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Resumo. OCL (Object Constraint Language) é a linguagem padronizada pelo
OMG para a especificacdo precisa de restricdes associadas a modelos e
meta-modelos compativeis com o0 MOF. Embora a OCL tenha sido criada com
a intencdo de ser uma linguagem mais simples quando comparada com
linguagens formais tradicionais, € comum encontrarmos especificacfes
escritas em OCL contendo expressbes dificeis de serem entendidas ou
mantidas. Este artigo apresenta um conjunto de construcbes potencialmente
problematicas, frequentemente encontradas em especificacfes elaboradas em
OCL, além de um conjunto de reestruturaces que podem ser empregadas
para remové-las. Este artigo descreve, ainda, um estudo experimental que foi
realizado para avaliar os efeitos desses conceitos no entendimento de
restrigdes especificadas em OCL.

Abstract. OCL (Object Constraint Language) is the OMG standard language
for the precise specification of constraints associated to MOF-compliant
models and meta-models. Although OCL has been created with the intention to
be a simpler language when compared to traditional formal specification
languages, it is common to find specifications containing OCL constraints that
are difficult to understand and evolve. This paper presents a set of potential
problematic constructions often found in specifications written in OCL and a
set of refactorings that can be applied to remove them. We also present an
experimental study that has been performed to evaluate the effects of applying
those strategies on the understandability of OCL specifications.

1. Introduction

The Object Constraint Language (OCL) is an OMG standard language [OMG 2003a]
which supports the specification of elements that can not be graphically described on
UML models and MOF-compliant meta-models. OCL can be used for many different
purposes, such as: to specify constraint conditions that must hold for the system being
modeled; to specify pre and post conditions on operations; to specify guard conditions
and derivation rules; to specify well-formedness rules associated to meta-models; as a

query language.
In the Model Driven Architecture (MDA) [OMG 2003b], a framework for

model-based software development sponsored by the Object Management Group
(OMG), OCL is also an important part of model transformation languages such as the
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OMG QVT (Query, Views and Transformations) standard [OMG 2005a]. Since it is a
precise specification language, OCL can help to remove potential ambiguity problems
that might be present in natural language specifications [Berry and Kamsties 2004], as it
happened with the first UML standard.

Instead of using formal mathematical notations, OCL is a textual language with
syntactical elements similar to those present in object oriented programming languages.
OCL was designed to be a language less intimidating than their traditional counterparts
[Warmer and Kleppe 2003], such as Z [Woodcock and Davis 1996] and VDM-SL
[Jones 1989]. However, this does not prevent specifications written in OCL from being
hard to understand and maintain, especially in cases when they contain unnecessarily
complex expressions.

In analogy to the term Code Smells [Fowler 1999], we defined the term OCL
smells as constructions present in OCL expressions that might negatively affect the
understandability or maintainability of OCL specifications [Correa and Werner 2004].
This paper presents a number of such constructions that are often found in OCL
specifications. Refactoring is an important technique for handling software evolution
that can be applied to remove Code Smells from a software implementation. Refactoring
corresponds to changes made to the internal structure of a software, preserving its
behavioral semantics, which aims at improving quality factors such as
understandability, modularity and extensibility [Mens and Tourwe 2004]. In this paper,
we present a set of OCL Refactorings that can be utilized to remove OCL smells from a
specification.

This paper also reports on an experimental study that evaluated the usefulness of
OCL refactorings on improving the understandability of OCL expressions. The study
involved 23 software developers with industry experience in UML modeling. The
results of this study indicate that the presence of OCL smells may have a negative
impact in both the correctness and the time necessary to understand constraints written
in OCL.

The rest of this paper is structured as follows: section 2 describes the main
concepts of OCL. Section 3 presents some OCL smells and the OCL refactorings that
can be used to remove them. Section 4 describes the objectives and design of the
experimental study. Section 5 reports on the results obtained from the experimental
study. Related works are discussed in section 6 and concluding remarks are drawn in
section 7.

2. OCL

This section briefly describes the main concepts of OCL that are used in this paper. A
more complete description of the language can be found in [Warmer and Kleppe 2003].
OCL is a declarative language that allows the specification of constraints on an
underlying model. A model always provides the context for constraints. Figure 1 shows
a small UML model used as context for the examples described in this section.

