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Resumo. Este artigo resume nossa experiência de uso de um modelo de compo-
nente para conceber e construir agentes para simulações baseadas em agentes.
Neste modelo, chamado MALEVA, os componentes encapsulam varias unidades
de comportamento de agentes (por ex: seguir um gradiente, fugir, morrer, re-
produzir. . . ). Entre suas especificidades, o modelo expande os princı́pios de
composição de software para especificação do controle por meio de portas e
componentes de controle. A noção de componente composto permite construir
comportamentos complexos, a partir de outros mais simples. Alguns exemplos
ilustram a capacidade do modelo em facilitar a construção progressiva de com-
portamentos de agentes e seu suporte a várias formas de reutilização potencial.
Nós discutimos também os benefı́cios do modelo para um controle refinado de
ativação e de ordenamento.

Abstract. This paper summarizes our experience in using a component model
for constructing agents for agent-based simulations. In this model, named MAL-
EVA, components encapsulate various units of agent behaviors or activities
(e.g., follow gradient, flee, die, reproduce). Among its specificities, it extends
the principles of software composition to the specification of control, through the
notions of control ports and control components. A notion of composite com-
ponent allows complex behaviors to be constructed from simpler ones. Some
examples illustrate how our model may support a progressive construction of
agent behaviors and also various forms of potential reuse. We also discuss the
benefits of our model for a fine grain control of activation and scheduling.

1. Introduction
Agent-based simulation (Sichman and Antunes 2006) is recognized as an important ap-
proach for the modeling and simulation of various phenomena (e.g., biological, ecolog-
ical, social, economic. . . ). We believe that the concept of agent (Ferber 1999) is both
structuring enough (unit of activity, of interaction) and versatile enough (reactive or cog-
nitive agents) for simulation applications, as well as for other types of applications. It is
important to note that, for simulation applications, the domain specialists are not neces-
sarily themselves expert programmers. Moreover, they usually want to quickly prototype
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and then update the behavioral properties of the various agents populating a simulation.
We believe that using software engineering principles could help at genericity and reuse
of the models. A natural direction is thus to exploit the concepts of software components
which already proved to be an effective approach for rationalizing composition, reuse,
and deployment of software.

In this paper, we describe our experience in the design and the use of a compo-
nent model for constructing agents for agent-based simulations. This component model,
named MALEVA, helps at an incremental construction of an agent by composition of
simple agent behaviors or activities (e.g., flee, follow gradient, mate, reproduce).1 One of
its specificities is that it extends the principles of software composition to the specification
of control, through the notions of control ports and of control components. Requirements
for simulation had an influence on the initial design and evolution of MALEVA, as well as
on the case studies conducted. MALEVA has indeed been used as the direct foundation or
as an inspiration by several teams for various agent-based simulation projects, applied to,
e.g.: urban migration, traffic simulation (LeCerf and Pintado 1997), fish tanks evolution,
but also to: robot architectures (Bouraqadi and Stinckwich 2007) and distance learning
(Aniorte 2003). Therefore, we believe that our component model may also be useful for
other types of applications.

We describe three examples in the paper. The first example is a variant of a
classical prey/predator simulation example (Ferber 1999). The second one is the re-
engineering of a significant application, the MANTA ant colonies simulation framework
(Drogoul et al. 1995). The third one is a simplification of another real application, a
micro-simulation of population evolution (INSEE 1999). We hope that these three ex-
amples provide some hints on how MALEVA can support bottom-up as well as top-down
design, and also how it offers some potential for reuse and specialisation, through: struc-
tural composition of behaviors, abstract behaviors and design patterns, and specialization
of intra-agent scheduling policies. Two other papers, focus respectively on: a method-
ological framework for agent-based simulations and how MALEVA may help at closing a
gap between the domain model of a thematician and the operational model of a computer
scientist (Briot and Meurisse 2006) ; and an analysis of different architectural styles for
agent architectures (Briot et al. 2007). This paper focuses on lessons learned from the
examples and also on enginering concerns.

2. The MALEVA Agent Component Model
The objective of the MALEVA component model is to help at incremental construction
of agent behaviors (e.g., flee, follow gradient, reproduce), reified as software compo-
nents. Therefore, we assume that there is a library of behavior components associated
to the application domains targeted. A component may be primitive (it is written in the
underlying language, e.g., Java), or composite (i.e., defined as the encapsulation of a com-
position/assemblage of components).2

1In this paper, we focus on the issue of components at the agent level, to decompose the internal structure
of one given agent through components. We do not address here the use of components at the system level
(each agent is implemented as one component), as, e.g., in (Melo et al. 2004).

