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Resumo. A tecnologia de componentéscomumente utilizada para construir
softwares no tvel de aplicades. No entanto, essa tecnolo@ianenos utilizada

para a construéo de softwares noivel de sistemas. A disso, a grande parte

dos modelos de componentes pardwehde sistemas destinada constru@o

de software de sistemas para um determinadoidmne plataforma. Este ar-

tigo apresenta o OpenCom, um modelo @&&o de componentes destinado
constru@o de software de sistemas para uma variedade dérdosypor exem-

plo, middlewares, sistemas embutidos, SOs) e plataformas (por exemplo, PCs,
sensores, roteadores). O artigo descreve o0 modelo e 0 uso do OpenCom em
diversos estudos de caso, 0 que demonstra a sua flexibilidade e a generalidade
desta tecnologia.

Abstract. Component-based software engineering has recently emerged as a
promising solution to the development of system-level software. Unfortunately,
current approaches are limited to specific platforms and domains. This lack
of generality is particularly problematic as it prevents knowledge sharing and
generally increases development costs. In this paper we present OpenCom,
a generic component-based platform that is specifically designed to support
a wide range of system software, both in terms of deployment environments
(e.g. PDAs, embedded devices, network processor-based routers) and target
domains (e.g. embedded systems, middleware, OSs, programmable network-
ing environments). We discuss the fundamentals of OpenCom’s programming
model, present a performance evaluation, and illustrate the advantages of our
model based on several case studies.

1. Introduction

Component-based technologies are nowadays widely used to develop application-level
software, as illustrated by the numerous component-based platforms available to applica-
tion developers (e.g. Mozilla plugins, Enterprise Java Beans, .NET) [17, 15, 24].

Building on this success, a number of approaches have recently been proposed to
apply component-based programming to system-level software. These approaches cover
a wide range of systems, from embedded devices [8, 20] and Operating Systems [6, 9],
through to programmable networks [16, 14, 2] and middleware platforms [5, 22].
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These early researches have shown that components are well-suited for system
software for two key reasons: first, they provide a high degree of modularisation, thus
allowing complex system software to be divided into simple and easy-to-develop func-
tional parts. This ‘divide and conquer’ approach facilitates the design, development and
debugging of complex system software. Secondly, because of their inherent modular-
ity, component-based platforms tend to be much more portable than monolithic systems.
This is particularly advantageous for system software, whose portability is often inher-
ently difficult to achieve and can provide a key competitive advantage in terms of reuse
and software quality.

Unfortunately, these efforts on component-based system software tend to be highly
non-generic. They are limited both in terms tafget domain(e.g. embedded sys-
tems, middlewares, operating systems or programmable networking environments) and
deployment environmex.g. standard PC environments, network processors or micro-
controllers). For example, OSKit [7], THINK [6], and MMLite [9] exclusively target
component-based operating systems and cannot be used to realise programmable net-
working software or to implement a distributed middleware. Similarly, most approaches
can only be deployed on conventional desktop machines, as opposed to less conventional
environments such as PDAs and embedded devices. Those supporting embedded devices
typically only support one type: Vera [14], NetBind [2] and NP-Click for instance are
limited to the Intel IXP family of routers [11].

Because of this narrow focus, existing component models fail to support systems
that span multiple deployment environments, and cannot be used to develop platforms
that combine multiple target domains. As a consequence, different environments and
different target domains require different programming models and different APIs. This
lack of generality inhibits skill transfer, prevents component reuse across platforms, and
generally drives development costs up.

In this paper, we propose a new component model called Opernatraddresses
the above deficiencies. Unlike our previous research (i.e. Open@®@idh was targeted
to middleware domain), this work gives an infrastructure to construct system software
targeted to a wider range of system domains including OSs, middlewares and network
stacks. In addition, OpenCogives the support to develop system software aimed at a
variety of deployment environments (PC, routers, sensor nodes) at a minimal cost. More
precisely our component model has the following three key properties:

e Target system independence. OpenCom does not recommend any policy or facil-
ity that is specific to a particular target system (e.g. real-time support or media-
streaming support). When required, such features can be seamlessly added through
a clear and principled extension mechanism.