OCL can be used to specify constraints concerning the static structure and the
behavior of a system. Invariants are static structure constraints defined in the context of
a type. An invariant is defined by a boolean expression that must be true for all
instances of that type. The invariant shown in Figure 2 requires all instances of type
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Account to have a non negative balance. Since the invariant was defined in the context
of the Account class, the expression self.balance >= 0 must be true for all instances of
that class. Self is a reserved keyword which refers to each instance of the contextual
type (Account, in this example) used in the evaluation of the invariant.

Account
i -owner -accounts -
Client -number : string
-name : string -balance : Real
1 * -limit : Real

Figure 1. UML model example

context Account
inv: self.balance >= 0

Figure 2. Example of a simple OCL invariant

More complex expressions can be built by navigating along the associations
defined in the underlying model. Figure 3 shows a navigation expression (Self.accounts)
from a client object to their associated accounts. A navigation results in a collection of
elements. In this example, self.accounts results in a set of instances of the Account class.
A number of operations defined in the OCL standard library can be applied to a
collection value by using the ‘>’ operator. In this example, the select operation results
in the subset of the accounts of a given client (Self) having the isGold operation
evaluated to true. The Size operation gives the number of elements in the resulting
subset.

context Client
def: goldAccountsQty : Integer =
self.accounts->select(acc | acc.isGold())->size()
def: isGold() : Boolean =
self.balance > 15000

Figure 3. Example of OCL navigation expression

Properties and operations can be added to the model by using the def keyword.
In the example shown in Figure 3, the attribute goldAccountsQty and the operation
isGold were added to the Client type. The value of goldAccountsQty is derived from its
associated OCL integer expression, and isGold is a query operation whose body is
defined by the boolean expression self.balance > 15000.

OCL is a typed language. Every expression has a type which defines the
operations that can be applied to its result. Besides the primitive types (Boolean,
Integer, Real and String), all classifiers and enumerations defined on the underlying
model are members of the set of available types. The OCL standard library defines
several operations for each type. Logical operations (and, or, xor, implies, if-then-else-
endif), collection operations (Size, includes, iSEmpty) and quantifiers (forAll and exists)
are examples of such operations.

24




SBES 2007
XXI Simpéosio Brasileiro de Engenharia de Software

3. OCL Smells and Refactorings

Although OCL has been created with the intention to be a simpler language when
compared to traditional formal specification languages, it is common to find
specifications containing OCL constraints that are difficult to understand and evolve.
Lack of experience in specifying and using OCL [Chiorean et al 2004] combined with
poor tool support [Baar et al 2005] are possible explanations for this fact.

The constraints shown in Figure 4 and Figure 5 are well-formedness rules
excerpted from the UML 1.3 specification [OMG 1999]. They are examples of overly
complex expressions that are often found in OCL specifications. The presence of such
complex expressions in the UML specification has lead to misconceptions about the
OCL potential. In [Ambler 2002], the constraint shown in Figure 4 is used as an
example that even simple rules may result in wordy and hard to read OCL expressions.
This constraint, however, could have been defined with an expression as simple as:
self.allConnections->isUnique(name) .

context Association inv AllAssociationEndsHaveDistintctNames:
self.AssociationEnds->forAll(element1, element?2 |
elementl.name(self. AssociationEndNames) =
element2.name(self. AssociationEndNames)
implies elementl = element2))

Figure 4. UML well-formedness rule — Example 1

Figure 5 shows a constraint related to the Collaboration element defined in the
UML metamodel, which refers to the classifier and association roles associated to that
element. The operation oclIsKindOf returns true if the type of the object to which it is
applied is either the same or a descendant of the type passed as argument. The operation
oclAsType means casting the object to the type specified as argument. Those
expressions are usually applied in downcast operations such as in the expression
g.oclAsType(ClassifierRole).base. Since the type of q is ModelElement and base is
defined as a property of ClassifierRole, a downcast is needed.

