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Resumo. OCL (Object Constraint Language) é a linguagem padronizada pelo 
OMG para a especificação precisa de restrições associadas a modelos e 
meta-modelos compatíveis com o MOF. Embora a OCL tenha sido criada com 
a intenção de ser uma linguagem mais simples quando comparada com 
linguagens formais tradicionais, é comum encontrarmos especificações 
escritas em OCL contendo expressões difíceis de serem entendidas ou 
mantidas. Este artigo apresenta um conjunto de construções potencialmente 
problemáticas, frequentemente encontradas em especificações elaboradas em 
OCL, além de um conjunto de reestruturações que podem ser empregadas 
para removê-las. Este artigo descreve, ainda, um estudo experimental que foi 
realizado para avaliar os efeitos desses conceitos no entendimento de 
restrições especificadas em OCL. 

Abstract. OCL (Object Constraint Language) is the OMG standard language 
for the precise specification of constraints associated to MOF-compliant 
models and meta-models. Although OCL has been created with the intention to 
be a simpler language when compared to traditional formal specification 
languages, it is common to find specifications containing OCL constraints that 
are difficult to understand and evolve. This paper presents a set of potential 
problematic constructions often found in specifications written in OCL and a 
set of refactorings that can be applied to remove them. We also present an 
experimental study that has been performed to evaluate the effects of applying 
those strategies on the understandability of OCL specifications. 

1. Introduction 
The Object Constraint Language (OCL) is an OMG standard language [OMG 2003a] 
which supports the specification of elements that can not be graphically described on 
UML models and MOF-compliant meta-models. OCL can be used for many different 
purposes, such as: to specify constraint conditions that must hold for the system being 
modeled; to specify pre and post conditions on operations; to specify guard conditions 
and derivation rules; to specify well-formedness rules associated to meta-models; as a 
query language.  

 In the Model Driven Architecture (MDA) [OMG 2003b], a framework for 
model-based software development sponsored by the Object Management Group 
(OMG), OCL is also an important part of model transformation languages such as the 
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OMG QVT (Query, Views and Transformations) standard [OMG 2005a].  Since it is a 
precise specification language, OCL can help to remove potential ambiguity problems 
that might be present in natural language specifications [Berry and Kamsties 2004], as it 
happened with the first UML standard.  

 Instead of using formal mathematical notations, OCL is a textual language with 
syntactical elements similar to those present in object oriented programming languages. 
OCL was designed to be a language less intimidating than their traditional counterparts 
[Warmer and Kleppe 2003], such as Z [Woodcock and Davis 1996] and VDM-SL 
[Jones 1989]. However, this does not prevent specifications written in OCL from being 
hard to understand and maintain, especially in cases when they contain unnecessarily 
complex expressions. 

 In analogy to the term Code Smells [Fowler 1999], we defined the term OCL 
smells as constructions present in OCL expressions that might negatively affect the 
understandability or maintainability of OCL specifications [Correa and Werner 2004]. 
This paper presents a number of such constructions that are often found in OCL 
specifications.  Refactoring is an important technique for handling software evolution 
that can be applied to remove Code Smells from a software implementation. Refactoring 
corresponds to changes made to the internal structure of a software, preserving its 
behavioral semantics, which aims at improving quality factors such as 
understandability, modularity and extensibility [Mens and Tourwe 2004]. In this paper, 
we present a set of OCL Refactorings that can be utilized to remove OCL smells from a 
specification. 

 This paper also reports on an experimental study that evaluated the usefulness of 
OCL refactorings on improving the understandability of OCL expressions. The study 
involved 23 software developers with industry experience in UML modeling. The 
results of this study indicate that the presence of OCL smells may have a negative 
impact in both the correctness and the time necessary to understand constraints written 
in OCL. 

 The rest of this paper is structured as follows: section 2 describes the main 
concepts of OCL. Section 3 presents some OCL smells and the OCL refactorings that 
can be used to remove them. Section 4 describes the objectives and design of the 
experimental study. Section 5 reports on the results obtained from the experimental 
study. Related works are discussed in section 6 and concluding remarks are drawn in 
section 7. 

2. OCL  
This section briefly describes the main concepts of OCL that are used in this paper. A 
more complete description of the language can be found in [Warmer and Kleppe 2003]. 
OCL is a declarative language that allows the specification of constraints on an 
underlying model. A model always provides the context for constraints. Figure 1 shows 
a small UML model used as context for the examples described in this section.  