¢ Independence of the deployment environment. OpenCom’s programming model
can be easily ported to wide range of deployment environments, from standard
PCs, set-top boxes, and resource-poor PDAs, through to embedded systems with
no OS support, and high speed network processor-based routers. This portabil-
ity results from an incremental design based on a core set of minimal features.
This minimality ensures this core can be accommodated even within the most
constrained devices.

e Negligible overhead. As our prototype evaluation shows, OpenCom incurs neg-

114



SBES 2007
XXI Simpéosio Brasileiro de Engenharia de Software

ligible performance overhead and has a very small memory footprint. This is
particularly vital for deeply embedded software that runs on highly-constrained
devices.

The remainder of this article is organised as follows: we first provide some back-
ground on component technology and discuss the corresponding research challenges (Sec-
tion 2). We then move on to present OpenCom’s architecture and discuss its fundamental
programming concepts (Section 3). In Section 4 we present a detailed performance eval-
uation of OpenCOM based on a prototype that combines a standard PC and a network-
processor board. We then discuss three case studies that demonstrate the genericity of our
approach (Section 5). Finally, we review related work (Section 6) and conclude (Section
7).

2. Component Technology

This section introduces the main notions behind component-based software development.
We start with basic concepts (components, interfaces, receptacles, bindings, and compo-
nent frameworks), which serve as a key structuring mechanism in OpenCom.

As we go along, we will use this conceptual overview to discuss the research
challenges pertaining to the use of components in system software. We wrap up this
section by outlining the key differences between our previous work and the new general-
purpose component model.

2.1. Components, Interfaces, Receptacles, Bindings, and Component Frameworks

OpenCom is a component-based programming framework and as such shares the same
basic common concepts as most component programming models [25].

Componentare central to these models and denote encapsulated units of deploy-
ment and functionality that interact with the outside world throudarfacesandrecep-
tacles. Note that a component may have multiple interfaces and receptacles.

Interfacesare units of service provision which are supported by components. They
define sets of operation signatures and their associated datatypes. In OpenCom, interfaces
are expressed in OMG IDL to support language independence.

Receptaclesre ‘required interfaces’ that define a unit of service requirement.
Receptacles make explicit the dependency of one component on other components. Inter-
faces and receptacles are collectively termeith@&saction points.

The association between a single interface and a single receptacle is represented as
abinding. Different binding types are often identified, depending on the semantic of the
association, and the particular interaction protocol used between the two service points.

Component framework$ereafter CFs) have evolved out of the basic notions of
components, interfaces, receptacles and bindings as a structuring mechanisms to develop
complex component-based applications. A Component framework is usually defined as
“collections of rules and interfaces that govern the interaction of a set of components
‘plugged into’ them” [25]. A CF embodies rules, constrains, and interfaces that make
sense in a specific application domain.
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2.2. Research Challenges

A number of component technologies have been proposed in recent years to develop
system-level software. Although seminal, these works suffer from a number of deficien-
cies, which we discuss here in more details.

First, these technologies tend to be tightly coupled farticular target domain
(e.g. embedded systems, programmable networking environments, or middleware plat-
forms). They are optimised for the construction of a particular family of systems and
usually focus on one particular challenge: maximising performance, minimising memory
requirements, allowing dynamic reconfigurations. NetBind [2], for instance, is limited
to programmable networks development and focuses essentially on dynamic data-paths
construction.

Similarly, these technologies tend to suppame particular deployment environ-
mentonly. The PECOS component model for instance [26] is limited to field devices;
VERA [14] and NetBind [2] focus on network processor-based routers. More crucially,
most of the remaining approaches have so far only been deployed in a conventional PC-
based environment (e.g. K-Component [5], Click [16]). In addition, some of them (e.qg.
Koala [20], and VERA [14]) strongly depend on the underlying operating system and thus
cannot be easily ported to other environments.

In terms of adaptation, many of these approaches do not supetime recon-
figuration. This is particularly inhibiting in embedded mobile devices where resources
are particularly constrained and resources availability evolve dynamically. This is also a
strong limitation for long-running systems where unplanned functionalities often need to
be inserted without any service interruption (e.g. the introduction of a new forwarder in a
programmable router).

These technologies also have varymgmory footprint overheadepending on
the target system they were aimed at. This variability further restricts reuse and technol-
ogy transfers. PC-based component models for instance tend to be rich in features (e.g.
reflection, a large number of binding types). As a consequence, they have quite a high
memory overhead and cannot be deployed in constrained environments [5]. Conversely,
components models that target constrained devices tend lack the rich features that are
expected in unconstrained environments and cannot be reused in a PC-based context.