2The notion of composite component corresponds to a notion of structural composition, as opposed
to, or rather in addition to, functional composition (simple assemblage). Architectures of sub-components
may be encapsulated in composites, thus providing a hierarchical form of composition. A composite may
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Data Control

Input port Data consumption Activation entry point
Output port Data production Activation exit point
Connexion Data transfer Activation transfer

Table 1. Data and control ports

2.1. Data Flow and Control Flow
In MALEVA, a distinction is made between the activation control flow and the data flow
connecting the components. As we will show in Section 2.2, this characteristic and likely
specificity of our model,3 decouples the functional architecture from the activation control
architecture. The objective is to make components more independent of their activation
logic and thus more reusable. Consequently, we consider two different kinds of ports
within a component:

• data ports. They are used to convey data transfer (one way) between components.4
• control ports. A behavior encapsulated in a component is activated only when it

explicitly receives an activation signal through its input control port. When the
execution of the behavior is completed, the activation signal is transferred to its
output control port.

As shown in Table 1, in addition to the specific semantic distinction between data
ports and control ports, MALEVA adopts the common architectural distinction between
input ports and output ports, as in, e.g., UML2 or CCM (OMG 2007).

2.2. An Introductory Example
As for an introduction, we start with a first and very simple example of composition of
components: a sequence of two components, illustrated at the left side of Figure 1. Com-
ponent B is activated after the computation of component A completes. Regarding data,
component B will consume the data produced by component A only after computation of
A completes. In our graphical notation for components and connexions, data flow con-
nexions are shown in solid lines, and control flow connexions in dotted lines.

The right side of Figure 1 recombines the two same components, but this time
activated concurrently.5 This simple example is a first illustration of the possibilities and
flexibility in controlling activation of components. One may describe active autonomous
components (with an associated thread), explicit sequencing or any other form of com-
bination. Flow of control is specified outside of the components, which provides more
genericity on the use of components, and, as we will discuss in Section 5, also a fine
grained control over activation policies.

also provide extra functionalities (and control specifications) at its higher abstraction level, making it a true
component on its own. Another example of component model providing a notion of composite is the Fractal
component model (Bruneton et al. 2004).

3Note that, in the different context of project management applications, a distinction between data flow
and control flow was introduced in SADT (Marca and McGowan 1987). But SADT introduced this distinc-
tion mostly at the design level, whereas MALEVA makes it also available at the implementation level.

4Data ports are typed, as further discussed in Section 6.2.
5The control connexions have been changed accordingly, but not the data connexions. The semantic is

analog to the pipes and filters (Shaw and Garlan 1996) architectural style: component B consumes what A
produces while they are both active simultaneously.
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Figure 1. Sequential vs concurrent activation of two components

3. 1st Example: Bottom-Up Design of Prey and Predator
3.1. Abstract Architecture of a Situated Agent
Our first example defines behaviors of situated agents within an ecosystem. A situated
agent senses its environment (e.g., position of the various agents near by, presence of
obstacles, presence of pheromones) through its sensors. These data are used by its (inter-
nal) behavior to produce data for its effectors, which will act upon the environment (e.g.,
move, take food, leave a pheromone, die). The general architecture of a situated agent6

(see Figure 2) usually follows the computational cycle: sensors → behavior → effectors.

Figure 2. Abstract architecture of a situated agent

3.2. Basic Behaviors
We will now define and construct the behaviors of preys and predators agents. By follow-
ing a bottom-up approach, we first define a set of elementary components, representing
the basic behaviors of preys and predators, that we name: Flee (fleeing a predator) ;
Follow (following a prey) ; and Exploration (exploration through a random move,
which represents the default behavior). Then we compose them, to represent the following
agent behaviors: Prey and Predator.

