
Analyzing Class and Crosscutting Modularity with Design
Structure Matrixes

Márcio de Medeiros Ribeiro1, Marcos Dósea1, Rodrigo Bonifácio1,
Alberto Costa Neto1, Paulo Borba1, Sérgio Soares2

1 Informatics Center – Federal University of Pernambuco
Caixa Postal 7851, 50740-540 – Recife – PE – Brazil

2Computing Systems Department – Pernambuco State University
Rua Benfica, 455, Madalena, 50720-001 – Recife – PE – Brazil

{mmr3,mbd2,rba2,acn,phmb}@cin.ufpe.br, sergio@dsc.upe.br

Resumo. Modularização de crosscutting concerns é o principal benefı́cio pelas
construções Orientada a Aspectos. Entretanto, tais construções não lidam ade-
quadamente com a modularidade de classes. Com o objetivo de avaliar a mod-
ularidade crosscutting e de classes de sistemas OA, usamos Design Structure
Matrixes (DSMs) para analisar três diferentes versões (OO, OA e OA usando
regras de design) de uma aplicação de software real. Nós observamos que, na
última versão, o acoplamento entre classes e aspectos foi reduzido, resultando
em um design mais modular, especialmente quando consideramos dependências
semânticas entre eles. Adicionalmente, usamos novos parâmetros de design,
representando um processo de desenvolvimento de software mais realista.

Abstract. Modularization of crosscutting concerns is the main benefit provided
by Aspect-Oriented constructs. However, it does not address class modularity
adequately. In order to assess both class and crosscutting modularity of AO
systems, we use Design Structure Matrixes (DSMs) to analyze three different
versions (OO, AO, and AO using design rules) of a real software application.
We observed that, in the last version, coupling between classes and aspects is
reduced, yielding a more modular design, specially when considering semantic
dependencies between them. In addition, we apply new design parameters that
represent a more realistic software development process.

1. Introduction
Aspect-Oriented Programming (AOP) [Kiczales et al. 1997] has been proposed as a tech-
nique for modularizing crosscutting concerns. Logging, distribution, tracing, security,
and transactional management are accepted as examples of crosscutting concerns well
addressed by AOP. However, since AOP is a relatively new approach, there is not yet con-
sensus about how to evaluate designs or even about which dimensions of modularity are
supported by AOP.

In fact, by referring to classes implementation details in aspects, one can inhibit
modular reasoning, requiring class modifications to be fully aware of the aspects affecting
the class. Therefore, constructs aimed to support crosscutting modularity might actually
break class modularity. In the presence of aspects, class modularity is compromised

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

167

because, when evolving a class, it might be necessary to analyze the implementation of
existing aspects, instead of analyzing only the class and the interface of other referred
classes.

Tools like AJDT [AJDT 2007] help on identifying which aspects affect a class
by putting marks in the code. Nevertheless, even in this case the developer needs to
understand these aspects implementations because they can change the expected behavior
of the class.

In order to solve the aforementioned modularity problems when considering AO
systems, we argue that using a new category of design rules [Baldwin and Clark 2000]
to decouple classes and aspects is essential. Design rules are not just guidelines and
recommendations: they generalize the notion of information hiding interfaces and must
be rigorously obeyed.

In this paper, we follow similar approaches already adopted by others
works [Sullivan et al. 2005, Lopes and Bajracharya 2006], but with two main differences:
first, besides to software components, we introduce architectural style and use cases as
design parameters, representing a more realistic software development process. Second,
we consider a new kind of dependency between aspects and classes. Such dependency,
named Semantic Dependencies [Neto et al. 2007], has a significant impact on dimensions
of modularity, such as parallel development of modules.

Therefore, we provide in this work an approach more precise for analyzing AO
software modularity, being useful for assessing which are the real benefits of AO con-
cerning both class and crosscutting modularity.

Aiming at confirming this hypothesis, we have analyzed the structure of three
versions of the Health Watcher (HW) system [Soares et al. 2002, Greenwood et al. 2007]
using Design Structure Matrixes (DSMs). The OO version had problems to modularize
crosscutting concerns. In order to solve this problem, an AO version was created. How-
ever, we observed that this approach reduces class modularity. In order to provide both
class and crosscutting modularity, we analyze an AO version using design rules as well.
Comparisons among such versions are detailed in this paper.