In this paper, we propose to address these challenges with OpenCom, a generic
component model that provides the necessary infrastructure to construct a wide range
of systems for a variety of deployment environments. Thanks to its incremental design,
OpenCom is inherently extensible to accommodate domain-specific facilities in a natural
and explicitly-supported way. OpenCom also supports run-time reconfiguration, as illus-
trated with our case studies. Last, but not least, because of its minimalist core, OpenCOM
incurs minimal overheads as shown in our performance evaluation section.

2.3. Discussion: OpenCOM versus OpenCom

It is important to highlight that Lancaster OpenCOMI| refers to a previous compo-
nent model targeted at middleware platforms, while Open€onterns our new general-
purpose component model. The former, i.e., OpenCi®kuilt on top of Microsoft COM

and has been successfully applied to constructing re-configurable middleware platforms.
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However, the main limitation with OpenCOM is its inability to construct systems for a
heterogeneous environment. For example, OpenCOM is unable to construct systems in
several embedded devices because these devices often consist of multiple deployment en-
vironments, each of which requiring its own mechanism to deploy components. As an il-
lustration of this, consider the IXP1200 router platform (see Figure 3) that consists of PC,
StrongARM and microengine environments. OpenCOM is unable to deploy components
in such a heterogeneous environment in a natural and explicitly-supported way. Another
limitation which was identified in OpenCOM is the high memory footprint, which hin-
ders its deployment in resource-constrained devices. The high memory overhead comes
primarily from the Microsoft COM component model that is needed in OpenCOM.

On the other hand, OpenCorm designed to address the above mentioned short-
comings, and thus, it is aimed at constructing systems in a way that is independent of
the deployment environment (e.g. heterogeneous environments like the 1XP1200 routers
which are resource constrained devices) and also aimed at constructing systems for a wide
range of system domains (e.g. middlewares and operating systems). As a result, Open-
Com consists of a more comprehensive programming model that is particularly targeted
at overcoming the heterogeneity that is often found in embedded devices.

3. A General-Purpose Component Model

3.1. Architectural Overview

OpenCom uses an incremental design based on three key elementsinijrae kernel,
(i) an extension framework, and (iii) tweflective meta-mode(&igure 1).

S

[ target system

)

[ reflective meta—mode& extensions framework ]

. OpenCom
component run—time kernel Platform

deployment environment(hardware/software/ ]

optional elements

Figure 1. Overall OpenCom architecture

OpenCom’s run-time kernel provides a core set of primitives that support a mini-
mal yet extensible component-based programming model. All the remaining layers (the
reflective meta-models, the extensions framework and the target system layers) extend the
kernel and are implemented using OpenCom’s components model, i.e. they are deployed
and managed by the kernel. The arrows in Figure 1 indicate the possible interactions be-
tween the layers (e.g. tharget systemss allowed to invoke functions implemented in
thecomponent run-time kernklyer).

In the remaining of this section we give further details of each element, starting
with the kernel.
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3.2. The OpenCom Kernel

The OpenCom kernel supports the life-cycle of components, i.e., the Kernel API provides
primitives to load, unload, bind and unbind components. As explained above, the kernel
is only capable of deploying a particular style of component callegtineary-stylecom-
ponent. In our prototype implementation, this primary style is the XPCOM component
format [17]. This enable us to reuse any XPCOM component.

To enable the deployment of OpenCom in resource-constrained devices, the ker-
nel follows amicrokernel-stylearchitecture, i.e., it only implements the minimal and re-
quired functionalities. It only supports the basic service of loading and binding compo-
nents (througtoad(), instantiate(Jandbind()), since these functionalities are required by
systems targeted at any domain and environment. This minimality also ensures that the
kernel can easily be ported to many deployment environments.

The kernel can only deploy components in a single address space. The deployment
of components in environments with multiple address spaces is only possible through the
extensions frameworkhich is covered in detail in the next section. By factoring out this
functionality, we can make the OpenCom kernel lightweight and deployable in resource-
constrained devices (e.g. a sensor node) where the support of multiple address spaces is
often not required.

In order to support dynamic reconfiguration and reflective extensions, the kernel
is capable of loading and binding components at runtime when they are required and of
unloading and destroying them when no longer demanded.

In terms of component life-cyclépad() reads component meta-data from the li-
brary in which the requested component is packagedjrastantiate()utilises this meta-
data to create an instance of this component. Component meta-data is kept in a repository
called the kernetegistry. The kernelegistry stores the meta-data of all components,
interfaces, receptacles and bindings.

