplates separation of concerns. Most of the proposed methods ([Groher and
Baumgarth 2004, Chavez and Lucena 2002, Stein, et al. 2002, Basch and Sanchez 2003],
[Pawlak, et al. 2002]) provide, as evidence of its validity, the correspondence between the
models they define and an implementation in AspectJ. However, none has the required level of
detail for automatic code generation, relying on human interpretation of the models to create
code.

The paper that presents the most detailed implementation is [Clarke and Walker 2002],
where the authors try to demonstrate that the Theme/UML approach [Clarke and Baniassad
2004], based on the composition patterns approach, is compatible with several implementations
of aspect-oriented programming, including AspectJ. Even so, their approach is very complex,
and the mapping between it and AspectJ is not trivial.

We developed a library maintenance system similar to the one used as an example in
[Clarke and Walker 2001, 2002]. The base system controls the location of books, as well as
loans and returns. Over that, the Observer design pattern [Gamma, et al. 1994] is applied as a
crosscutting concern, for the book manager class to be aware when a copy is lent or returned
(Figure 3). On aspect weaving, the aStateChange advice of Subject is to be associated with the
join points corresponding to the borrow() and return() methods from class BookCopy, while the
update() method from Observer is to be introduced to class BookManager. The use of aspects to
implement design patterns is explored in more depth in [Garcia, et al. 2005] and [Hannemann
and Kiczales 2002].

The target code for the system is presented in Figure 4. For reasons of reusability and
evolvability described in [Clarke and Walker 2002], each CP in the model becomes an abstract
aspect with abstract pointcuts, and the binding between the CP and the base packages turns into
an aspect that makes those pointcuts concrete. This process is detailed in section 4.4. The code
depicted is the output of the code generator; the only hand-made modification made was in the
formatting and indentation for presentation purposes.

package library;

import java.util.Vector;

public abstract aspect Observer {
interface ISubject {}

interface IObserver {
public void update();

 }

 Vector ISubject.observers;

private void
 ISubject.notify_() {}

abstract pointcut
 aStateChange(ISubject s);

after(ISubject s):
 aStateChange(s) {
 s.notify_();
 }
}

package library;

public aspect LibraryObserver
extends Observer {

declare parents: BookCopy
implements ISubject;

declare parents: BookManager
implements IObserver;

public void BookManager.update() {
this.updateStatus();

 }

pointcut aStateChange(ISubject copy):
target(copy)

 && args(..)
 && (execution

(* BookCopy.borrow(..))
 || execution

(* BookCopy.returnIt(..)));
}

Figure 4. Listing of AspectJ code for the Observer composition pattern and LibraryObserver
binding (manually indented for better understanding).

XX Simpósio Brasileiro de Engenharia de Software

214

4.2. The Theme/UML approach [Clarke and Baniassad 2004]

This approach is divided in two parts: Theme/Doc, for requisite engineering, and Theme/UML,
for system design, both considering separation of concerns in every level. Our interest here is in
the second one.

The construction added by Theme to UML is the composition pattern (in short, CP), a
definition of how to integrate artifacts (classes or operations) from two different packages. They
work in a manner similar to UML templates, that allow elements in a model not to be fully
defined, but to have parameters so that specific parts are replaced later by concrete elements of
the model.

As used in Theme/UML, template parameter substitution can be used both to indicate
dynamic crosscutting, where advices are connected to join points in the system through
pointcuts, and to produce static crosscutting, where the very structure of the base system is
modified [Clarke and Walker 2002], as can be seen in Figure 5. Advices are always represented
by a pair of operations. The one with the name prefixed by an underscore represents the
execution of the base method. Representing those operations on an interaction diagram, it is
possible to define before, after and around advices. In the example displayed in Figure 6, the
aStateChange() operation (the advice) executes the _aStateChange() operation firstly, and as a
result represents an advice of type after.