The main contributions of this paper are:

• Comparing and discussing modularity concepts presented in three versions (OO,
AO, and AO with design rules) of a real software application. We observed that
the AO version decreases the class modularity. Also, in order to obtain both class
and crosscutting modularity, we argue that design rules must be used (Section 4).

• Applying new design parameters on assessing modularity through DSMs. Such
parameters might represent a more realistic software development process, detail-
ing responsibilities for developers. (Section 4).

• The necessity of applying semantic dependencies for modularity analysis between
classes and aspects. We argue that those dependencies also should be expressed
as design rules, reducing the dependencies between modules and, consequently,
improving modularity (Section 3).

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

168

2. Background

In this section we present definitions related to modularity and design structure matrixes,
an approach to evaluate the modularity of a complex design.

2.1. Modularity

The concept of modularity applied to software development was first introduced by Par-
nas [Parnas 1972]. Such concept is still used as a guide for architects and is being applied
in another areas. Modularity is closely related to design decisions that decompose and
organize the system into a set of modules. The following qualities attributes are expected
in a modular design:

Comprehensibility A modular design allows developers to understand a module looking
only at: (1) the implementation of the module itself; and (2) the interfaces of the
other modules referenced by it1.

Changeability A modular design enables local changes. If changes are necessary in the
internal implementation of a module A, the other modules that depend exclusively
on A’s interface will not need to change, since there is no modification in the
module interface.

Parallel development After the specification of the module interfaces, a modular design
enables the parallel development of modules. Different teams might only focus
in their own modules development, reducing the time-to-market and the need of
communication.

Parnas proposed the information hiding principle as the criteria to be used in de-
composition of systems into modules. According to Parnas, the parts of a system that are
more likely to changes must be hidden into modules with stable interfaces.

The Object-Oriented approach enforces this decomposition criteria with directives
to hide the implementation details of classes, exposing only their interfaces. However, the
design of OO applications usually results in tangling and scattering code, due to cross-
cutting concerns implementation, reducing the degrees of comprehensibility and change-
ability.

Aspect-Oriented Programming was proposed to modularize these crosscutting
concerns. However, constructions supported by AspectJ [Kiczales et al. 2001] like lan-
guages can produce high coupling between the base code and the aspects, because they
are usually dependent on classes implementation details.

Baldwin and Clark [Baldwin and Clark 2000] proposed a theory which considers
modularity as a key factor to innovation and market growth, independent of the industry
area. Their theory uses Design Structure Matrixes (DSMs) to reason about dependen-
cies among artifacts and defend that the task structure organization is closely related to
them. In this way, if two modules are coupled, their parallel and independent develop-
ment is impossible, requiring more communication between the different teams, or their
implementation by a single team.

1This comprehensibility degree is also known as modular reasoning.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

169

2.2. DSMs, Design Parameters, and Design Rules

Design Structure Matrixes (DSMs)2 are used to visualize dependencies among design
parameters. These parameters correspond to any decision that needs to be made along
the product design.

Design parameters may have different abstraction levels. In software industry,
some design decisions are related to process development, language, code/architectural
style, and so forth. Moreover, if we consider implementation as design activities, software
components like classes, interfaces, packages, and aspects should be represented as design
parameters.

The notion of dependency arises whenever a design decision depends on another.
Each design parameter is disposed in both rows and columns of the matrix. A dependency
between two parameters is marked with a X.

Figure 1 represents software components as parameters in a DSM. A mark in row
B, column A represents that component B depends on component A. In the same way a X
in row A, column B represents that component A depends on component B. Whenever this
mutual dependency occurs, we have an example of cyclical dependency, which implies
that both components can not be independently addressed, which means that their parallel
development is compromised.

Figure 1. Example of dependencies in a DSM.

Additionally, component B depends on C (expressed by a X in row B, column
C) but C does not depend on any other component. Therefore, C can be independently
developed but B can not be completely developed until C has been concluded. Aiming
at removing these dependencies, Baldwin and Clark [Baldwin and Clark 2000] propose
defining Design Rules.

Design Rules are parameters used as interfaces between modules that are less
likely to be changed [Lopes and Bajracharya 2006]. In this way, they can promote de-
coupling of design parameters, like interfaces decrease the coupling between software
components. Such design rules establish strict partitions of knowledge and effort at the
outset of a design process. They are not just guidelines or recommendations: they must
be rigorously obeyed in all phases of design and production [Baldwin and Clark 2000].