 OCL can be used to specify constraints concerning the static structure and the 
behavior of a system. Invariants are static structure constraints defined in the context of 
a type. An invariant is defined by a boolean expression that must be true for all 
instances of that type. The invariant shown in Figure 2 requires all instances of type 
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Account to have a non negative balance. Since the invariant was defined in the context 
of the Account class, the expression self.balance >= 0 must be true for all instances of 
that class. Self is a reserved keyword which refers to each instance of the contextual 
type (Account, in this example) used in the evaluation of the invariant. 

 
Figure 1. UML model example 

 
context Account 

inv: self.balance >= 0 

Figure 2. Example of a simple OCL invariant 

 More complex expressions can be built by navigating along the associations 
defined in the underlying model. Figure 3 shows a navigation expression (self.accounts) 
from a client object to their associated accounts. A navigation results in a collection of 
elements. In this example, self.accounts results in a set of instances of the Account class. 
A number of operations defined in the OCL standard library can be applied to a 
collection value by using the ‘->’ operator. In this example, the select operation results 
in the subset of the accounts of a given client (self) having the isGold operation 
evaluated to true. The size operation gives the number of elements in the resulting 
subset.  
 

context Client 
def: goldAccountsQty : Integer = 
     self.accounts->select(acc | acc.isGold())->size() 
def: isGold() : Boolean = 
     self.balance > 15000 

Figure 3. Example of OCL navigation expression 

 Properties and operations can be added to the model by using the def keyword. 
In the example shown in Figure 3, the attribute goldAccountsQty and the operation 
isGold were added to the Client type. The value of goldAccountsQty is derived from its 
associated OCL integer expression, and isGold is a query operation whose body is 
defined by the boolean expression self.balance > 15000. 

 OCL is a typed language. Every expression has a type which defines the 
operations that can be applied to its result. Besides the primitive types (Boolean, 
Integer, Real and String), all classifiers and enumerations defined on the underlying 
model are members of the set of available types. The OCL standard library defines 
several operations for each type. Logical operations (and, or, xor, implies, if-then-else-
endif), collection operations (size, includes, isEmpty) and quantifiers (forAll and exists) 
are examples of such operations.  
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3. OCL Smells and Refactorings 
Although OCL has been created with the intention to be a simpler language when 
compared to traditional formal specification languages, it is common to find 
specifications containing OCL constraints that are difficult to understand and evolve. 
Lack of experience in specifying and using OCL [Chiorean et al 2004] combined with 
poor tool support [Baar et al 2005] are possible explanations for this fact. 

The constraints shown in Figure 4 and Figure 5 are well-formedness rules 
excerpted from the UML 1.3 specification [OMG 1999]. They are examples of overly 
complex expressions that are often found in OCL specifications. The presence of such 
complex expressions in the UML specification has lead to misconceptions about the 
OCL potential. In [Ambler 2002], the constraint shown in Figure 4 is used as an 
example that even simple rules may result in wordy and hard to read OCL expressions. 
This constraint, however, could have been defined with an expression as simple as: 
self.allConnections->isUnique(name). 

 

context Association inv AllAssociationEndsHaveDistintctNames: 
  self.AssociationEnds->forAll(element1, element2 | 
      element1.name(self.AssociationEndNames) = 
     element2.name(self.AssociationEndNames)  
     implies element1 = element2)) 

Figure 4. UML well-formedness rule – Example 1 

 Figure 5 shows a constraint related to the Collaboration element defined in the 
UML metamodel, which refers to the classifier and association roles associated to that 
element. The operation oclIsKindOf returns true if the type of the object to which it is 
applied is either the same or a descendant of the type passed as argument. The operation 
oclAsType means casting the object to the type specified as argument. Those 
expressions are usually applied in downcast operations such as in the expression 
q.oclAsType(ClassifierRole).base. Since the type of q is ModelElement and base is 
defined as a property of ClassifierRole, a downcast is needed. 