An Interface is bound to a receptacle using kired() operation. This operation
enables the construction of systems by selecting components and connecting them up
according to the needs of the target system. The disconnection between components is
effected through thdestroy()operation.

3.3. Reflective Meta-Models

As explained earlier, theeflective meta-modelgayer is itself a component framework

and therefore an OpenCom component that is deployed (when needed) by the kernel. It
is optional and implements the necessary functionality to inspect, adapt and extend the
target system at runtime. In addition, since the meta-models are themselves components,
their precise configuration can be tailored to the needs of the target system. Here we
discuss in detail the two meta-models provided by default by the OpenCom architecture:
thearchitecture meta-modeind theinterface meta-model.

The architecture meta-modalses structural reflection to represent the current
topology of a system. In OpenCom, the architecture meta-model consists of a repre-
sentation of components and their bindings. This representation allows the topological
adaptation of a target system. Timerface meta-modedupports two different capabil-
ities: first, it can discover the details of the interfaces and receptacles in terms of their
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operation signatures. Secondly, the interface meta-model enables ‘dynamic invocations’
to be undertaken on dynamically-discovered interfaces. These capabilities enable compo-
nents to invoke interface types which are unknown at coding time.

3.4. The Extensions Framework

As mentioned in Section 3.2, the kernel is only capable of deploying primary-style com-
ponents. The extensions framework removes this limitation and allows the kernel to sup-
port heterogeneous types of components. This framework is required whenever compo-
nents relying on incompatible technologies need to co-exist within the same application.

The extensions framework relies on three new abstractoapgetsjoaders binders
(Figure 2). A combination of these is necessary for each new type of component that is
to be supported by the kernel. From an implementation point of view, caplets, loaders
and binders are primary-style components and are deployed by the kernel. They provide
a bridge to a new deployment environment.

The sum of all components, primary and non-primary, that are managed by the
kernel belong to what we have termed asagsule. We discuss each of these new terms
in more detail below.

@ o
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: i caplet Il
[componentt
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Figure 2. The elements of the OpenCom programming model (the loaders are
represented as rectangles on the right)

Capsulesre “component containers” that may encompass multiple address spaces
and are managed by one single kernel. They provide a namespace in which all compo-
nents and interfaces are individually identified by a unique identifier. Each capsule is
associated with one specific OpenCom kernel that is responsible for deploying compo-
nents in that particular capsule. Usually, an entire system will reside in one capsule,
as in the example shown in Figure 3, where a capsule encompasses an entire IXP1200
router (PC, StrongARM processor and microengines). The notion of capsule helps reason
about cases where multiple kernels must interact (for legacy or compatibility reasons, for
instance).

Capletsare OpenCom'’s representation of a “locus of deployment”. In an envi-
ronment that supports virtual memory for instance, a caplet will typically be mapped to
an address space. However, in more limited environments, several caplets may share the
same single address space, with additional protections possibly integrated in the binders,
the loaders, or the components themselves. Conceptually, caplets allow the kernel to sup-
port different technologies in the underlying deploying environment. They also provide
an isolation mechanism between components which are mutually distrustful or have dif-
ferent privileges. They are similar to the notiond@fmainsimplemented in the THINK
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capsule
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Figure 3. An example of capsule

component model [6]. For example, if a system requires deployment of both C++ and Java
components, this is achieved by creating separate caplets for each technology domain.

Note that caplets and capsules differ in that caplets are explicitly created, unlike
the capsule associated with each kernel. In this respect, a capsule should be regarded a
logical component containers that may encompass several address spaces and hardware
domains and may therefore contain several caplets.

Loadersencapsulate the complexity of loading components in a heterogeneous
environment. Each loader supports a specific loading mechanisms, thus allowing a wide
range of component styles to be managed by the same kernel.

Finally, bindersare OpenCom components designed to provide a wide range of
‘binding mechanisms’. Using binders, developers are free to implement a wide range of
binding mechanisms that might be required in the underlying deployment environment.
For example, they may implement a binder that creates connections between Java com-
ponents or a binder that connects components written in Assembly language.

When the kernel starts, it only contains a single capletptimary caplet. At this
point the caplet coincides with the enclosing capsule. Additional caplets texxteusion
capletsmay then be progressively added to the system through the extensions framework
to support new styles of components.