3. Semantic Dependencies

In our previous work [Neto et al. 2007], we have presented an approach of modularity
analysis that considers both syntactic and semantic dependencies between classes and
aspects. In what follows, we discuss more deeply such dependencies, using a detailed
example.

2Dependency Structure Matrix is another term used.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

170

Syntactic dependency in OO software components (classes and interfaces) occurs
when there is a direct reference between them, such as inheritance, composition, meth-
ods signatures (parameters, return types, exceptions throwing), class instantiations, and
so forth. This dependency causes compile errors whenever a component is modified or
removed from the system, being thus easily detected. In the same way of classes and
interfaces, direct references can appear between aspects and other components, which
means that aspects can also have syntactic dependency.

However, there is another kind of dependency that is not so easy to realize because
it occurs without explicit references between system components (classes, interfaces, and
aspects - in AO systems). We call this kind of coupling as Semantic dependency. Besides,
this kind of dependency does not cause compilation errors when removing or modifying
components. Although there are semantic dependencies in OO systems, as occurs for
example when using reflection to call methods from a class (in this case it is not necessary
using identifiers explicitly), we did not find semantic dependencies in the OO HW system.

As an example of semantic dependency in AO systems, suppose the requirement
of synchronizing all methods of a class (concurrency management). Such requirement
consists of encompassing with synchronized blocks the bodies of all methods. Consider
that the aspect developer is responsible for implementing this concern in an aspect and
that a class developer, which is oblivious about this aspect, decides to implement methods
in the same class. In this situation, at least three problems can occur:

1. The methods created by the class developer might not need concurrency manage-
ment, but they will be synchronized by the aspect;

2. If the class developer, oblivious about the aspect, implements concurrency man-
agement on methods class, these methods would be synchronized twice; and

3. Depending on how the synchronization approaches are implemented by the aspect
and class developers, together they might lead the system to a dealock or a livelock
situation [Lea 1999].

In such cases, the expected behavior of the system could be compromised, since
some additional synchronization would be created or, even worst, the system might reach
a dealock or a livelock.

The situation above exposes that problems of modularity have occurred: (1) the
comprehensibility is compromised, since two modules should be studied in order to un-
derstand the concern; and (2) the parallel development is problematic, because one devel-
oper can implement unintended behavior into a module which, although it is not under
his responsibility, might break the system.

These problems are caused by semantic dependencies, because the class depends
on the aspect to work correctly. They occur since the class developer is oblivious about
the aspect implementation (there is no syntactic definition that the concurrency concern
is woven in the class by the aspect). Such problem can also appear when, for example,
the aspect developer changes the concurrency implementation. In this case, the aspect
developer might break the expected behavior of the class. We have observed the same
kind of dependency in other scenarios in the HW system, like transactional management
and distribution.

In this paper, we propose using design rules in order to reduce not only syntactic

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

171

but also semantic dependencies between aspects and classes. Using design rules requires
both aspects and classes developers agreement. In this way, it promotes the decoupling
between such components, promoting modularity.

Figure 2 illustrates the development using design rules between classes and as-
pects. The design rule makes explicit that every method in the EmployeeRepository class
will be synchronized by the Concurrency aspect and that the EmployeeRepository class
can not implement any synchronization mechanism.

Class Developer Aspect Developer

Design Rules

4. Every method of the
class will be synchronized by the
aspect

EmployeeRepository
Concurrency

.

public class EmployeeRepository {

...

}

public aspect Concurrency {

...

}

Core
Concerns

Crosscutting
Concerns

Figure 2. Aspect and Class developers using Design Rules.

Hence, the class developer is not oblivious anymore when considering the im-
plementation of the concurrency concern. The design rule will constrain the developer
while creating methods in the EmployeeRepository class, eliminating the semantic de-
pendencies between the aspect and the class. If the methods must be synchronized, the
developer just create them and leave the concurrency responsibility for the aspect. Oth-
erwise, he must communicate to the aspect developer that some methods will not need
concurrency management. This is the same expected approach when developing OO
systems using design mechanisms like Java interfaces, and the Design by Contract ap-
proach [Meyer 1992, Meyer 1997].