At a first glance, the complexity of the OCL constraint present in Figure 5 may
be due to limitations of the specification language, which usually force the usage of
several calls to ocllsKindOf and oclAsType operations [Vaziri and Jackson 2002]. A
deeper analysis, however, reveals that the complexity of this constraint actually comes
from the usage of inadequate OCL constructions combined with the absence of more
general concepts in the underlying model and poor name choices in both the underlying
model elements and the OCL expressions. The lack of a supertype for ClassifierRole
and AssociationRole types resulted in complex and very similar expressions separated
by the and operator.

Therefore, the constraints shown in Figure 4 and Figure 5 are examples of OCL
smells. This section describes some OCL smells that are often found in specifications,
particularly in those produced by OCL novices. They were collected not only from
specifications produced by students and software practitioners, most of them with no
previous experience with OCL, but also from the UML official specification [OMG
2005b], and from several papers published in software engineering conferences. Our
definition of OCL smells does not include expressions containing errors due to
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syntactical or type-checking issues.

self.allContents-»>forall ( p |
(p.oclIsKind0f (ClassifierRole) implies
p.name = '' implies
self.allContents->forall ( g |
g.oclIsKindOf (ClassifierRole) implies
(p.oclAsType (ClasgsifierRole] .base =
g.oclhaType (ClassifierRole) .base implies

p=qg )
and
(p.oclIsgKind0f (RAssociationRole) implies
p.name = '' implies

gself.allContents->forall ( g |
g.occlIsKindOf (AssoclationRole) implies
(p.oclAsTyvpe (AgsociationRole) .bage =
g.oclAsType (AssociationRole) .base implies

P =q 1)

Figure 5. UML well-formedness rule — Example 2

A number of refactorings can be applied to OCL expressions and their
underlying model in order to remove OCL smells from a specification. An important
activity that precedes refactoring operations is the identification of the parts of a
software artifact that should be refactored. In OCL specifications, we use a catalogue of
OCL smells that we have elaborated to support the identification of potential targets for
refactorings. Due to space constraints, we will only present the OCL smells and
refactorings that were used in the experimental study described in section 4, since they
correspond to the ones that we have found most often in OCL specifications.

3.1. OCL Smell: Implies Chain

Implies chain corresponds to OCL expressions of the form bl implies (b2 implies b3),
where b1, b2 and b3 are boolean expressions. Figure 6 shows an example of this smell
extracted from the UML specification. This constraint states that the target of every
transition from a fork pseudostate must be a State.

The refactoring Replace Implies Chain by a Single Implication replaces an
Implies Chain, such as <<A implies (B implies C)>>, with an expression of the form
<<(A and B) implies C>>. If the antecedent of the refactored expression results in a
complex conjunction, the application of further refactorings should also be considered.
For example, if the resulting expression is a complex conjunction of the form by and b,
and bs ... and by, we should further refactor this expression by extracting the definition
of auxiliary properties or operations from parts of that conjunction. The definition of
auxiliary properties or operations from an OCL expression corresponds to the following
refactorings:

e Add Operation Definition and Replace Expression by Operation Call: The main
motivation for these two refactorings is to promote encapsulation and reuse
across a specification. By using operation definitions, one can hide complex

26



SBES 2007
XXI Simpéosio Brasileiro de Engenharia de Software

expressions from other parts of a specification and avoid the duplication of
expressions that are used in many parts of a specification;

e Add Property Definition and Replace Expression by Property Call are analogous
to the refactorings based on operation definitions previously described. Instead
of creating and using OCL helper operations, they create and use OCL helper

properties.
+target 1 * i i
¢} +incoming
StateMachine Vertex i
+source +outgoing [ ansition
1 *
0..1
<<enumeration>>
PseudostateKind
Pseudostate State fork
0..41kind : PseudostateKind join

context Transition
inv:
self.source.ocllsKindOf(Pseudostate)
implies (self.source.oclAsType(Pseudostate).stateMachine->notEmpty()
implies (self.source.oclAsType(Pseudostate).kind = PseudostateKind::fork
implies self.target.oclIsKindOf(State)))

Figure 6. Example of the Implies Chain OCL Smell

Figure 7 shows the refactored version of the constraint present in Figure 6. It is
the result of the following refactorings: Replace Implies Chain by a Single Implication
which replaced two implies by a conjunction, Add Property Definition which added the
property sourcelsFork to the Transition class, and Replace Expression by Property Call
which replaced the antecedent of the constraint by the expression self.sourcelsFork.