Figure 6. Sequence diagram depicting the interaction between a composition pattern and a
modified class

Figure 5.Class diagram using Composition Patterns

XX Simpósio Brasileiro de Engenharia de Software

215

4.3. Metamodel

It was necessary to define a computer-understandable format to store the class model so that it
could be analyzed by the code generator system. Taking in consideration the predominance of
the UML and XML metalanguages, respectively on the areas of system modeling and
information exchange, it was natural to choose XMI, which combines both technologies, as the
input of the generator. But there is no definition of the precise format a UML model should be
stored, and no common schema for XMI documents. Instead, OMG defines a set of rules that
vendors have to follow to define their own schemas. In this work, we started from the XMI
generated by the Poseidon tool [Poseidon 2005], and added the necessary information to specify
composition patterns – template parameters associated to packages, and parameter binding to
relationships between packages.

Basically, two structures had to be added to the original XMI file. An element, labeled
CompositionPatternParameters, is used inside a package (Figure 7) to indicate elements that
can be bound to actual classes during composition to a base design – in this case, the operations
Subject._aStateChange(), that represents an aspect, and Observer.update(), that is going to be

<UML:Dependency xmi.id="c26" isSpecification="false">
 <UML:ModelElement.stereotype>
 <UML:Stereotype xmi.idref="c24"/>
 </UML:ModelElement.stereotype>
 <UML:Dependency.client>
 <UML:Package xmi.idref="d6c"/>
 </UML:Dependency.client>
 <UML:Dependency.supplier>
 <UML:Package xmi.idref="c28"/>
 </UML:Dependency.supplier>
 <Theme:Bindings>
 <Theme:Bind>
 <UML:Class xmi.idref="e10" />
 <Theme:BoundParameter xmi.idref="8e09" />
 <UML:Constraint xmi.id="d88" name="" isSpecification="false">
 <UML:Constraint.body>
 <UML:BooleanExpression xmi.id="d8a" body="meta:isQuery=false"/>
 </UML:Constraint.body>
 </UML:Constraint>
 </Theme:Bind>
 <Theme:Bind>
 <Theme:BoundElement xmi.type="uml:Operation" xmi.idref="d74" />
 <Theme:BoundParameter xmi.idref="8e1c" />
 </Theme:Bind>
 </Theme:Bindings>
</UML:Dependency>

Figure 8. Section of a XMI document extending a dependency between packages with parameter
binding.

<UML:Package xmi.id="c28" name="Observer" visibility="public"
isSpecification="false" isRoot="false" isLeaf="false" isAbstract="false">
 <UML:ModelElement.stereotype>
 <UML:Stereotype xmi.idref="d6a"/>
 </UML:ModelElement.stereotype>
 <UML:Namespace.ownedElement>
 <Theme:CompositionPatternParameters xmi.id="03a9">
 <UML:Operation xmi.id="8e09" xmi.idref="d4a"/>
 <UML:Operation xmi.id="8e1c" xmi.idref="d2a"/>
 </Theme:CompositionPatternParameters>

Figure 7. Section of a XMI document defining parameters for a package representing an
Composition Pattern

XX Simpósio Brasileiro de Engenharia de Software

216

introduced on a base class. Another element, called Bindings (Figure 8), is associated to a
dependency relationship between the base package and the Composition Pattern, and indicates
how the composition is to proceed.

4.4. Generator and Production Rules

The generator itself was implemented using XSLT (Extensible Stylesheet Language
Transformations), version 2.0 [XSLT 2.0 2005]. This language was selected because it is a
standard language, with extensive tool support, and its focus on transforming XML documents

Figure 9. Algorithm for mapping certain constructs in an uncomposed CP to AspectJ [Clarke and
Walker 2002].

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/02/xpath-functions"
 xmlns:xdt="http://www.w3.org/2005/02/xpath-datatypes"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:UML="org.omg.xmi.namespace.UML"
 xmlns:Theme="org.my.Theme">
 <xsl:import href="Theme2AspectJAspect.xslt"/>
 <xsl:import href="Theme2AspectJBinding.xslt"/>
 <xsl:import href="Theme2AspectJClass.xslt"/>