4. Modularity Analysis
This section describes the analysis of modularity of three different versions of the Health
Watcher system, a real web-based information system, originally implemented in Java
and restructured to use AspectJ [Kiczales et al. 2001], a general purpose AO extension
to Java. The system aims to improve the quality of the services provided by health care
institutions, allowing citizens to register complaints regarding health issues, and health
care institutions to investigate and take the required actions. This system was selected
because it was used in many previous works [Soares et al. 2002, Greenwood et al. 2007,
Neto et al. 2007] and its design has a significant number of non-crosscutting and crosscut-
ting concerns. Furthermore, it requires a number of common day-to-day design decisions
related to GUI, persistence, transaction management, distribution, and concurrency con-
trol.

Following an use case driven approach, we choose to represent four categories
of design parameters: constraints and requirements, use cases, architectural decisions,

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

172

and software components (classes and aspects). Two kinds of DSMs are presented in the
remainder of this section. The first one represents a high level view of the HW design
parameters, whereas the second one offers a detailed view of design parameters related to
the Employee component3. Not all requirements are represented in the second one. The
comparative analysis are based on both kinds of matrixes.

Since the DSMs were constructed based on an use case driven approach (an im-
portant differential of our work), it is possible to infer the organization and dependencies
between the tasks necessary to develop the system from the dependencies between arti-
facts. Because the tasks can be obtained from the DSM, it is easier to separate teams to
perform such tasks, by identifying which tasks can be or not developed in parallel.

4.1. OO Health Watcher version

Figure 3 illustrates the general parameter organization of the OO Health Watcher version.
The DSM is divided in four groups of design parameters:

• Constraints and Requirements: related to system constraints and requirements,
identified in the beginning interactions.

• Use Cases: represent system use cases. They are categorized as architectural,
application, and utility use cases.

• Architectural Decisions: guide the project development, consisting of design
rules that are related to: architectural style, patterns, frameworks, and Applica-
tion Programming Interfaces (APIs). The establishment of a system architecture
depends on the development team experience and the system requirements, con-
straints, and architectural use cases.

• Components: consist of software components that implement the use cases pre-
viously defined.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Constraints and Requirements 1

Login 2 x

Register new employee 3 x

Register new complaint 4 x

Query information 5 x

Update employee 6 x

Update complaint 7 x

Update health unit 8 x

Register tables 9 x

Change logged employee 10 x

Select architectural style and patterns 11 x x x x

GUI technology 12 x x x x x

Security mechanism 13 x x x x x

Persistence 14 x x x x x

Distribution mechanism 15 x x x x x

Concurrency mechanism 16 x x x x x

Transaction mechanism 17 x x x x x

Employee 18 x x x x x x x x x x

Health Unit 19 x x x x x x x x x

Complaint 20 x x x x x x x x x x x x

Authentication 21 x x x x x x x x x

Design Parameters

U
s
e

C
a

s
e

s

Architectural

Application

Utility

A
rc

h
it
e

c
tu

ra
l
D

e
c
is

io
n

s
C

o
m

p
o

n
e

n
ts

Figure 3. Design structure of the OO Health Watcher version.

3Similar matrixes could be derived for other components, like Health Unit, Complaint, and Authentica-
tion.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

173

Figure 3 illustrates that the use case specifications depend on the previously iden-
tification of system constraints and requirements (rows 2-10, column 1).

Another existing example of dependency occurs between Complaint component
and Register New Complaint, Query Information, and Update Complaint use cases. Such
dependencies are marked in row 20, columns 4, 5, and 7. The component also depends
on the architectural style (row 20, column 11). In addition, it depends on all mechanisms
that implement concerns such as Transaction and Concurrency management (row 20,
columns 16 and 17). Finally, the Complaint component depends on the Employee and
Health Unit components (row 20, columns 18 and 19), since it is possible to reuse part of
responsibilities associated with them.