context Transition
def: sourcelsFork : boolean =
self.source.ocllsKindOf(Pseudostate) and
self.source.oclAsType(Pseudostate).stateMachine->notEmpty()and
self.source.oclAsType(Pseudostate).kind = PseudostateKind::fork
inv:
self.sourcelsFork implies self.target.ocllsKindOf(State)

Figure 7. Refactored Version of the Implies Chain OCL Smell

3.2. OCL Smell: Verbose Expression

Verbose Expression corresponds to OCL expressions that are bigger than necessary.
Besides being easier to understand and maintain, a less verbose expression can usually
be evaluated more efficiently. Two usual forms of this smell are:

27




SBES 2007
XXI Simpéosio Brasileiro de Engenharia de Software

a) Expressions containing more operation calls than needed: these expressions can be
shortened by the Simplify Operation Calls refactoring. This refactoring consists of
rewriting an OCL expression in a shorter form by using less operation calls. A
common situation for this refactoring corresponds to expressions that can be
simplified by using standard collection operations. Figure 8 illustrates some
examples of verbose expressions (on the left column) and their corresponding shorter
versions (on the right column). All examples are schematically represented: X
denotes a collection and P(x) corresponds to a boolean expression that may use the
iterator x on its definition.

Verbose expression Shorter version
X->select(x | P(x))->size() >0 X->exists(x | P(x))
X->select(x | P(x))->size() >= 1
X->select(x | P(x))->notEmpty()

X->select(x | P(x))->size() = 1 X->one(x | P(x))

X->select(x | P(x))->size() =0 not X->exists(x | P(x))
X->select(x | P(x))->isEmpty()

X->select(x | P1(x))->select(y | P2(y)) X->select(x | P1(x) and P2(x))

X->forAll(x1, x2 | x1 <> x2 implies x1.p <> x2.p) | X->isUnique(p)

Figure 8. Example of Verbose Expressions and their Refactored Versions

b) Invariants defined in the wrong context class: since an invariant can be described in
many ways depending on its context class, attaching an invariant to the wrong
context usually makes it harder to specify and maintain [Warmer and Kleppe 2003].
The invariant shown in Figure 6 is an example of this situation. If Pseudostate were
used as the context class, the result would be a simpler expression without
downcastings, since the condition part of the invariant only references properties
defined in this class. As a general guideline, the best context is the one that results in
the easiest to read and write expression [Warmer and Kleppe 2003]. Therefore, it is a
good exercise to describe the same invariant using different contexts. The refactoring
Change Context consists of rewriting an invariant by using a different context class.
In Figure 9, the invariant shown in Figure 6 was redefined using Pseudostate as the
context class and two added properties (isSFork and allTargets).

context Pseudostate
inv: self.isFork implies
self.allTargets->forAll(t | t.oclIsKindOf(State))
def: isFork: Boolean = self.stateMachine->notEmpty() and
self.kind = PseudostateKind::fork
def: allTargets: Collection(Vertex) = self.outgoing.target

Figure 9. Example of the Change Context Refactoring

3.3. OCL Smell: Forall Chain

ForAll chain is a special case of the Verbose Expression smell that corresponds to
expressions containing the following structure: X ->forAll(al | al.B->forAll(bl | b1.C
->forAll(cl | P(c1)))). Suppose that X is a collection of elements of type A, and there is
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an association between classes A and B, and between classes B and C. In such a
situation, the expression denotes that some predicate P must be true for all instances of
C indirectly associated to the instances of type A present in X. Notice that predicate P
does not reference the iterators al and b1 defined in the outer forAll calls.

Expressions containing forall chains can be replaced by a single call to forAll
operation applied to a navigation from A to C, i.e., X.B.C ->forAll(cl | P1(c1)). Such
change corresponds to the application of the Replace ForAll Chain by Navigations
refactoring.

3.4. OCL Smell: Downcasting

Downcasting is a well-known smell in the object oriented programming community. In
OCL, it corresponds to the use of expressions of the form X.0clAsType(Y).z, usually
preceded by an expression of the form x.oclIsKindOf(Y). This is often an indication that
some more abstract concepts are missing in the underlying model. The expression
associated to the definition of the sourcelsFork variable in Figure 7 is an example of
this OCL smell.