6For other applications, e.g., in Section 5 on micro-simulation, agents are not necessarily situated (within
an environment) and thus do not use any sensor/effector.
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3.3. Control Components

A prey flees the predators being located within its field of perception. If no predator is
close (sensed), the prey explores its surroundings by moving randomly. Thus, we con-
struct the Prey behavior as the composition of the following three components: Flee,
Exploration, and a control component named Switch.7 The Switch control com-
ponent reifies the standard conditional structure into a special kind of primitive compo-
nent. The condition is the presence or absence of an input data. The behavior of Switch,
once being activated (receiving an activation signal), is as follows:

IF data is received through If (input data port)
THEN transfer control through Then (output control port)
AND send data through Then (output data port)
ELSE transfer control through Else (output control port)

3.4. Prey Behavior

Figure 3. Prey behavior

The behavior of a prey, named Prey, is defined as follows. If it detects a predator
(some data representing the predator location has been received on its input data port),
the Switch component transfers the control through its Then output control port, which
activates the Flee behavior. Then Flee can compute a move data based on the location
of the predator, and send it through its output data port. The move data arrives to Prey
output data port and then to the effector, to produce a move of the agent on the envi-
ronment. If no predator has been detected, Switch transfers control through its Else

7The MALEVA standard library includes other control components, analog to standard control struc-
tures (e.g., repeat loop) or synchronisation operators (e.g., barrier synchronisation), see (Meurisse 2004).
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output control port, which activates Exploration behavior.8 The result is shown at
Figure 3.9

3.5. Predator Behavior

Figure 4. Predator behavior (with Prey as a sub-component)

We may now reuse the Prey behavior component to construct the behavior of
a predator, which follows the preys while fleeing his fellows predators, and otherwise
explores its surroundings. The behavior of a predator may be defined as the behavior of
a prey (it flees other predators and otherwise carries out an exploration movement), to
which is added a behavior of predation (it follows a prey that he perceives). According
to our compositional approach, we define the Predator behavior component as a new
composite behavior embedding – as it is – the existing Prey behavior component (see
the result in Figure 4).10

4. 2nd Example: Top-Down Design of Ants

This second example illustrates a top-down design of agent behaviors. The complete
application was the reengineering in MALEVA of the MANTA framework for simulation
of ant colonies to study their sociogenesis (Drogoul et al. 1995). Various types of ant

8Exploration does not need a data input to produce a move data.
9We assume that the input data port (perception of a predator in the environment) and the output data

port of the Prey behavior have been connected to the corresponding sensor and effector data ports, along
the general architecture of a situated agent, shown at Figure 2.

10In this design, hunger (predation) has priority over fear (fleeing), as Prey is activated by Predator.
Other combinations could be possible.
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agents are considered: egg, larva,11 ant worker, and queen. In this paper, we focus on the
top-down design of the behavior of an ant worker.

4.1. The Living Abstract Behavior

Figure 5. Living abstract behavior

The first step of our design identifies some feature common to each living agent,
the ability to age (and ultimately to die). Therefore, we design a behavior, partly ab-
stract, named Living, shown at Figure 5. It includes 4 sub-behaviors/components:
CheckAgeLimit, which controls the ageing process (it includes a variable age, in-
cremented for each activation step and compared with the agent age limit) ; Die, which
implements the death of an agent ; Behavior abstract behavior (see below), shaded
in the figure ; and a Switch control component. When the agent reaches its age limit,
CheckAgeLimit emits a die data. Then Switch activates Die, which in turn emits
suicide data, ultimately conveyed to the actuators (in practice, it may, e.g., remove the
agent from the environment). Otherwise, Behavior is activated by Switch.

We found out this design to be useful in various contexts and thus extracted it as
a recurring and “pluggable” design, in a similar way to the object-oriented principle of
a design pattern (Gamma et al. 1995). Interestingly, the MALEVA mini-patterns encom-
pass data and control features. Living implements that pattern as some kind of “mini
black-box framework”, where the unique hot spot is the abstract component Behavior.
To construct a specific agent behavior, we replace (instantiate) Behavior with a con-
crete behavior, specific to, e.g., an ant, egg, larva or queen. We have identified other
patterns (not further detailed here), e.g., the “exploration unless perception” pattern used
by Prey, described in Section 3. It will be reused by the AntActivity component, to
be described in Section 4.2.