 <xsl:output method="text"/>
 <xsl:output method="text" name="textFormat"/>

 <xsl:template match="/">
 <xsl:apply-templates select="/XMI/XMI.content/UML:Model
/UML:Namespace.ownedElement//UML:Package/UML:Namespace.ownedElement
/Theme:CompositionPatternParameters/../.." mode="T2AJAspect"/>
 <xsl:apply-templates
select="/XMI/XMI.content/UML:Model/UML:Namespace.ownedElement
//UML:Dependency/Theme:Bindings/Theme:Bind" mode="T2AJBinding"/>
 <xsl:apply-templates
select="/XMI/XMI.content/UML:Model/UML:Namespace.ownedElement//UML:Package
[count(UML:Namespace.ownedElement/Theme:CompositionPatternParameters)=0]"
mode="T2AJClass"/>
 </xsl:template>
</xsl:stylesheet>

Figure 10. Section of XSLT transformation selecting the types of elements to be generated.

XX Simpósio Brasileiro de Engenharia de Software

217

makes it very suitable for code generation based on XMI models [Marchal 2004].

It is important to emphasize, however, that the use of general-purpose XSLT processors
for code generation is best suited for the creation of passive generators (section 2.2), because
those processors have no support for integrating generated code with existing artifacts. If it is
required that changes made to generated code are kept on within new generation cycles, other
alternatives should be considered. Besides, the paradigms used on XSLT programming, based
on tree traversals, are somewhat different from what programmers of imperative languages are
used to. With few exceptions, XSLT processors also lack features like step-by-step execution
and variable state evaluation, which would facilitate debugging in case the generator output does
not correspond to the desired one.

The algorithm used to generate the files is similar to the one presented in [Clarke and
Walker 2002] and reproduced in Figure 9.

As seen in the algorithm, each Composition Pattern becomes an abstract aspect, and the
binding of the aspect to a class becomes a concrete aspect that realizes the abstract pointcuts
defined in its parent. This promotes the reusability of the aspects.

Due to space constraints, it is impossible to reproduce the full listing for the XSLT files
used in generation. We chose to represent here the main generator file, which distributes the
appropriate elements among the three other files, which in turn are used to generate Aspects,
Classes, and Bindings (Figure 10). Since in Theme Composition Patterns are just like any other
UML Class Diagram package, except for the fact that they have parameters that can be bound to
elements in other packages, the deciding factor for generating classes or aspects is the presence

<xsl:template match="UML:Package" mode="T2AJAspect">
 <xsl:variable name="uri" select="@name"/>
 <xsl:result-document href="{$uri}.aj" format="textFormat"><xsl:call-
template name="lowercase">
 <xsl:with-param name="name" select="@name"/>
 </xsl:call-template>;
<xsl:value-of select="@visibility"/> aspect <xsl:call-template
name="capitalize">
 <xsl:with-param name="name" select="@name"/>
 </xsl:call-template> {
 <xsl:apply-templates select="UML:Namespace.ownedElement/UML:Class"
mode="Interface"/>
}<!---->
 </xsl:result-document>
 </xsl:template>

 <xsl:template match="UML:Class" mode="T2AJAspect Interface">
 interface I<xsl:value-of select="@name"/> {
 <xsl:apply-templates select="UML:Classifier.feature/UML:Operation"/>
 }
 </xsl:template>

 <xsl:template match="UML:Operation" mode="T2AJAspect Interface">
 <xsl:if test="substring(@name, 1, 1) != '_' and
not(exists(../UML:Operation[@name = concat('_',
current()/@name)]))"><xsl:text>
 </xsl:text><xsl:call-template name="methodSig"/>;<!---->
 </xsl:if>

 </xsl:template>

Figure 11. Section of XSLT transformation converting packages from a XMI document into
AspectJ aspects.

XX Simpósio Brasileiro de Engenharia de Software

218

of an element called CompositionPatternParameters within the package.

We also reproduce a section of XSLT that generates abstract aspects from the definition
of Composition Pattern packages (Figure 11). In this section, the packages received from the
main file are processed according to the rules specified by the algorithm (Figure 9), generating
an abstract aspect with interfaces for each class contained in the Composition Pattern and
introducing methods for every operation that does not designate an advice.