 At a first glance, the complexity of the OCL constraint present in Figure 5 may 
be due to limitations of the specification language, which usually force the usage of 
several calls to oclIsKindOf and oclAsType operations [Vaziri and Jackson 2002]. A 
deeper analysis, however, reveals that the complexity of this constraint actually comes 
from the usage of inadequate OCL constructions combined with the absence of more 
general concepts in the underlying model and poor name choices in both the underlying 
model elements and the OCL expressions. The lack of a supertype for ClassifierRole 
and AssociationRole types resulted in complex and very similar expressions separated 
by the and operator. 

  Therefore, the constraints shown in Figure 4 and Figure 5 are examples of OCL 
smells. This section describes some OCL smells that are often found in specifications, 
particularly in those produced by OCL novices. They were collected not only from 
specifications produced by students and software practitioners, most of them with no 
previous experience with OCL, but also from the UML official specification [OMG 
2005b], and from several papers published in software engineering conferences. Our 
definition of OCL smells does not include expressions containing errors due to 
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syntactical or type-checking issues. 

 
Figure 5. UML well-formedness rule – Example 2 

   A number of refactorings can be applied to OCL expressions and their 
underlying model in order to remove OCL smells from a specification. An important 
activity that precedes refactoring operations is the identification of the parts of a 
software artifact that should be refactored. In OCL specifications, we use a catalogue of 
OCL smells that we have elaborated to support the identification of potential targets for 
refactorings. Due to space constraints, we will only present the OCL smells and 
refactorings that were used in the experimental study described in section 4, since they 
correspond to the ones that we have found most often in OCL specifications.  

3.1. OCL Smell: Implies Chain 

Implies chain corresponds to OCL expressions of the form b1 implies (b2 implies b3), 
where b1, b2 and b3 are boolean expressions. Figure 6 shows an example of this smell 
extracted from the UML specification.  This constraint states that the target of every 
transition from a fork pseudostate must be a State. 

  The refactoring Replace Implies Chain by a Single Implication replaces an 
Implies Chain, such as <<A implies (B implies C)>>, with an expression of the form 
<<(A and B) implies C>>.  If the antecedent of the refactored expression results in a 
complex conjunction, the application of further refactorings should also be considered. 
For example, if the resulting expression is a complex conjunction of the form b1 and b2 
and b3 ... and bn, we should further refactor this expression by extracting the definition 
of auxiliary properties or operations from parts of that conjunction.   The definition of 
auxiliary properties or operations from an OCL expression corresponds to the following 
refactorings: 

• Add Operation Definition and Replace Expression by Operation Call: The main 
motivation for these two refactorings is to promote encapsulation and reuse 
across a specification. By using operation definitions, one can hide complex 
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expressions from other parts of a specification and avoid the duplication of 
expressions that are used in many parts of a specification; 

• Add Property Definition and Replace Expression by Property Call are analogous 
to the refactorings based on operation definitions previously described. Instead 
of creating and using OCL helper operations, they create and use OCL helper 
properties. 

PseudostateKind
fork
join

<<enumeration>>

Pseudostate
kind : PseudostateKind

StateMachine

0..*

0..1

0..*

0..1

Transition
Vertex

*
1

+incoming*+target 1

*1

+outgoing

*

+source

1

State

 
 context Transition 
 inv: 
   self.source.oclIsKindOf(Pseudostate)  
   implies  (self.source.oclAsType(Pseudostate).stateMachine->notEmpty() 
     implies (self.source.oclAsType(Pseudostate).kind = PseudostateKind::fork  
      implies self.target.oclIsKindOf(State))) 

Figure 6. Example of the Implies Chain OCL Smell 

 Figure 7 shows the refactored version of the constraint present in Figure 6. It is 
the result of the following refactorings: Replace Implies Chain by a Single Implication 
which replaced two implies by a conjunction, Add Property Definition which added the 
property sourceIsFork to the Transition class, and Replace Expression by Property Call 
which replaced the antecedent of the constraint by the expression self.sourceIsFork. 
 
context Transition 
def: sourceIsFork : boolean =    
   self.source.oclIsKindOf(Pseudostate) and 
   self.source.oclAsType(Pseudostate).stateMachine->notEmpty()and 
   self.source.oclAsType(Pseudostate).kind = PseudostateKind::fork  
inv: 
      self.sourceIsFork implies self.target.oclIsKindOf(State) 