11Note that the metamorphosis process - from egg to larva and then to ant or queen - leads to the issue of
behavioral evolution and to the corresponding architectural dynamicity. This will be discussed in Section 8.
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Figure 6. Ant behavior

4.2. Ant Behavior

A worker ant has a relatively complex behavior because its various activities: moving,
pheromone following, egg carrying, egg caring. For the sake of understandability and
concision, we describe here a simplification of the real application (Drogoul et al. 1995).
First, we instantiate Living into a concrete behavior specific to ants, named Ant. In
practice, the abstract sub-component Behavior is replaced by a concrete component,
named AntActivity. The result is shown at Figure 6.12

We now define the internal behavior of an ant, named AntActivity. An ant ex-
plores its surroundings through a random movement (Exploration behavior), unless it
perceives some stimulus (ManageStimulus behavior). Thus, AntActivity reuses
the “exploration unless perception” pattern, already used for Prey and Predator be-
haviors (see Figures 3 and 4). Keeping with the top-down approach, we then further
decompose ManageStimulus as follows. If the ant is located on a stimulus local max-
imum (CheckLocalMax behavior), an action associated to the type of stimulus (e.g.,
food, pheromone) is emitted (by LocalMaxAction behavior). Otherwise, the ant fol-
lows the gradient associated to the stimulus (FollowGradient behavior). The result-
ing complete architecture of an ant is summarized at Figure 7 and includes 3 levels and
14 components.

5. 3rd Example: Population Microsimulation
This last example will help at illustrate another merit of making explicit the control flow.
It is inspired from an existing application of demography micro-simulation conducted at
the French National Institute of Statistics (INSEE) and named Destinie (INSEE 1999).
In this (simplified) example, we consider a virtual specie of agents, in which mating of

12One may note that AntActivity has an additional output data port, in order to distinguish the two
possible outputs: action (e.g., leave a pheromone or take food) and move, and their associated effectors and
types. An alternative simplification is to consider a single output data port including all types of actions
(including move).
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Figure 7. Ant behavior: complete decomposition

two agents is necessary for reproduction, but without considering sexual differences (i.e.,
agents are hermaphrodite). We consider three basic behaviors: Mate, Separate and
Reproduce. Behaviors may be seen as state changes, governed by probabilistic tran-
sition laws. To activate a behavior evaluates if there is a state change, according to the
associated probability. Although not independent, these 3 behaviors are not necessarily
bound to a specific sequence of activations, as all possible interleavings are valid. In
general (Gilbert and Troitzch 1999), behaviors are ordered sequentially, as proposed by
domain experts. Indeed, it is not easy to realize a priori the impact of the possible inter-
leavings. But the issues are: In what order ? And with what impact on the simulation
results ? Let us consider the following combinations:

(a): { Mate ; Separate ; Reproduce }
(b): { Mate ; Reproduce ; Separate }
(c): { Mate || Separate || Reproduce }

The two first strategies (a) and (b) make explicit an order of activation (sequence)
of behaviors. In the third (c) strategy, no temporal dependency constraint is specified
(concurrency), leaving the scheduler of the runtime system free of actual scheduling de-
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cision.13 Figure 8 shows the resulting histogram. It displays the number of individu-
als/parents (y coord.) having a certain number of children (x coord.). Results follow the
intuition: if reproduction is activated before separation (b), this leads to more children
than if reproduction is activated after separation (a). A fully concurrent strategy (c) pro-
duces an average number.

Number 
of children

Number 
of parents

Figure 8. Histogram of number of babies

This example shows the importance for the simulation designers to be able to ex-
periment with various strategies for ordering behaviors, to compare results with the target
models, and to quantify the impact on biases.14 By considering control flow explicitly,
MALEVA helps at specifying and controlling temporal dependencies between behaviors,
and thus their possible orderings.15 This is realized via explicit control flow connex-
ions, without any change to the code of behaviors (encapsulation is ensured), as shown
at Figure 9.16 This is notably useful for simulation applications, where the expert may

13To be more precise, the MALEVA runtime scheduler tries, for each simulation step, to maximize
possible interleavings of behaviors activations.

14For instance, (Lawson and Park 2000) show that results of simulations can be found biased in cases
where the scheduling of the actions within an agent remains deterministic.

15Note that an additional dimension, not detailed here, is the mode of activation of components. In
the asynchronous mode, the different agents (and components) evolve independently. This may be more
efficient, specially for the case of distributed implementation, but, unless the designer also uses explicit
control connexions between agents, the different agents may not be synchronized (some can compute ahead
of others). In the synchronous mode, the scheduler sends next activation trigger once all behaviors have
finished, which ensures but also imposes a global synchronization. The choice between the two modes
depends on the requirements for the application (see, e.g., (Lawson and Park 2000) and (Meurisse 2004)).