5. Related works

In [Amaya, et al. 2005], an approach to deal with aspect oriented modeling in MDA is
presented. In this approach, typical crosscutting concerns are considered as different
perspectives of the system modeled using UML. This separation will keep from CIM to PSM.
They also propose to model requirements using use cases and design them using composition
patterns. In our approach, we do not deal with requirements, but the design is done using
Theme/UML artifacts instead of subject-oriented design in UML. Theme/UML was designed
with experiences in modeling subject-oriented (SO) systems, improving the former subject-
oriented modeling techniques.

The Libra approach [Chaves 2004] describes potential benefits of mixing Model Driven
Software Development and Aspect-Oriented Software Development. The authors propose an
approach for combining them based on a new dynamic join point model for UML action
semantics. Our approach could be adapted to work with the action semantics described by the
authors. The main benefit of the Libra approach is the possibility to use of behavioral
specification to describe aspect oriented software.

[Kulesza, et al. 2005] presents a generative approach for the development of multi-agent
systems (MAS). The approach explores the MAS domain to enable the code generation of
heterogeneous agent architectures. Aspect-oriented techniques are used to allow the modeling of
crosscutting agent features. Although they provide a domain specific language (DSL) and an
aspect-oriented architecture for agent systems, the relation to our work is associated to the code
generation techniques. It maps abstractions of Agent-DSL to the depicted architecture. This is
useful for agent-oriented systems, but not abstract enough to deal with other types of systems
without adaptation. Our approach uses XMI to generate AO code, regardless of the system
domain and reference architecture.

[Kulesza and Lucena 2004] provide a preliminary version of a method to develop aspect-
oriented generative approaches, including a description of required adaptations of the domain
engineering method to accommodate the use of aspect-oriented technologies. They describe
adaptation to domain analysis, domain design and domain implementation. Our work focuses on
the MDA view of code generation. Instead of using domain modeling, we focus on software
modeling using UML models.

 [González, et al. 2005] discuss principles to make an aspect-oriented analysis in
software development through the identification and analysis of the dependencies model
between system properties (in the context of MDA), but it does not include any attempt to
implement those principles.

Finally, CAM/DAOP [Pinto, et al. 2005] seeks to combine component-based software
engineering and aspect-oriented concepts with the use of an XML-based Architecture
Description Language (ADL), called DAOP-ADL, which contemplates aspect composition.
There is some similarity between the information conveyed by this ADL and by our XMI-based
metamodel: they both attempt to represent aspect composition in a computer-understandable
format. However, their approach is based in a proprietary platform for dynamic aspect weaving,
while we base our efforts in existing modeling and programming languages.

XX Simpósio Brasileiro de Engenharia de Software

219

6. Conclusion and Future Work

Aspect-oriented design and development and code generation are two technologies with a great
potential to increase development productivity and software quality.

However, as we have shown, a few obstacles exist in the merging of the two
technologies. The degree of productivity and quality gain from a code generator is directly
dependent of the degree of quality of the metamodel it is based on, and of the preciseness of its
production rules. This means that to create a generator for aspect-oriented code, we need to have
a method of expressing separation of concerns in a software model in a way that is compatible
with an aspect-oriented programming language.

We chose Theme/UML as the basis for our metamodel because it is a flexible and
general modeling language. This is important because our interest is not only in the generation
of aspect-oriented code, but also in use this model for code refactoring [Fowler 1999], detection
of bad smells [Piveta, et al. 2005], and extraction of aspects from existing object-oriented
systems [Monteiro and Fernandes 2005] (Figure 12). The basic structures of AspectJ – aspects,
advices, pointcuts, join points, and introductions – can all be represented in Theme/UML. One
of the tasks that our group is currently working on is to determine how each feature of AspectJ
can be modeled in Theme/UML, and vice-versa.

We also chose to design the production rules so as to convert from Theme/UML directly
to AspectJ code. The alternative approach would be to use a software model specific to the
structure of AspectJ code, and to define a transformation in two stages: from Theme/UML to the
AspectJ/UML model, and from this to AspectJ code. This would have the advantage of
simplifying greatly the production rules at each step, making the code clearer and more
maintainable. But the extra steps involved might be in itself a maintainability problem,
especially if changes in AspectJ demand a modification of the intermediate model.