Figure 7. Refactored Version of the Implies Chain OCL Smell 

3.2. OCL Smell: Verbose Expression 

Verbose Expression corresponds to OCL expressions that are bigger than necessary.  
Besides being easier to understand and maintain, a less verbose expression can usually 
be evaluated more efficiently. Two usual forms of this smell are:  
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a) Expressions containing more operation calls than needed: these expressions can be 
shortened by the Simplify Operation Calls refactoring. This refactoring consists of 
rewriting an OCL expression in a shorter form by using less operation calls. A 
common situation for this refactoring corresponds to expressions that can be 
simplified by using standard collection operations. Figure 8 illustrates some 
examples of verbose expressions (on the left column) and their corresponding shorter 
versions (on the right column). All examples are schematically represented: X 
denotes a collection and P(x) corresponds to a boolean expression that may use the 
iterator x on its definition. 
 

Verbose expression Shorter version 
X->select(x | P(x))->size() > 0 
X->select(x | P(x))->size() >= 1 
X->select(x | P(x))->notEmpty() 

X->exists(x | P(x)) 

X->select(x | P(x))->size() = 1 X->one(x | P(x)) 
X->select(x | P(x))->size() = 0 
X->select(x | P(x))->isEmpty() 

not X->exists(x | P(x)) 
 

X->select(x |   P1(x))->select(y | P2(y)) X->select(x | P1(x) and P2(x)) 
X->forAll(x1, x2 | x1 <> x2 implies x1.p <> x2.p) X->isUnique(p) 

Figure 8. Example of Verbose Expressions and their Refactored Versions 

b) Invariants defined in the wrong context class: since an invariant can be described in 
many ways depending on its context class, attaching an invariant to the wrong 
context usually makes it harder to specify and maintain [Warmer and Kleppe 2003].  
The invariant shown in Figure 6 is an example of this situation. If Pseudostate were 
used as the context class, the result would be a simpler expression without 
downcastings, since the condition part of the invariant only references properties 
defined in this class.  As a general guideline, the best context is the one that results in 
the easiest to read and write expression [Warmer and Kleppe 2003]. Therefore, it is a 
good exercise to describe the same invariant using different contexts. The refactoring 
Change Context consists of rewriting an invariant by using a different context class. 
In Figure 9, the invariant shown in Figure 6 was redefined using Pseudostate as the 
context class and two added properties (isFork and allTargets).  

 
context Pseudostate 
inv: self.isFork implies  
     self.allTargets->forAll(t | t.oclIsKindOf(State)) 
def: isFork: Boolean = self.stateMachine->notEmpty() and  
                       self.kind = PseudostateKind::fork 
def: allTargets: Collection(Vertex) = self.outgoing.target 

Figure 9. Example of the Change Context Refactoring 

3.3. OCL Smell: Forall Chain 

ForAll chain is a special case of the Verbose Expression smell that corresponds to 
expressions containing the following structure: X ->forAll(a1 | a1.B->forAll(b1 | b1.C   
->forAll(c1 | P(c1)))). Suppose that X is a collection of elements of type A, and there is 
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an association between classes A and B, and between classes B and C. In such a 
situation, the expression denotes that some predicate P must be true for all instances of 
C indirectly associated to the instances of type A present in X. Notice that predicate P 
does not reference the iterators a1 and b1 defined in the outer forAll calls.   

  Expressions containing forall chains can be replaced by a single call to forAll 
operation applied to a navigation from A to C, i.e., X.B.C ->forAll(c1 | P1(c1)). Such 
change corresponds to the application of the Replace ForAll Chain by Navigations 
refactoring. 

3.4. OCL Smell:  Downcasting 

Downcasting is a well-known smell in the object oriented programming community. In 
OCL, it corresponds to the use of expressions of the form x.oclAsType(Y).z, usually 
preceded by an expression of the form x.oclIsKindOf(Y). This is often an indication that 
some more abstract concepts are missing in the underlying model. The expression 
associated to the definition of the sourceIsFork variable in Figure 7 is an example of 
this OCL smell. 

  In most cases, this smell can be removed through one of the following 
refactorings: Change Context or Introduce Polymorphism. The Introduce Polymorphism 
refactoring replaces complex if-then-else-endif expressions that makes considerable use 
of operations such as oclIsKindOf, oclIsTypeOf, oclAsType, by a combination of generic 
and specific operations defined in a hierarchy of classes. This refactoring is also used in 
combination with other refactorings that are applied to the underlying model, such as 
Add Class, Add Generalization, Pull Up, Push Down, Add Operation among other 
possible model refactorings.  