16Connexions are usually achieved interactively, see Section 6.1. In this example, there are no data ports
shown, because the behaviors considered in this case study are without parameters, nor results.
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incrementally specify temporal dependencies, independently of behaviors functionalities,
and thus experiment and compare various ordering strategies (Meurisse 2004). A method-
ological guideline for multi-agent-based simulations, and how MALEVA may help in the
incremental refinement from a design model to an operational model, are further discussed
in (Briot and Meurisse 2006).

Mate

Separate

Reproduce

Mate

Reproduce

Separate

Separate

Reproduce

Mate

Figure 9. Temporal dependency specifications with CGraphGen

6. Tools and Implementation

The MALEVA prototype CASE tool includes a library of components (behavioral com-
ponents and control components) ; an editor of connexion graphs (named CGraphGen,
which stands for concurrent graph generation) ; a graphical environment for construct-
ing virtual environments for situated agents ; and a run time support for scheduling and
activating components.

6.1. From Methods to Components

Some interesting feature of CGraphGen (illustrated at Figure 10) is the importation of
Java code and its reification into MALEVA components. The granularity considered is
a Java method. After specifying the class, method name, and its signature, CGraphGen
automatically generates a corresponding component whose data ports correspond to the
method signature: one input data port for each parameter, and one optional output data
port for the result (none in the case of void). Two control ports (one input and one
output) are also implicitly added. CGraphGen allows graphical connexion of data-flow
and control-flow between components, and the creation of composite components.

Note that XML-based descriptions may be used for importation or exportation.
These simple characteristics (reification of existing code into components, manipulation
of the temporal dependencies) turned out to be quite useful to help at reengineer exist-
ing simulation applications, specially when considering that the experts of the domains
modelled and simulated are seldom programmer experts.

6.2. Implementation

After the initial Delphi implementation, the Java-based re-implementation of MALEVA
added typing to the components ports and connexions. This turned out to be useful for ver-
ifying interface compatibility between components. In addition, sub-typing helps at defin-
ing more abstract components. Java also supports inspecting various information about a
component, thanks to its introspection facilities (API and tools). Thus, the designer can
easily query a component to obtain its internal information. The Java implementation also
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Figure 10. The CGraphGen tool

improved the possibility of architectural dynamic evolution, which turned out to be useful
to model evolving behaviors, such as, e.g., ant metamorphosis (see Section 8).

The Java implementation, actually based on JavaBeans, also gave opportunity to
compare our MALEVA prototype component model with an industrial component model.
Note that the JavaBeans model (SUN 2007) conforms to a publish/subscribe communica-
tion model, but the implementation still relies on standard method call. In our implemen-
tation of MALEVA, a mailbox (FIFO queue of messages) is associated to each input data
port and to the input control port, in order to decouple data transfer and actual activation.

A re-implementation of MALEVA into C++ has also been realized, in or-
der to conduct more efficiently large scale experiments (Meurisse 2004). Last,
a complete re-implementation of Maleva in Smalltalk (Squeak), named MalevaST
(Bouraqadi and Stinckwich 2007), has recently been independently conducted by Noury
Bouraqadi et al. at École des Mines de Douai, France, with, e.g., applications to robotics.

7. Related Work
CCM (Corba Component Model) (OMG 2007) is an industrial general model of compo-
nent, supporting input and output interfaces and also event-based communication. How-
ever it does not support a notion of composite. Also, its development cycle is portable but
relatively complex.

The Fractal model of component (Bruneton et al. 2004) supports the notion of
composite. A concept of controller is also supported but it mainly offers simple control
interfaces for life cycle management or for structural reconfiguration. Last, the control
flow is not explicitly specified. Note that MALEVA could benefit from Fractal introspec-
tion and dynamic reconfiguration capabilities.

DEVS (Discrete Event Simulation Formalism) (Zeigler 1985) is a formalism to
model simulations in a hierarchical and modular way. DEVS is based on an atomic model
based on timed state transitions and a coupled model to construct complex models in
a hierarchical fashion. Compared to DEVS, MALEVA focuses on a model of compo-
nent without imposing a specific (powerful but also complex) formalism for describing
computation. Also, note that DEVS modules are not usually implemented as software
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components (no explicit output interface/ports nor connectors), although there are recent
attempts in that direction (see, e.g., some work on mapping DEVS onto Microsoft COM
component model (Cho and Kim 2002)).