3.5. The OpenCom Programmer Roles: Creating and Using Extensions

OpenCom’s programming model provides a strong separation of concerns between porta-
bility issues and functional development. In particular, OpenCom supports two distinct
programmer roles:

e Deployment programmersnsure OpenCom’s programming model is available
in a given deployment environment. More precisely, deployment programmers
port the kernel to a specific deployment environment and implement the required
caplets, loaders and binders.

e Target developerslevelop target systems by using the OpenCom programming
model. If needed, target developers can use the set of additional caplets, loaders
and binders provided by deployment programmers.
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4. Performance Evaluation

4.1. Overview

This section examines a quantitative evaluation of the inherent performance properties
and incurred overhead by OpenCom. To obtain an accurate figure, we often computed the
average of million measurements. For example, the loading time of OpenCom primary-
style components was computed by calculating the average figure from over a million
load() calls.

The experiments in this section were all carried out using a Dell Precision 340
series workstation with 4 x 1.6GHz Pentium CPUs, 512 MB of RAM, and running Linux
Redhat 8.0. With regard to software, all the measurements were collected by using the
kernel implemented in C++ for Linux. The primary-style components are all stored in
the Linux Shared Obiject libraries, which are equivalent to Windows DLLs. It should be
pointed out that some experiments were also carried out oR&laksydXP1200 router
environment [11]. This network processor-based router BlneCatembedded Linux as
the OS.

4.2. Evaluation of the Kernel

The kernel for this evaluation was implemented in C++ using the GNU GCC compiler
for Linux environments (Redhat Linux version 8.0). Primary-style components deployed
by this kernel are stored in Linishared objeclibraries, which enable components to be
deployed dynamically at runtime. The kernel uses the C++ object creation mechanism for
component creation. On top of the kernel optional extensions framework and reflective
meta-models are also implemented in C++.

4.2.1. Memory Footprint

Table 1.a illustrates the memory overhead required by the kernel, extensions framework
and reflective meta-models. As shown in the table, the kernel itself is lightweight and
can enable its deployment in resource constrained devices such as a sensor node. For
comparison purposes: MMLite [9] kernel requires 26KBytes of memory footprint which

is close to that required by OpenCom.

Architectural layer | Memory footprint| Operation | OpenCom C++

Kernel 32KB Load 9.8us Tus
Extensions framework 10KB Instantiation| 0.47us | 0.28us
Reflective meta-models 8KB Time

Table 1. a) Memory footprint; b) Loading and instantiation time

The memory footprint required to accommodate a single null primary-style com-
ponent was measured as 24 bytes. The component in this experiment has no interface and
receptacle. In addition, it has null initialisation and finalisation routines. The per-interface
and per-receptacle memory overhead is 8 bytes with an additional 5 bytes per operation.

To obtain an accurate figure, several components (i.e. a hundred) were deployed
to compute the memory overhead incurred by each null component. The memory over-
head produced by one hundred components was then divided by 100, which provided the
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overhead imposed by each deployed null component. The same calculation was applied
to measure the per-interface and per-operation overhead mentioned above.

From the above results, the component memory footprint is quite comparable to
that required for a single null C++ object which was measured as 20 bytes.

4.2.2. Component Loading and Instantiation Time

Table 1.b shows a comparison between the time taken to deploy OpenCom primary-style
components and C++ objects. The time measured to load a single null primary-style
component is 9.8us. This includes the time taken to read a shared object library from the
disk storage and extract the information of each primary-style component stored in the
library. The extracted information of primary-style components includes the constructor
function, which is utilised to instantiate a component. This measurement was computed
by calculating the average figure from over a millload() calls. This is quite comparable

to that obtained when loading a null C++ object by means of the same shared object
library. The time computed for C++ object was measured as 7us.|ddusngtime is the
measurement of the overhead taken to read a shared object library from the disk storage.

To instantiate a null already-loaded component, OpenCom took 0.47us compared
to 0.28us taken to instantiate a null C++ object. The differences in this measurement can
be attributed to the larger file size that is required by OpenCom components to accommo-
date information for the meta-data. In addition, it can also be attributed to the complex
instantiation mechanism that is employed in OpenCom, which includes the interaction
with the kernel registry (see figures on the table above).

4.3. Performance of the Extensions Framework Mechanisms

Performance evaluation of the extensions framework mechanisms was carried out in the
IXP1200 router environment [11] (see Figure 3). This router is particularly interesting be-
cause itis) heterogeneous (e.g. it has a number of processors, including the microengines
that are specialised for packet processini);esource-poor, having a small amount of
memory; and finallyjii) performance constrained (i.e. packets must be processed at line
speeds). In terms of the implementation, we have developed a caplet, loader and binder
components to deploy Microcode components that run in the microengines. Microengines
are RISC CPUs that are targeted at packet forwarding and processing, while Microcode
is the Assembly language for the microengines.