In most cases, this smell can be removed through one of the following
refactorings: Change Context or Introduce Polymorphism. The Introduce Polymorphism
refactoring replaces complex if-then-else-endif expressions that makes considerable use
of operations such as oclIsKindOf, oclIsTypeOf, oclAsType, by a combination of generic
and specific operations defined in a hierarchy of classes. This refactoring is also used in
combination with other refactorings that are applied to the underlying model, such as
Add Class, Add Generalization, Pull Up, Push Down, Add Operation among other
possible model refactorings.

3.5. OCL Smell: Type Related Conditionals

This smell occurs in expressions of the form if x.oclIsKindOf(A) then <expl> else if
x.oclIsKindOf(B) then <exp2> else ... endif, i.e., the result of the expression depends on
the type of a given object X which is obtained through calls to ocllsKindOf or
oclisTypeOf operations. This kind of structure results in less readable and less
maintainable specifications. This smell can be removed by applying the Introduce
Polymorphism refactoring described in section 3.4.

Figure 10 shows a constraint containing this smell, extracted from the UML 2.0
Superstructure Specification [OMG 2005b]. Besides presenting many syntactical and
type checking errors, the invariant contains an if-then-else-endif structure based on the
type of the LinkEndData objects associated to a LinkAction object that corresponds to
the Type Related Conditionals smell.

The bottom part of Figure 10 shows the expressions that result from the
application of the Introduce Polymorphism refactoring to this invariant. Since the
inputPins associated to a LinkEndData object depends on its type (value for instances of
LinkEndData and value + insertAt for instances of LinkEndCreationData), an operation
ledPins was defined in both classes, so that the original invariant could be rewritten
without using oclIsKindOf or oclAsType operations.

29



SBES 2007
XXI Simpéosio Brasileiro de Engenharia de Software

l +input | 1 *
1 0.1

LinkAction - +endData LinkEndData | InputPin
1 2.x +value
Zﬁ +insertAt’| 0..1
LinkEndCreationData
0.1

context LinkAction
inv: self.input =
let ledpins : Set = self.endData->collect(value) in
if self.oclIsKindOf(LinkEndCreationData)
then ledpins->union
(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins
endif

Refactored Version:
context LinkEndData
def: ledPins() : Set(InputPin) = self.value

context LinkEndCreationData
def: ledPins() : Set(InputPin) = self.value->union(self.insertAt)

context LinkAction
inv: self.input = self.endData.ledPins()

Figure 10. Example of the Type Related Conditionals Smell

4. An Experimental Study to Evaluate OCL Refactorings

Although there is anecdotal evidence on their usefulness, few quantitative evaluations
of software refactorings have been published so far [Kataoka et al. 2002]. This section
describes the planning of an experimental study that we have conducted in order to
evaluate the impact of OCL smells and refactorings on the understandability of OCL
specifications.

4.1. Definition

Using the structure defined in [Wohlin 2000], the study is defined as follows: analyze
refactorings that can be applied to remove OCL smells from OCL constraints, for the
purpose of evaluating the usefulness of the proposed refactorings, with respect to their
benefits to the understandability of OCL constraints, from the point of view of the
researcher, in the context of software developers reading and interpreting OCL
constraints defined in a lab package.
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4.2. Context and Material

The study procedure consists of reading and interpreting OCL constraints associated to
elements defined in a UML model. The selected subjects were 23 graduated software
developers who have attended to a 40-hour course in UML/OCL offered by Federal
University of Rio de Janeiro. Their knowledge of OCL was restricted to basic OCL
syntax and semantics, i.c., they were not aware of concepts such as OCL smells and
OCL refactorings.

Each subject answered ten questions, each presenting an OCL constraint
associated to an UML model and a small object diagram corresponding to a snapshot of
objects of that model. A subject should answer whether and why the given snapshot
violates the constraint. This UML model does not make use of elements with conflicting
semantics such as composition or aggregation.