3.5. OCL Smell: Type Related Conditionals 

This smell occurs in expressions of the form if x.oclIsKindOf(A) then <exp1> else if 
x.oclIsKindOf(B) then <exp2> else … endif, i.e., the result of the expression depends on 
the type of a given object x which is obtained through calls to oclIsKindOf or 
oclIsTypeOf operations. This kind of structure results in less readable and less 
maintainable specifications. This smell can be removed by applying the Introduce 
Polymorphism refactoring described in section 3.4. 

  Figure 10 shows a constraint containing this smell, extracted from the UML 2.0 
Superstructure Specification [OMG 2005b]. Besides presenting many syntactical and 
type checking errors, the invariant contains an if-then-else-endif structure based on the 
type of the LinkEndData objects associated to a LinkAction object that corresponds to 
the Type Related Conditionals smell.  

  The bottom part of Figure 10 shows the expressions that result from the 
application of the Introduce Polymorphism refactoring to this invariant. Since the 
inputPins associated to a LinkEndData object depends on its type (value for instances of 
LinkEndData and value + insertAt for instances of LinkEndCreationData), an operation 
ledPins was defined in both classes, so that the original invariant could be rewritten 
without using oclIsKindOf or oclAsType operations. 
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LinkEndData

LinkEndCreationData

LinkAction
2..*1

+endData

2..*1

InputPin
0..10..1

+value

0..10..1

0..1

0..1

0..1+insertAt

0..1

1..*

1

+input 1..*

1

 
context LinkAction 
inv: self.input = 
 let ledpins : Set = self.endData->collect(value) in 
    if self.oclIsKindOf(LinkEndCreationData) 
    then ledpins->union  
        (self.endData.oclAsType(LinkEndCreationData).insertAt) 
    else ledpins 
     endif 
--------------------------------------------------------------------------------------------------------- 
Refactored Version: 
context LinkEndData 
def: ledPins() : Set(InputPin) = self.value 
 
context LinkEndCreationData 
def: ledPins() : Set(InputPin) = self.value->union(self.insertAt) 
 
context LinkAction 
inv: self.input = self.endData.ledPins() 

Figure 10. Example of the Type Related Conditionals Smell 

4. An Experimental Study to Evaluate OCL Refactorings 
Although there is anecdotal evidence on their usefulness, few quantitative evaluations 
of software refactorings have been published so far [Kataoka et al. 2002]. This section 
describes the planning of an experimental study that we have conducted in order to 
evaluate the impact of OCL smells and refactorings on the understandability of OCL 
specifications.  

4.1. Definition 

Using the structure defined in [Wohlin 2000], the study is defined as follows: analyze 
refactorings that can be applied to remove OCL smells from OCL constraints, for the 
purpose of evaluating the usefulness of the proposed refactorings, with respect to their 
benefits to the understandability of OCL constraints,   from the point of view of the 
researcher,   in the context of software developers reading and interpreting OCL 
constraints defined in a lab package. 
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4.2. Context and Material 

The study procedure consists of reading and interpreting OCL constraints associated to 
elements defined in a UML model. The selected subjects were 23 graduated software 
developers who have attended to a 40-hour course in UML/OCL offered by Federal 
University of Rio de Janeiro. Their knowledge of OCL was restricted to basic OCL 
syntax and semantics, i.e., they were not aware of concepts such as OCL smells and 
OCL refactorings. 

   Each subject answered ten questions, each presenting an OCL constraint 
associated to an UML model and a small object diagram corresponding to a snapshot of 
objects of that model. A subject should answer whether and why the given snapshot 
violates the constraint. This UML model does not make use of elements with conflicting 
semantics such as composition or aggregation. 

  The subjects were divided in two groups (GI and GII) and each group answered 
a different set of questions (Set I or Set II). Each set was composed of five S-Type 
questions (interpretation of constraints containing OCL smells) and five R-Type 
questions (interpretation of refactored versions of the constraints present in the S-type 
questions answered by the other group).  R-type questions of one set used the same 
object diagrams present in S-type questions of the other set.  