4.3.1. Microcode Loader and Binder

To evaluate the performance of the implemented microcode loader and binder plugins,
a comparison was made with that obtained by NetBind [2]. NetBind is a good point of
comparison given that our microcode loader and binder employ an approach that was pio-
neered by their project. NetBind loads at the granularity of so-cailgelines. A pipeline

is a pre-configured assembly of singleton microcode components. These pipelines con-
strain the modules to be deployed in a linear topology and are created whenever these
modules have to be loaded and bound. Unlike NetBind, the implemented loader and
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binder extensions allow the components to be deployed individually by creating any kind
of arbitrary topology.

To compare the NetBind performance with that obtained by the implemented plu-
gins, this experiment evaluates the imposed overhead to incrementally extend the linear
topology of components in a single microengine. In particular, the time taken to include
each microcode component in the existing pipeline is measured. The results given in Fig-
ure 4 show that NetBind incurs an increasing linear overhead. This results from having to
rebuild the entire pipeline for each new configuration. Unlike Netbind, the implemented
binder plugin incurs a constant overhead for each extension, as the components are bound
incrementally. The binding overhead is minimal as it only involves changes in the branch
instructions. It should be underlined that in this experiment, all the microengine compo-
nents were deployed in one single microengine.

Microcode Binder Overhead

2 120

3

8 100 |

Q

€ 80

=

o 60 r

© 40 r NetBind ——
o Microcode Binder - -
2 20t ]
[}

E 0 S

. 2 3 4 5 6 7 8

Number of components in pipeline

Figure 4. Time to make an incremental addition of a component to an existing
configuration

5. Case Studies

In this section we present three case studies that demonstrate the suitability of our com-
ponent model in a wide range of environments and system domains. The case studies
also illustrate the capacity of the extension components (i.e. caplets, loaders and binders)
to deploy a variety of component styles in diverse environments. This demonstrates that
OpenCom is suitable for constructing systems that run in a demanding heterogeneous
environment like a network processor based router.

5.1. Case Study I: Programmable Networking Environment on Network Processors

Network processors (hereafter called NPs) consist of a multi-processor programmable de-
vice that forwards and processes packets at high speed (typically gigabit/s). Like conven-
tional CPUs, these processors are programmable. However, unlike conventional CPUs,
NPs are optimised for packet forwarding and processing.

These environments offer an ideal case study to validate the proposed generic
systems-building technology for the following reasons:

e NPs are widely known to be very difficult to program. For example, they have their
own hardware architecture, often with no OS and rely on a specialised language
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to program these devices. They also operate in a heterogeneous environment with
a multiple processor and memory types.

e The developed system must be extremely efficient to meet the requirements set by
these devices, namely to meet the imposed gigabit forwarding speeds.

This case-study applies the OpenCom programming model to construct systems
in such environments, more precisely, in the Intel IXP1200 range of NPs [11]. This
router is composed dj a StrongARM CPU running Linux, which acts as the general
control processor in the routeli) an array of six so-called microengines RISC CPUs
that are attached to each other and share three types of memory as shown in Figure 3
(i.e. Scratchpad, SDRAM and SRAM); aii) a set of dedicated hardware elements (not
illustrated in the figure above) such as the network interface and hash unit.

The microengine capleprovides a communication channel between the primary
caplet in the StrongARM and the target microengine caplet. This channel is implemented
through the libraries provided by Intel that support direct access from the StrongARM
to the microengine microstore, and memories such as the Scratchpads, SDRAMs and
SRAMs. Instructions and data can be exchanged between components in the StrongARM
and components in the microengines by sharing these registers. For example, compo-
nents in the microengines can place an integer value in an SDRAM register that can
subsequently be retrieved by components running in the StrongARM.

Themicroengine loadeembodies the capability to load and instantiate microcode
components. The components that are deployable by OpenCom in the microengines are
coded either in microengine-C (i.e. a subset of C for the IXP platforms) or Assembly.
Both languages are very primitive and highly constrained. In particular, this loader en-
ables the target developer to deploy components in the same fashion that takes place for
the primary style components, despite the primitive underlying environment. Moreover,
loading components in these environments is extremely complex and cannot be under-
taken in a straightforward way. For example, it is only possible to load components into
the microengines while they are in tleop mode. The stop mode is the mode where
the microengines do not perform any instruction. In this particular contextnghenti-
ate() operation activates a previously loaded component by starting its execution on the
microengines.