The subjects were divided in two groups (GI and GII) and each group answered
a different set of questions (Set I or Set II). Each set was composed of five S-Type
questions (interpretation of constraints containing OCL smells) and five R-Type
questions (interpretation of refactored versions of the constraints present in the S-type
questions answered by the other group). R-type questions of one set used the same
object diagrams present in S-type questions of the other set.

By using two sets of questions with the proposed organization, we tried to
expose all subjects to expressions containing the same number of OCL smells and at the
same difficulty level. Table 1 presents the structure of each set of questions and the
OCL smells present in each S-type question. The column RQ (Related Question)
indicates the number of the question in the other set that contains the same OCL smell.

Table 1 — Composition of each set of questions

Set S1 Set S2
Question OCL Smells RQ | Question OCL Smells RQ
S1 Implies Chain 10 R1 S1 — refactored
S3 Downcasting 4 R3 S3 — refactored
S5 Forall Chain 2 R5 S5 — refactored
S7 Verbose 8 R7 S7 — refactored
Expression
S9 Type Rel. 6 R9 S9 — refactored
Conditionals
R2 S2 — refactored S2 Forall Chain 5
R4 S4 — refactored S4 Downcasting 3
R6 S6 — refactored S6 Type Rel. 9
Contitionals
R8 S8 — refactored S8 Verbose Expression
R10 S10 — refactored S10 Implies Chain 1

4.3. Hypothesis Formulation

The independent variable of this study is the type of the OCL expressions present in
each answered question. This variable has two possible values: S (constraints with OCL
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smells) and R (refactored constraints). We evaluated the impact of the independent

variable on the following dependent variables:

a) Question Score (QS): the score of the subject on a specific question. QS is an
integer variable, computed as follows: one point for the yes/no part of the answer
and one point for the justification part. The variables SS and RS are defined for each
subject as the sum of QS in questions of type S and R, respectively.

b) Question Time to Answer (QT): time in seconds spent by the subject to completely
answer the question. The variables ST and RT are defined for each subject as the
sum of QT in questions of type S and R, respectively.

Given these variables, we formulate the Null Hypothesis (Hy) as follows: “There
is no difference in accuracy and time to answer interpretation questions on constraints
containing OCL smells, when compared to the refactored versions of the same
constraints”. Therefore, Ho: uSS = uRS and uST = pRT.

The alternative hypothesis (H;) is that OCL smells affect accuracy or time to
answer those interpretation questions. To be more precise, H; should be one-tailed: we
expect OCL smells to have one or both of the following effects: decreased accuracy or
increased time to answer. Therefore, H;: pSS < pRS or uST > puRT.

4.4. Study Design

The study was organized in the following phases:

a) Self-Study: Each subject was given two weeks to study a written tutorial on OCL,
elaborated by us.

b) OCL Assessment: subjects were grouped in two blocks (higher scores and lower
scores) according to the median of their scores on a ten question OCL test. Each
group (GI and GII) was then randomly assigned eleven subjects from both blocks in
nearly identical proportions. One subject was allocated to test the instrumentation.

¢) Main session: In the main session, each participant answered the set of ten questions
assigned to his group (SI or SII). Each subject had to fully answer one question to
proceed to the next one. They were not allowed to change answers of the preceding
questions. This strategy allowed us to collect the time spent by the subjects on each
question. No time limit was imposed to the subjects.

d) Subjective Evaluation: After answering the set of questions, the participants were
asked to classify each question according to two aspects: the difficulty level and the
perceived quality of the OCL expressions. For the evaluation of the difficulty level of
each question, we used a Likert scale from 1 to 5 (1-very easy, 2-easy, 3-medium, 4-
difficult, 5-very difficult). The quality of the OCL expressions present in each
question was evaluated according to the following nominal scale: 1- constraint is
badly written; 2- not sure whether the constraint is well or badly written; 3-
constraint is well written.

5. Experimental Study: Results and Threats to Validity

5.1. Adequacy of Instruments

First, we analyzed the instruments used in the main session, since they were designed to
provide a similar experience to all subjects. We applied an ANOVA test with 5%
threshold (a-level) [Wohlin 2000] to compare the following data:
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e mean score and time spent on each set of questions: we compared the average score
and the average time to answer for groups I and II, taking into account both S-type
and R-type questions;

e mean score and time spent on questions of the same type in each set of questions: we
compared the average score and the average time to answer for groups I and II
separately for each type of question;

The results showed no significant difference in scores and time to answer
between the groups. Thus, there is no evidence that differences over the instruments
should impose threats to further analyses.