Metamodel

supporting Separation

of Concerns

Aspect-

Oriented

Software

System

Software Model

With Crosscutting

Concerns

Generator

for Aspect-

Oriented

Code

Parser for

Aspect-

Oriented

Code

Bad Smells

Detection

Refactoring

Aspect

Extraction

Figure 12. Activities based on a metamodel supporting separation of concerns

XX Simpósio Brasileiro de Engenharia de Software

220

References

Amaya, P., Gonzalez, C. and Murillo, J. M. (2005), "Towards a Subject-Oriented Model-Driven
Framework," in Aspect-Based and Model-Based Separation of Concerns in Software
Systems.

ArgoUML (2005), http://argouml.tigris.org/, accessed on 2005-10.

Autogen (2005), http://www.gnu.org/software/autogen/, accessed on 2005-09.

Basch, M. and Sanchez, A. (2003), "Incorporating Aspects into the UML," in Third
International Workshop on Aspect Oriented Modeling.

Biddle, R., Martin, A. and Noble, J. (2003), "No Name: Just notes on software reuse," in ACM
SIGPLAN Notices, vol. 38, pp. 76-96.

Biggerstaff, T. J. (1998), "A perspective of generative reuse," in Annals of Software
Engineering, vol. 5, pp. 169-226.

Biggerstaff, T. J. (1999), "Reuse technologies and their niches," in Proceedings of the 21st
international conference on Software engineering. Los Angeles, California, United States:
IEEE Computer Society Press.

Chaves, R. (2004), "Aspects and MDA: Creating aspect-based executable models," Master
Thesis. Florianópolis.

Chavez, C. and Lucena, C. (2002), "A Metamodel for Aspect-Oriented Modeling," in Workshop
on Aspect-Oriented Modeling with UML (AOSD-2002).

Clarke, S. (2001), "Composition of Object-Oriented Software Design Models," PhD thesis,
Dublin City University, Dublin, Ireland.

Clarke, S. and Baniassad, E. (2004), "Theme: An Approach for Aspect-Oriented Analysis and
Design," in Proceedings of the International Conference on Software Engineering 2004.

Clarke, S., Harrison, W., Ossher, H. and Tarr, P. (1999), "Subject-oriented design: towards
improved alignment of requirements, design, and code," in ACM SIGPLAN Notices, vol. 34,
pp. 325-339.

Clarke, S. and Walker, R. J. (2001), "Separating Crosscutting Concerns across the Lifecycle:
From Composition Patterns to AspectJ and Hyper/J," in Technical Report TCD-CS-2001-15
and UBC-CS-TR-2001-05, Trinity College, Dublin and University of British Columbia.

Clarke, S. and Walker, R. J. (2002), "Towards a standard design language for AOSD," in
Proceedings of the 1st international conference on Aspect-oriented software development.
Enschede, The Netherlands: ACM Press.

CGN (2005), Code Generation Network, http://www.codegeneration.net/, accessed on 2005-09.

Dodds, L. (2005), “Code generation using XSLT”,
https://www6.software.ibm.com/developerworks/education/x-codexslt/x-codexslt-3-1.html,
accessed on 2005-12.

Codegen (2005), http://forge.novell.com/modules/xfmod/project/?codegen, accessed on 2005-
09.

CodeSmith (2005), http://www.ericjsmith.net/codesmith/, accessed on 2005-09.

Fowler, M. (1999), “Refactoring: improving the design of existing code,” Addison-Wesley
Longman.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994), “Design Patterns,” Addison-Wesley.

XX Simpósio Brasileiro de Engenharia de Software

221

Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C. and Staa, A. v. (2005),
"Modularizing Design Patterns with Aspects: A Quantitative Study," in Proc. 4rd Int’ Conf.
on Aspect-Oriented Software Development (AOSD-2005).

González, C., Murillo, J. M. and Amaya, P. A. (2005), "Aspect-Oriented Analysis: A MDA
Based Approach," in Early Aspects: Aspect-Oriented Requirements Engineering and
Architecture Design.