Section 4.3.1 outlines a quantitative evaluation of the implemented microcode
loader and binder. The graph in Figure 4 makes a comparison between the reconfigu-
ration overhead incured by our extensions and that by NetBind.

5.2. Case Study II: Middleware for Parallel Environments

In view of the current diversity of applications and deployment environments, it is desir-
able that middleware platforms are capable of being tailored to a particular applicability
(e.g. mobile computing middleware, sensor network middleware, parallel environment
middleware, etc.).

This case study applies the OpenCom programming model in the domain of mid-
dleware platforms for parallel environments called FlexPar. Essentially, it evaluates the
use of OpenCom in constructing a flexible middleware that is capable of building parallel
software at runtime. In addition, it also demonstrates that OpenCom is not only targeted
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at constructing programmable networking environments, but is rather a generic form of
technology that can be adopted to construct systems for a wide range of target domains.

In short, FlexPar is a reconfigurable middleware that is capable of constructing
parallel software at runtime. It builds parallel software by deploying multithreaded com-
ponents that make use of the CSP (Communicating Sequential Processes) [10] disciplines.
CSP is a paradigm for concurrent programming that prevents common problems found in
concurrency, such as deadlocks, and race hazards. FlexPar deploys components in JCSP
[21] and occam-pi as both support the CSP paradigm. JCSP is a set of Java libraries
that provides CSP disciplines for Java programmeryscam-pi is another CSP-based
language that has lower performance overhead than that of Java. As agesah-pi is
often adopted to construct parallel embedded systems in environments with low resources
[12]. We implemented the FlexPar infrastructure in the following way:

e Kernel. In this case study, we coded the kernel in Java in order to simplify the
deployment of components written in JCSP. The construction of the kernel proved
to be straightforward, on account of its size and simplicity. The FlexPar kernel
required a minimal memory footprint of 40 KBytes.

e Caplets, loaders and binders. Caplets, loaders and binders were implemented
to support a range of component styles, including the primary (in C++) and in-
terpreted (in Java and JCSP) styles. Thus, extensions (i.e. caplets, loaders and
binders) to support primary-style components and Java-based components were
employed in this case study. In addition, a caplet, loader and binder that support
the deployment of componentsaccam-pi are now under construction.

The FlexPar architecture is structured as depicted in Figure 5. The architecture is
composed of a kernel whose role is to deploy the JCSP®eaoaim-pi loaders and binders.
This kernel follows the microkernel style to enable its deployment in environments where
resources are particularly scarce.

JCSP JCSP o
Proc | Proc Il| applications layer

[ox WX i [ occam !/ occam! JCSP JCSP i
{ binder /i loader ;" | binder i loader | [ binderM Ioader} extensions layer

microkernel kernel layer

[ hardware & operating system J

Figure 5. FlexPar architecture

It is important to mention that there is no bias for JCSP acchm-pi as the ar-
chitecture is extensible and supports other parallel languages. This is illustrated in Figure
5 throughx loaderandbinderthat are designed to load and bind, respectively components
written in a fictitiousx language.

The OpenCom flexibility is also valuable to tailor middlewares to a wide range
of target domains. As an illustration of this, a middleware for mobile computing called
ReMMoc (Reflective Middleware for Mobile Computing) was constructed by applying
the principles adopted by OpenCom (i.e. component-based software engineering, com-
ponent frameworks, reflective meta-models). A middleware for grid computing [3] has
also been implemented, which adopts the OpenCom approach.
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As part of the FlexPar project, we are now constructingamaam-pi loader and
binder extensions. We will also construct a cross-binder extension which will let us create
connections between a JCSP adam-pi component.

5.3. Case Study llI: Software for Sensor Motes

OpenCom was employed in this case study to construct low-level software targeted at

sensor motes. Sensor motes are very primitive environments that consist of a small circuit
board that hosts a number of electronic sensors and a simple 8-bit microcontroller. This

third case study demonstrates that OpenCom can be used to construct low-level software
running in resource-constrained devices such as a sensor mote.

To deploy OpenCom in the sensor motes, the kernel had to be built on top of a
simple microcontroller monitor program call€bntiki. Contiki supports some simple
facilities to load C code modules dynamically and bind them. The provision of the Open-
Com kernel on top of Contiki makes it easier to program these primitive environments and
also provides a standard and uniform programming model that is applied ubiquitously, in-
cluding in the standard PCs.