The subsumption architecture (Brooks 1986) for robots considers basic behaviors
of the robot as the units of (de)composition. Behaviors (e.g., random move, obstacle
avoidance) are simultaneously active and are organized within some fixed hierarchy and
their associated priorities. In practice, a behavior may replace input data of the behavior
situated below, as well as inhibit its output data (e.g., in case of close obstacle perception,
the obstacle avoidance behavior may take control over lower ones). In MALEVA, the
control architecture is completely explicit and arbitrary (through control flow), thus more
flexible than the fixed hierarchical control model of the subsumption architecture.

The ABLE architecture (Bigus et al 2002) for Autonomic Computing is a good
representative of a bottom-up orientation, adopting a toolbox approach where each tool is
implemented as a component and an architecture is constructed by forming tool chains.
Its set of tools components is organized along the types of tools and processing techniques
(e.g., statistics, learning, search). All these components are implemented with JavaBeans
(SUN 2007). The designer of a system (e.g., an autonomic load balancing mechanism
for application servers) identifies processing steps, implements them through components
and connects them.

The Component-Based Agent Framework (CBAF) (Goradia and Vidal 2003) is
another set of building blocks for contructing agents, also based on JavaBeans. It is
more aimed at cognitive agents and has been applied to robot soccer simulation. Like
ABLE, CBAF proposes a classification of components (4 types: behavior, decision, ac-
tivity and agent components). CBAF behavior components are close to the way MALEVA
uses components to model behaviors. Also, CBAF simplest decision component, named
DifThenElse, is actually similar to MALEVA’s Switch control component. Build-
ing up on the experience of CBAF and of MALEVA looks as a promising path to provide
libraries of components for various types of agent architectures and applications. Note
that neither ABLE nor CBAF make a separation of data-flow and control-flow, thus they
provide less flexibility for activation control.

The JADE architecture (Bellifemine et al. 2001) offers some basic support for the
designer to construct an agent as a set of behaviors (instances of class Behaviour).
Some subclasses, e.g., CompositeBehaviour and ParallelBehaviour, provide
basic structures for constructing hierarchies of behaviors or/and for expressing control
structures. A more advanced one, FSMBehaviour, relies on a finite state automaton.
Meanwhile, JADE behaviors are not real components (no output interface/ports nor con-
nectors), thus keeping the architecture of an agent partly hidden within the code.

The DESIRE methodology and component model (Brazier et al. 2001) is a com-
ponent model and methodology for constructing agents. DESIRE is more high-level and
knowledge-oriented than MALEVA and is more aimed at cognitive agents. It is based on
a formal description considering separately a process (and component) level and a knowl-
edge level. This approach enables some possibilities of verification, but at the cost of
some added complexity in specifications. As opposed to MALEVA, DESIRE does not
provide a fine grained control model for components.
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Like MALEVA, JAF (Java Agent Framework (Horling 1998)), also based on Jav-
aBeans, uses components to decompose behaviors of agents. JAF does not explicitly
separate control flow from data flow. But it proposes some interesting match-making
mechanism, where each component specifies the services that it requires. At component
instantiation time, JAF looks for the best correspondence between the requirements spec-
ification and the components available. Another difference between JAF and MALEVA
is at the level of behavior decomposition. JAF decomposition appears at a relatively high
level, whereas MALEVA promotes a fine grain behavior decomposition,17 and its man-
agement through explicit control.

The MaSE methodology (DeLoach 1999) includes a modular representation of
agent behaviors as sets of concurrent tasks. Each task is described as a finite state au-
tomaton and implemented as an object with a separate thread. A task can communicate
with other tasks, inside the same agent, or with another agent task, through event com-
munication. The implementation of MaSE concurrent tasks does not use components
with explicit input/output ports. Also, MALEVA provides more explicit control of activa-
tion, whereas MaSE concurrent tasks partly rely on implicit control (inter-tasks implicit
concurrency and synchronous message reception). That said, the MaSE methodology is
actually quite general and we may imagine using some of MaSE steps to design MALEVA
components.

Last, we may also cite some work on using aspect-oriented programming (AOP)
to facilitate integration and combination of agent properties (e.g., autonomy, learning,
mobility) (Garcia et al. 2004). But this is not applied to the composition of fine grained
behaviors as for the case of MALEVA. The reader may also refer to (Briot et al. 2007) for
an extensive discussion of various rationales and architectural styles for modular agent
architectures, and to (Bordini et al. 2006), for a general recent survey on architectures
and languages for multi-agent systems.