  By using two sets of questions with the proposed organization, we tried to 
expose all subjects to expressions containing the same number of OCL smells and at the 
same difficulty level. Table 1 presents the structure of each set of questions and the 
OCL smells present in each S-type question. The column RQ (Related Question) 
indicates the number of the question in the other set that contains the same OCL smell.  

Table 1 – Composition of each set of questions 

Set S1 Set S2 
Question OCL Smells RQ Question OCL Smells RQ 

S1 Implies Chain 10 R1 S1 – refactored  
S3 Downcasting 4 R3 S3 – refactored  
S5 Forall Chain 2 R5 S5 – refactored  
S7 Verbose 

Expression  
8 R7 S7 – refactored  

S9 Type Rel. 
Conditionals 

6 R9 S9 – refactored  

R2 S2 – refactored  S2 Forall Chain 5 
R4 S4 – refactored  S4 Downcasting 3 
R6 S6 – refactored  S6 Type Rel. 

Contitionals 
9 

R8  S8 – refactored  S8 Verbose Expression 7 
R10 S10 – refactored  S10 Implies Chain 1 

4.3. Hypothesis Formulation 

The independent variable of this study is the type of the OCL expressions present in 
each answered question. This variable has two possible values: S (constraints with OCL 
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smells) and R (refactored constraints). We evaluated the impact of the independent 
variable on the following dependent variables: 
a) Question Score (QS): the score of the subject on a specific question. QS is an 

integer variable, computed as follows: one point for the yes/no part of the answer 
and one point for the justification part. The variables SS and RS are defined for each 
subject as the sum of QS in questions of type S and R, respectively. 

b) Question Time to Answer (QT): time in seconds spent by the subject to completely 
answer the question. The variables ST and RT are defined for each subject as the 
sum of QT in questions of type S and R, respectively. 

 Given these variables, we formulate the Null Hypothesis (H0) as follows: “There 
is no difference in accuracy and time to answer interpretation questions on constraints 
containing OCL smells, when compared to the refactored versions of the same 
constraints”. Therefore, HO: μSS = μRS and μST = μRT. 

 The alternative hypothesis (H1) is that OCL smells affect accuracy or time to 
answer those interpretation questions. To be more precise, H1 should be one-tailed: we 
expect OCL smells to have one or both of the following effects: decreased accuracy or 
increased time to answer. Therefore, H1: μSS < μRS or μST > μRT. 

4.4. Study Design 

The study was organized in the following phases: 
a) Self-Study: Each subject was given two weeks to study a written tutorial on OCL, 

elaborated by us. 
b) OCL Assessment: subjects were grouped in two blocks (higher scores and lower 

scores) according to the median of their scores on a ten question OCL test. Each 
group (GI and GII) was then randomly assigned eleven subjects from both blocks in 
nearly identical proportions. One subject was allocated to test the instrumentation. 

c) Main session: In the main session, each participant answered the set of ten questions 
assigned to his group (SI or SII). Each subject had to fully answer one question to 
proceed to the next one. They were not allowed to change answers of the preceding 
questions. This strategy allowed us to collect the time spent by the subjects on each 
question. No time limit was imposed to the subjects. 

d) Subjective Evaluation: After answering the set of questions, the participants were 
asked to classify each question according to two aspects: the difficulty level and the 
perceived quality of the OCL expressions. For the evaluation of the difficulty level of 
each question, we used a Likert scale from 1 to 5 (1-very easy, 2-easy, 3-medium, 4-
difficult, 5-very difficult). The quality of the OCL expressions present in each 
question was evaluated according to the following nominal scale: 1- constraint is 
badly written; 2- not sure whether the constraint is well or badly written; 3- 
constraint is well written. 

5. Experimental Study: Results and Threats to Validity 

5.1. Adequacy of Instruments 

First, we analyzed the instruments used in the main session, since they were designed to 
provide a similar experience to all subjects. We applied an ANOVA test with 5% 
threshold (α-level) [Wohlin 2000] to compare the following data: 
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• mean score and time spent on each set of questions: we compared the average score 
and the average time to answer for groups I and II, taking into account both S-type 
and R-type questions;  

• mean score and time spent on questions of the same type in each set of questions: we 
compared the average score and the average time to answer for groups I and II 
separately for each type of question;  

 The results showed no significant difference in scores and time to answer 
between the groups. Thus, there is no evidence that differences over the instruments 
should impose threats to further analyses. 