Essentially, this kernel for Contiki leads to the following benefits:

e It provides the notion of components with multiple interfaces and receptacles,
whereas in Contiki, there are only code modules with a single set of functions.

¢ It allows multiple instantiations of a single component, whereas Contiki only sup-
ports singleton modules.

e Finally, it offers the facility to rebind components, whereas in Contiki one has to
destroy an instantiated component and reload it again, if it is necessary to create a
binding to a different component.

This case study demonstrates that the OpenCom approach is also suited to low-
level software targeted at primitive and resource-constrained devices, like a sensor mote.
The implemented Contiki-kernel occupies only 30 Kbytes, which demonstrates that it is
portable to a wide spectrum of deployment environments.

6. Related Work

We now briefly discuss several component models that we analysed with a focus on the
flexibility of the architecture in constructing systems independent of the target domain
and deployment environment. The analysed component models were classified into four
distinct categories that were based on the domain of the target systems at which they were
aimed: embedded systems, middleware platforms, operating systems and programmable
networking environments.

In the first category a number of component models for embedded systems have
been proposed (Koala [20], RoboCop [18], PECOS [26], and SaveCCM [8]). Unfortu-
nately, none of them provides a generic programming model that can be used outside of
their narrowly targeted area. They are primarily concerned with implementing a model
that can ensure that the constraints for a real-time system are all fulfilled. For example,
some of them (SaveCCM, PECOS, and RoboCop) providangponent description lan-
guagethat is particularly designed to ensure that all the informed constraints are fulfilled.
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However, this description language cannot be applied widely to other target domains since
it is narrowly-targeted at real-time systems.

In the second category, component models for middleware platforms have been
proposed (K-Component [5], DPRS [22], Fractal [1], and OMG’s CORBA Component
Model (CCM) [19]). These component models demonstrated that they have poor support
for deploying multiple component styles, particularly components written in Assembly
language. This precludes the adoption of these component models for primitive environ-
ments such as an embedded device. In addition to this, it is evident from this analysis that
most of the above component models do not aim to deploy components in environments
that are resource-constrained. This is normally reflected in the higher memory footprint
overhead that is imposed by most of the analysed component models.

In the third category, an investigation was made on component models targeted at
operating systems. This investigation included THINK [6], MMLite [9] and OSKit [7]. It
was noted that most of the component models are primarily targeted at providing modular
OS functionality and that this hinders the adoption of such technologies for constructing
systems for other domains. Another factor is that some of the technologies investigated
rely on heavy-weight platforms that preclude their use, particularly where memory re-
sources are poor. For example, 2K is built on top of CORBA, whereas OSK:it relies on a
subset of Microsoft COM. This hinders the use of both 2K and OSKit in resource-poor
embedded devices.

Finally, we also analysed the component technologies targeted at programmable
and active networks. This includes models such as NetBind [2], VERA [14] Shalaby’s
router [23], ACE [11], and Click [16]. This analysis suggested that these component mod-
els for networking environments are all narrowly-targeted at a particular router platform
and unable to be employed to construct systems targeted at other domains. This reflects
the goals and nature of these component models: they are usually targeted at solving one
particular challenge in the domain of computer networks. For example, NetBind is a com-
ponent model that is aimed at constructing data paths that are reconfigurable at runtime.
ACE proposes a component model that is particularly targeted at deploying components
on the Intel IXP routers.

7. Conclusions and Further Work

This paper described the design of the OpenCOM component model, a novel component
technology for building system software. The primary focus of the design is to provide

a generic facility for building system software that is independent of the deployment en-
vironment and the target domain at which it is aimed. This general-purpose component
model is beneficial as it enables programmers to rely on a single tool to build systems
targeted at a variety of domains and/or deployment environments. OpenCom proposes a
flexible, extensible and language independent component model with a minimal kernel.
Since the kernel is minimal, it can be easily ported to other deployment environments.
Finally, OpenCom has been applied to the needs of both present and future work. For ex-
ample, the Runes (Reconfigurable Ubiquitous Networked Embedded Systems) is an EU-
funded project that aims to build an architecture for networked embedded systems that
encompasses dedicated radio layers, networks, middlewares, and specialised simulation
and verification tools. This project aims to employ OpenCom as the programming plat-
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form which lies at the heart of the Runes architecture. Plastik [13] is a meta-framework
that attempts to integrate an architecture description language (ADL) to OpenCom.
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