Figure 4 details the specific parameters of the Employee component (row 18 of
Figure 3). The team allocated to implement such component must develop specific re-
sponsibilities for the Register New Employee, Update Employee, and Query Information
use cases. Also, they must implement responsibilities that are spread throughout the sys-
tem, such as Distribution, Concurrency, and Transaction management concerns (these
dependencies are represented in row 18, columns 12, 13, and 14, respectively).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Constraints and Requirements 1

Register new employee 2 x

Update employee 3 x

Query information 4 x

Select architectural style and patterns 5 x x

Distribution mechanism 6 x x

Concurrency mechanism 7 x x

Transactional mechanism 8 x x

Persistence mechanism 9 x x

Security mechanism 10 x x

GUI technology 11 x x

Distribution concern 12 x x x

Concurrency concern 13 x x x

Transaction management concern 14 x x x

Persistence Interface 15 x x x x x

Persistence Impl 16 x x x x x x x

Security 17 x x x x x

Business 18 x x x x x x x x

GUI 19 x x x x x x x x

U
s
e

C
a
s
e

A
rc

h
it
e
c
tu

ra
l

D
e
c
is

io
n
s

E
m

p
lo

y
e
e

Design Parameters

Figure 4. Object-Oriented Employee component details.

With respect to parallel development, it is not feasible because of the lack of cross-
cutting modularity. Moreover, changes are not localized: if the Distribution mechanism
changes, it will be necessary to update the GUI and Business design decisions not only in
the Employee component, but also in other components such as Health Unit, Complaint,
and Authentication.

In summary, despite of the OO version presents class modularity (as expected), it
does not modularize adequately the crosscutting concerns, like Distribution, Concurrency
(illustrated in Listing 1 by the presence of many synchronized blocks within Business
class EmployeeRepository) and Transaction management, since such concerns are tangled
and scattered in such component.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

174

Listing 1. Concurrency concern tangled and scattered in EmployeeRepository.
1 p u b l i c c l a s s EmployeeRepos i t o ry {
2
3 p u b l i c vo id i n s e r t (Employee employee) {
4 synchronized (t h i s) { / / B u s i n e s s l o g i c t o i n s e r t Employees }
5 }
6
7 p u b l i c Employee s e a r c h (S t r i n g l o g i n) {
8 synchronized (t h i s) { / / B u s i n e s s l o g i c t o s e a r c h Employees }
9 }

10
11 p u b l i c vo id u p d a t e (Employee employee) {
12 synchronized (t h i s) { / / B u s i n e s s l o g i c t o upd a t e Employees }
13 }
14
15 p u b l i c vo id remove (Employee employee) {
16 synchronized (t h i s) { / / B u s i n e s s l o g i c t o remove Employees }
17 }
18 }

4.2. AO Health Watcher version

Figure 5 illustrates the AO Health Watcher design structure. This matrix is similar to the
OO version when considering requirements, constraints, and use cases. The architectural
decisions also present the same set of OO parameters.

Additionally, in the same figure, the Employee, Health Unit, Complaint, and Au-
thentication components do not syntactically depend on crosscutting mechanisms. Notice
that such dependencies were encapsulated in the aspects responsible for implementing the
Distribution, Concurrency and Transaction management (rows 22, 23, and 24; columns
15, 16, and 17). These aspects also have dependencies with the application components.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Constraints and Requirements 1

Login 2 x

Register new employee 3 x

Register new complaint 4 x

Query information 5 x

Update employee 6 x

Update complaint 7 x

Update health unit 8 x

Register tables 9 x

Change logged employee 10 x

Select architectural style and patterns 11 x x x x

GUI technology 12 x x x x x

Security mechanism 13 x x x x x

Persistence 14 x x x x x

Distribution mechanism 15 x x x x x

Concurrency mechanism 16 x x x x x

Transaction mechanism 17 x x x x x

Employee 18 x x x x x x x

Health Unit 19 x x x x x x x

Complaint 20 x x x x x x x x x
Authentication 21 x x x x x x x

Distribution aspect 22 x x x x x x

Concurrency aspect 23 x x x x

Transaction aspect 24 x x x x x x

A
O

P
U

s
e

C
a

s
e

s

Architectural

Application

Design Parameters

A
rc

h
it
e

c
tu

ra
l
D

e
c
is

io
n

s
C

o
m

p
o

n
e

n
ts

Utility

Figure 5. Aspect-Oriented Health Watcher design structure.

Figure 6 presents details about the Employee component in the AO version. Such
component does not have parameters related to Distribution, Concurrency and Transac-
tion management (as in the OO version in Figure 4). Notice that these concerns (imple-

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

175

mented as aspects, rows 12, 13, and 14 of Figure 6) are not only used in the Employee
component, but also in the Health Unit, Complaint, and Authentication4 components.