8. Further Issues and Future Directions
An issue is the identification of a methodology and its companion tools to help at iden-
tifying and constructing agents with MALEVA components. If fact, most of multi-agent
methodologies offer initial steps rather independent of a specific targeted architecture of
agent. We may thus imagine reusing the initial steps of a methodology such as MaSE
(see Section 7) to design MALEVA components. Regarding notations, we are aware that
the initial diagrammatic notations of MALEVA could be adapted and reformulated using
meta-modelling facilities of model-driven engineering. Last, regarding tools, we believe
that CGraphGen (see Section 6.1) is a promising prototype and could be an inspiration
for further tools more integrated into a standard interface development environment.

Another issue is in providing rich libraries of components and abstract architec-
tures, such as behavior components (e.g., Exploration), abstract components (e.g.,
Living), control components (e.g., Switch) and “system” components (e.g., sensors).

17Considering performance, it is obvious that a very fine grained decomposition of agent behaviors will
have a cost. But in MALEVA, this is the designer responsability for the exact decomposition granularity for
each agent and thus to address the usual trade-off between genericity and performance. Meanwhile, we are
considering the possibility of providing a code generator for transformation (compacting) of a composite
component into a primitive component, with additional optimisations (e.g., transform some activations in
synchronous method calls when intra-agent concurrency is not used).

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

106



They could support the types of architectures and applications targeted, for agent-based
simulation, but also for other agent architectures and application fields, such as, e.g., inter-
action protocols for e-commerce and reasoning components for rational/cognitive agents,
as we believe that the MALEVA model of component has a wider potential scope. The
experience of CBAF (Goradia and Vidal 2003) is a very promising example in that di-
rection. Note that the component-based design of agents and the support of CASE tools
using possible information (e.g., typing) should help in assisting the designer to analyze
existing designs and to create new ones.

Another issue is that in case of large applications, the connexion graphs may be-
come large, although they may be hierarchical and encapsulated in composite components
(e.g., see Section 4). Some radical alternative approach to reduce the control graph com-
plexity, and also to make it more accessible to formal analysis, is to abstract it in an
adequate formalism. We think that a process algebra, such as CCS (Milner 1982), could
allow a concise representation of complex activation patterns. Such formal characterisa-
tion would also allow the semantic analysis of such specifications, for example through
model checking. The idea is close to coordination languages, but for very fine grained
components. The starting point is to model data used for control as channels (e.g., pres-
ence of prey as isPrey channel) and synchronize activity of behaviors (e.g., Flee) on
them. The reformulation of the control graph of the predator (Section 3) would be the
following compact term: isPrey.Follow || isPredator.Flee ||
(isNoPrey.Exploration + isNoPredator.Exploration)

Another issue is the dynamicity of behaviors. An example is the metamorpho-
sis process of ants (from an egg, to a larva, to an ant, see Section 4). For other types
of applications (e.g., nomadic computing), reconfiguration of behaviors may also be ex-
ternally triggered by needs for adaptation to a dynamic environment. MALEVA current
implementation strategy relies on a specific meta-component to manage the reconfigura-
tion and re-assemblage of behaviors. Based on the reconfiguration request of one of the
current behavior component, the meta-component defines the new architecture, compares
it with the current one, considers the sets of components to add and of components to
remove, and makes the connexions. We are considering using a higher level mechanism,
based on concepts of configurations, roles and policies, such as the MaDcAr prototype
model of automatic reconfiguration (Grondin et al. 2006).

9. Conclusion
In this paper, we presented a component model, named MALEVA, to construct agents
for agent-based simulations. This model is relatively original in the explicit man-
agement of activation through control ports and connexions, by applying the con-
cept of component to the specification of control. It is behavior-oriented and sup-
ports composite components. Some examples have illustrated how MALEVA may
help at genericity and reuse of components, through: structural composition of be-
haviors, abstract components and design mini-patterns, and at rationalizing control of
intra-agent behavior scheduling, an important issue for simulation. MALEVA has
been experimented in different application domains, such as: urban migration, automo-
bile traffic simulation (LeCerf and Pintado 1997), artificial societies, robot architectures
(Bouraqadi and Stinckwich 2007) and distance learning (Aniorte 2003). In summary, we
hope that this short presentation of the MALEVA component model has illustrated some
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of its specificities and abilities at composing and reusing agent behaviors, for agent-based
simulation applications. More generally speaking, we believe that some features of our
component model may be transposed, and that making control available at the composi-
tion level may help the use of components within frameworks of applications vaster than
those in which they had been initially thought.
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