Groher, I. and Baumgarth, T. (2004), "Aspect-Orientation from Design to Code," in Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design.

Hannemann, J. and Kiczales, G. (2002), "Design pattern implementation in Java and AspectJ,"
in Proceedings of the 17th ACM conference on Object-oriented programming, systems,
languages, and applications.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W. G. (2001), "An
overview of AspectJ," in Proceedings of the 15th Europeen Conference on Object-Oriented
Programming (ECOOP 2001).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. and Irwin, J.
(1997), "Aspect-Oriented Programming," in Proceedings of the 11th Europeen Conference
on Object-Oriented Programming (ECOOP-97).

Krueger, C. W. (1992), "Software Reuse," in ACM Computing Surveys, vol. 24, p. 131-183.

Kulesza, U., Garcia, A. F., Lucena, C. J. P. d. and Alencar, P. S. C. (2005), "A Generative
Approach for Multi-agent System Development," in SELMAS 2004 - Software Engineering
for Multi-Agent Systems III.

Kulesza, U. and Lucena, A. G. C. (2004), "Towards a Method for the Development of Aspect-
Oriented Generative Approaches," in Early Aspects 2004: Aspect-Oriented Requirements
Engineering and Architecture Design Workshop at OOPSLA 2004.

Marchal, B. (2004), “UML, XMI, and code generation”, http://www-
128.ibm.com/developerworks/xml/library/x-wxxm23/.

Miller, J. and Mukerji, J. (2003), "MDA Guide Version 1.0.1."
http://www.omg.org/docs/omg/03-06-01.pdf.

OMG MDA (2005), Model Driven Architecture, http://www.omg.org/mda/, accessed on 2005-
11.

OMG MOF (2006), MetaObject Facility Specification, version 1.4, http://www.omg.org/mof/,
accessed on 2006-02.

Monteiro, M. and Fernandes, J. (2005), "Towards a Catalog of Aspect-Oriented Refactorings,"
in Proc. 4rd Int’ Conf. on Aspect-Oriented Software Development (AOSD-2005).

Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L. and Martelli, L. (2002), "A
UML Notation for Aspect-Oriented Software Design," in Workshop on Aspect-Oriented
Modeling with UML (AOSD-2002).

Pinto, M., Fuentes, L. and Troya, J. M. (2005), "A Component and Aspect Dynamic Platform",
in The Computer Journal 48(4):401-420.

Piveta, E. K., Hecht, M., Pimenta, M. S. and Price, R. T. (2005), "Bad Smells em Sistemas
Orientados a Aspectos," in Simpósio Brasileiro de Engenharia de Software (SBES),
Uberlandia - Brazil.

Poseidon (2005), http://gentleware.com/, accessed on 10/2005.

XX Simpósio Brasileiro de Engenharia de Software

222

Rashid, A., Chitchyan, R., Sawyer, P., Garcia, A., Alarcon, M. P., Bakker, J., Tekinerdogan, B.,
Clarke, S. and Jackson, A. (2005), "Survey of Aspect-Oriented Analysis and Design
Approaches," in AOSD-Europe 2005-05.

Rational Software (2005), http://www-306.ibm.com/software/rational/, accessed on 2005-11.

Stein, D., Hanenberg, S. and Unland, R. (2002), "An UML-based Aspect-Oriented Design
Notation," in Proc. 1st Int’ Conf. on Aspect-Oriented Software Development (AOSD-2002).

OMG UML (2004), Unified Modeling Language Specification, version 2.0,
http://www.omg.org/technology/documents/formal/uml.htm, accessed on 2005-12-15.

Velocity (2005), http://jakarta.apache.org/velocity/, accessed on 2005-09.

OMG XMI (2005), XML Metadata Interchange Mapping Specification, version 2.1,
http://www.omg.org/technology/documents/formal/xmi.htm, accessed on 2006-01.

XSLT 2.0 (2005), Extensible Stylesheet Language Transformations version 2.0,
http://www.w3.org/TR/xslt20/, accessed on 2005-12.

XX Simpósio Brasileiro de Engenharia de Software

223