5.2. Scores 

Nine questions were correctly answered by all subjects (R1, R2, R3, R4, R7, R8, S2, S3 
and S8). The bottom four scores correspond to S-type questions (S5, S10, S6 and S9, in 
ascending order). The total scores in all R-type questions were greater than or equal to 
their respective S-type questions, i.e., total score in question Ri >= total score in 
question Si.  

 An ANOVA test (α-level = 0.05) was applied to the score of each type of 
question (μSS and μRS). The results shown in Table 2 rejected the null hypothesis H0 in 
favor of the alternative hypothesis H1: μSS < μRS, i.e., the mean score in S-type 
questions was lower than the mean score in R-type questions. Therefore, the results 
indicate that, at least in the sample analyzed in the study, the presence of OCL smells 
negatively impacts the understanding of OCL constraints. 

Table 2 – ANOVA table: score in each type of question 

Question 
Type 

Size 
(N) 

Sum of 
Squares 

Mean 
Square 

Individual 
Mean 

S 110 339 278 7,95 
R 110 402 378 9,27 

F (ANOVA) 9,89 FCRIT 6,75  

5.3. Time to Answer 

Results indicate that most subjects spent more time answering S-type questions than R-
type questions. In 90% of the questions, the average time to answer S-type questions 
was higher than the average time to answer their respective R-type questions. Only in 
question 1, the time to answer the S-type question was slightly higher. In questions 3, 4, 
7, 8 and 9, the average time spent on S-type questions was at least 100% higher than on 
their R-type counterparts. 

 An ANOVA test (α-level = 0.05) was applied to the time to answer each type of 
question (μST and μRT). The result shown in Table 3 rejected the null hypothesis H0 in 
favor of the alternative hypothesis H1: μST > μRT, i.e., the mean time to answer S-type 
questions was higher than the mean time to answer R-type questions. Therefore, the 
results indicate that, at least in the sample analyzed in the study, the presence of OCL 
smells can negatively impact the time needed to understand OCL constraints. 
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Table 3 – ANOVA table: time to answer each type of question 

Question 
Type 

Size 
(N) 

Sum of 
Squares 

Mean Square Mean time spent in 
each question 

S 105 13.236.000 10.047.146,67 05:14 
R 103 8.525.400 5.942.403,88 04:00 

F (ANOVA) 8,87 FCRIT 3,89  

5.4. Subjective Evaluation 

Data collected from the subjective evaluation made by the subjects were analyzed in 
order to investigate whether they perceived some difference in the difficulty level of S-
type questions compared to R-type questions. More than 60% of R-type questions were 
classified as easy or very easy, and only 10% of R-type questions were judged difficult 
or very difficult. On the other hand, less than 30% of S-type questions were classified as 
easy or very easy, while 30% of them were judged difficult or very difficult.  

 This evaluation also showed that there is a significant difference in the perceived 
quality of expressions present in S-type questions and R-type questions. While only 4% 
of the evaluations of R-type questions classified their expressions as of poor quality, that 
number raised to 36% in S-type questions. 80% of R-type expressions were evaluated as 
of good quality. However, a significant number of evaluations (44%) perceived 
expressions containing OCL smells (S-type) as of good quality. 

5.5. Threats to Validity 

This section discusses the different threats to the validity of results found in this 
study, in decreasing priority order: internal, external, construction, conclusion.  

Internal validity is defined as the ability of a new study to replicate the observed 
behavior using the same subjects and instruments. We tried to minimize the threats to 
internal validity by submitting every subject to the same treatments and by alternating 
between R-type and S-type questions during the main session.  

External validity reflects the ability to reproduce the same behavior in groups other 
than the ones that were analyzed. As in many academic studies, the issue of whether the 
subjects are representative of software professionals arises. We tried to involve subjects 
with different academic background and professional experience. We cannot state that 
the results of this study would occur in the same way using bigger and more complex 
models and OCL constraints. However, this issue is almost always present in 
experiments with industry professionals. 