5.2. Scores

Nine questions were correctly answered by all subjects (R1, R2, R3, R4, R7, R8, S2, S3
and S8). The bottom four scores correspond to S-type questions (S5, S10, S6 and S9, in
ascending order). The total scores in all R-type questions were greater than or equal to
their respective S-type questions, i.e., total score in question R; >= total score in
question S;.

An ANOVA test (a-level = 0.05) was applied to the score of each type of
question (uSS and pRS). The results shown in Table 2 rejected the null hypothesis Hy in
favor of the alternative hypothesis H;: pSS < pRS, i.e., the mean score in S-type
questions was lower than the mean score in R-type questions. Therefore, the results
indicate that, at least in the sample analyzed in the study, the presence of OCL smells
negatively impacts the understanding of OCL constraints.

Table 2 — ANOVA table: score in each type of question

Question Size Sum of Mean Individual
Type (N) Squares Square Mean
S 110 339 278 7,95
R 110 402 378 9,27
F (ANOVA) | 9,89 FcriT 6,75

5.3. Time to Answer

Results indicate that most subjects spent more time answering S-type questions than R-
type questions. In 90% of the questions, the average time to answer S-type questions
was higher than the average time to answer their respective R-type questions. Only in
question 1, the time to answer the S-type question was slightly higher. In questions 3, 4,
7, 8 and 9, the average time spent on S-type questions was at least 100% higher than on
their R-type counterparts.

An ANOVA test (a-level = 0.05) was applied to the time to answer each type of
question (uST and pRT). The result shown in Table 3 rejected the null hypothesis Hy in
favor of the alternative hypothesis Hi: pST > pRT, i.e., the mean time to answer S-type
questions was higher than the mean time to answer R-type questions. Therefore, the
results indicate that, at least in the sample analyzed in the study, the presence of OCL
smells can negatively impact the time needed to understand OCL constraints.
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Table 3 — ANOVA table: time to answer each type of question

Question Size Sum of Mean Square | Mean time spent in
Type (N) Squares each question
S 105 | 13.236.000 | 10.047.146,67 05:14
R 103 8.525.400 5.942.403,88 04:00
F (ANOVA) | 8,87 FcriT 3,89

5.4. Subjective Evaluation

Data collected from the subjective evaluation made by the subjects were analyzed in
order to investigate whether they perceived some difference in the difficulty level of S-
type questions compared to R-type questions. More than 60% of R-type questions were
classified as easy or very easy, and only 10% of R-type questions were judged difficult
or very difficult. On the other hand, less than 30% of S-type questions were classified as
easy or very easy, while 30% of them were judged difficult or very difficult.

This evaluation also showed that there is a significant difference in the perceived
quality of expressions present in S-type questions and R-type questions. While only 4%
of the evaluations of R-type questions classified their expressions as of poor quality, that
number raised to 36% in S-type questions. 80% of R-type expressions were evaluated as
of good quality. However, a significant number of evaluations (44%) perceived
expressions containing OCL smells (S-type) as of good quality.

5.5. Threats to Validity

This section discusses the different threats to the validity of results found in this
study, in decreasing priority order: internal, external, construction, conclusion.

Internal validity is defined as the ability of a new study to replicate the observed
behavior using the same subjects and instruments. We tried to minimize the threats to
internal validity by submitting every subject to the same treatments and by alternating
between R-type and S-type questions during the main session.

External validity reflects the ability to reproduce the same behavior in groups other
than the ones that were analyzed. As in many academic studies, the issue of whether the
subjects are representative of software professionals arises. We tried to involve subjects
with different academic background and professional experience. We cannot state that
the results of this study would occur in the same way using bigger and more complex
models and OCL constraints. However, this issue is almost always present in
experiments with industry professionals.