Construction validity refers to the relationship between the instruments / subjects 
and the theory under study. The study was carefully designed so that all subjects would 
have comparable and similar experiences. The results described in section 5.1 indicate 
that this goal was achieved. We followed an approach similar to those used in other 
empirical studies that evaluated some aspect related to program or specification 
understanding ([Briand et al 2005], [Finney et al 1999], [Snook and Harrison 2001]). 
The subjects were aware that we were attempting to evaluate some issues related to 
OCL, but they were not aware of the exact hypotheses we were testing or what results 
we were hoping to obtain. 
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Conclusion validity relates the treatments and the results, defining the ability of the 
study in generating some conclusion. We tried to obtain reliable results by using 
objective measures and statistical parametric tests. We also used subjective evaluations 
in order to support the quantitative results. Although the number of subjects could be 
considered low, we tried to increase the number of data points by submitting all subjects 
to both treatments.  

6. Related Work 
The basic ideas of model refactorings were presented in [Sunyé et al 2002], where the 
authors explored how the integrity of UML class diagrams and statecharts could be 
maintained after refactorings. Moreover, some refactorings related to statecharts were 
formally defined using OCL pre and postconditions. A detailed discussion about model 
refactorings can also be found in [Boger et al 2002], [Massoni et al 2005] and 
[Markovic and Baar 2005]. While those works are mostly related to refactorings applied 
to UML model elements that may take into account well written OCL expressions 
associated to them, our approach is focused on improving badly written OCL 
expressions associated to such elements. 

  A relevant issue regarding model transformations is to prove that a refactoring 
preserves the semantics previously described in the model. This requires a semantic 
interpretation of models that is amenable to formal analysis. Some results regarding this 
issue can be found in [Engels et al 2002] and [Mens et al 2002]. A rigorous approach 
for providing model refactorings is also described in [Gheyi et al 2005]. Our approach 
to support the proposed refactorings is based on manual and automated refactorings. 
Refactorings that can be precisely defined are implemented as update transformations 
on the set of instances representing the model. The implementation of each refactoring 
is written in OCL Action Language, an extension of OCL that can generate side effects. 
Manual refactorings are supported by the execution of tests initially developed to 
validate the semantics of a specification, but that can also be applied after performing a 
refactoring [Correa and Werner, 2006]. Although tests can not prove that a model is 
correct, consistent or complete, or that its semantics have been preserved after a 
transformation, we accept a lower level of assurance in return for more rapid feedback 
and a reduced reliance on formal proofs expertise. 

 Some OCL smells and refactorings described in this paper are closely related to 
the ones described in [Fowler 1999]. Although the smells described in that work are 
related to the implementation of methods, many of them can be adapted to OCL 
specifications. Some of the refactorings mentioned in section 2 (Add Property 
Definition and Replace Expression by Property Call) can be viewed as adaptations of 
the Introduce Explaining Variable refactoring described in [Fowler 1999]. 

7. Conclusions  
Refactoring is considered an essential technique for handling software evolution. Since 
models are the central point in model driven approaches to software development, 
refactoring techniques and tools should also be developed at the model level. This paper 
showed how refactoring techniques can be applied to OCL expressions in order to 
remove bad constructions (OCL smells) that may negatively affects the 
understandability of OCL specifications.  
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 The results of the empirical study described in this paper indicate that the 
presence of OCL smells in OCL expressions may have a negative impact in both the 
correctness and the time necessary to understand a constraint written in OCL. Subjects 
scored better and took less time to answer R-type questions. S-type questions were 
perceived as being more difficult. Moreover, we found a correlation of this level of 
difficulty perceived by the subjects and their performance. As it was somehow 
expected, the results confirmed the anecdotal evidence on the usefulness of refactorings 
in the understandability of OCL expressions. 

 The subjective evaluation of the perceived quality of the expressions reflects 
somehow the lack of experience of the subjects with OCL. Although a significant part 
was able to see that some expressions are more complex than necessary, few subjects 
were able to correctly explain how they could be made simpler. Besides the lack of 
experience with OCL, we believe that an additional reason for such results is that their 
knowledge is restricted to basic OCL syntax and semantics. Therefore, the results 
suggest that a catalogue of OCL smells and their respective refactorings could be an 
important asset that the software modeling community should consider to continually 
use and evolve in order to enhance the overall quality of OCL specifications. 

 So far, we have catalogued 15 OCL Smells and 25 Refactorings [Correa 2006]. 
As future work, we plan to expand those catalogues and also to develop tool support for 
both the automatic identification of OCL smells and the application of OCL and model 
refactorings. 
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