Construction validity refers to the relationship between the instruments / subjects
and the theory under study. The study was carefully designed so that all subjects would
have comparable and similar experiences. The results described in section 5.1 indicate
that this goal was achieved. We followed an approach similar to those used in other
empirical studies that evaluated some aspect related to program or specification
understanding ([Briand et al 2005], [Finney et al 1999], [Snook and Harrison 2001]).
The subjects were aware that we were attempting to evaluate some issues related to
OCL, but they were not aware of the exact hypotheses we were testing or what results
we were hoping to obtain.
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Conclusion validity relates the treatments and the results, defining the ability of the
study in generating some conclusion. We tried to obtain reliable results by using
objective measures and statistical parametric tests. We also used subjective evaluations
in order to support the quantitative results. Although the number of subjects could be
considered low, we tried to increase the number of data points by submitting all subjects
to both treatments.

6. Related Work

The basic ideas of model refactorings were presented in [Sunyé et al 2002], where the
authors explored how the integrity of UML class diagrams and statecharts could be
maintained after refactorings. Moreover, some refactorings related to statecharts were
formally defined using OCL pre and postconditions. A detailed discussion about model
refactorings can also be found in [Boger et al 2002], [Massoni et al 2005] and
[Markovic and Baar 2005]. While those works are mostly related to refactorings applied
to UML model elements that may take into account well written OCL expressions
associated to them, our approach is focused on improving badly written OCL
expressions associated to such elements.

A relevant issue regarding model transformations is to prove that a refactoring
preserves the semantics previously described in the model. This requires a semantic
interpretation of models that is amenable to formal analysis. Some results regarding this
issue can be found in [Engels et al 2002] and [Mens et al 2002]. A rigorous approach
for providing model refactorings is also described in [Gheyi et al 2005]. Our approach
to support the proposed refactorings is based on manual and automated refactorings.
Refactorings that can be precisely defined are implemented as update transformations
on the set of instances representing the model. The implementation of each refactoring
is written in OCL Action Language, an extension of OCL that can generate side effects.
Manual refactorings are supported by the execution of tests initially developed to
validate the semantics of a specification, but that can also be applied after performing a
refactoring [Correa and Werner, 2006]. Although tests can not prove that a model is
correct, consistent or complete, or that its semantics have been preserved after a
transformation, we accept a lower level of assurance in return for more rapid feedback
and a reduced reliance on formal proofs expertise.

Some OCL smells and refactorings described in this paper are closely related to
the ones described in [Fowler 1999]. Although the smells described in that work are
related to the implementation of methods, many of them can be adapted to OCL
specifications. Some of the refactorings mentioned in section 2 (Add Property
Definition and Replace Expression by Property Call) can be viewed as adaptations of
the Introduce Explaining Variable refactoring described in [Fowler 1999].

7. Conclusions

Refactoring is considered an essential technique for handling software evolution. Since
models are the central point in model driven approaches to software development,
refactoring techniques and tools should also be developed at the model level. This paper
showed how refactoring techniques can be applied to OCL expressions in order to
remove bad constructions (OCL smells) that may negatively affects the
understandability of OCL specifications.
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The results of the empirical study described in this paper indicate that the
presence of OCL smells in OCL expressions may have a negative impact in both the
correctness and the time necessary to understand a constraint written in OCL. Subjects
scored better and took less time to answer R-type questions. S-type questions were
perceived as being more difficult. Moreover, we found a correlation of this level of
difficulty perceived by the subjects and their performance. As it was somehow
expected, the results confirmed the anecdotal evidence on the usefulness of refactorings
in the understandability of OCL expressions.

The subjective evaluation of the perceived quality of the expressions reflects
somehow the lack of experience of the subjects with OCL. Although a significant part
was able to see that some expressions are more complex than necessary, few subjects
were able to correctly explain how they could be made simpler. Besides the lack of
experience with OCL, we believe that an additional reason for such results is that their
knowledge is restricted to basic OCL syntax and semantics. Therefore, the results
suggest that a catalogue of OCL smells and their respective refactorings could be an
important asset that the software modeling community should consider to continually
use and evolve in order to enhance the overall quality of OCL specifications.

So far, we have catalogued 15 OCL Smells and 25 Refactorings [Correa 2006].
As future work, we plan to expand those catalogues and also to develop tool support for
both the automatic identification of OCL smells and the application of OCL and model
refactorings.
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