With respect to modularity, the Business component became independent of cross-
cutting concerns implementations (row 18, columns 12, 13, and 14). Besides, changes are
more localized in this design. For example: if the Distribution mechanism changes, it will
not be necessary to update the GUI and Business components (there is no mark in rows
18 and 19 against column 12).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Constraints and Requirements 1

Register new employee 2 x

Update employee 3 x

Query information 4 x

Select architectural style and patterns 5 x x

Distribution mechanism 6 x x

Concurrency mechanism 7 x x

Transactional mechanism 8 x x

Persistence mechanism 9 x x

Security mechanism 10 x x

GUI technology 11 x x

AO Distribution aspect 12 x x x

AO Concurrency aspect 13 x x x

AO Transaction management 14 x x x

Persistence Interface 15 x x x x x

Persistence Impl 16 x x x x x x x

Security 17 x x x x x

Business 18 x x x x x

GUI 19 x x x x x x x

A
O

P
E

m
p
lo

y
e
e

Design Parameters

U
s
e

C
a
s
e

A
rc

h
it
e
c
tu

ra
l

D
e
c
is

io
n
s

Figure 6. Aspect Oriented Employee component details.

Listing 2 illustrates the aspect responsible for modularizing the Concurrency con-
cern, which eliminates both tangled and scattered synchronized blocks from the original
EmployeeRepository class (Listing 1).

Listing 2. Concurrency concern tangled and scattered in EmployeeRepository.
1 p u b l i c a s p e c t L o c a l S y n c h r o n i z a t i o n {
2
3 O b j e c t around (O b j e c t o) : t h i s (o) && e x e c u t i o n (∗ EmployeeRepos i t o ry . ∗ (. .)) {
4 synchronized (o) {
5 re turn p r o c e e d (o) ;
6 }
7 }
8 }

4.3. AO Health Watcher version with Semantic Dependencies

Existing works about modularity consider only syntactic dependencies [Zhao 2004,
Santánna et al. 2003, Garcia et al. 2006], ignoring the existence of semantic dependen-
cies and drawing similar conclusions to the presented in the previous section.

The application components do not have syntactic references to the aspects. How-
ever, situations like the concurrency management (explained in Section 3) expose the
existence of semantic dependencies.

The semantic dependencies of the AO HW version are represented in Figure 7 as
plus symbols (+), showing that the Employee, Health Unit, Complaint, and Authentication
components depend on the aspects that implement the crosscutting concerns. In this way,

4Although Authentication is a crosscutting concern, it is not implemented using AOP in the HW.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

176

when evolving classes it is necessary to analyze the aspects, as described in the following
scenario.

Suppose a new feature that requires counting the number of Employees registered
in a given profile. Such feature might be implemented as a new method in the Employ-
eeRepository class (Listing 3). This method does not need to be synchronized, since it
does not manipulate a specific instance of Employee. However, the application will not
behave as presumed, since the method will be synchronized by the aspect.

Listing 3. A new method for counting the number of Employees.
1 p u b l i c c l a s s EmployeeRepos i t o ry {
2
3 p u b l i c i n t getNumberOfEmployees (P r o f i l e p r o f i l e) {
4 / / B u s i n e s s l o g i c t o c o u n t t h e number o f Employees
5 }
6
7 }

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Constraints and Requirements 1

Login 2 x

Register new employee 3 x

Register new complaint 4 x

Query information 5 x

Update employee 6 x

Update complaint 7 x

Update health unit 8 x

Register tables 9 x

Change logged employee 10 x

Select architectural style and patterns 11 x x x x

GUI technology 12 x x x x x

Security mechanism 13 x x x x x

Persistence 14 x x x x x

Distribution mechanism 15 x x x x x

Concurrency mechanism 16 x x x x x

Transaction mechanism 17 x x x x x

Employee 18 x x x x x x x + + +

Health Unit 19 x x x x x x x + +

Complaint 20 x x x x x x x x x + + +

Authentication 21 x x x x x x x +

Distribution aspect 22 x x x x x x

Concurrency aspect 23 x x x x

Transaction aspect 24 x x x x x x

Design Parameters

A
rc

h
it
e

c
tu

ra
l
D

e
c
is

io
n

s
C

o
m

p
o

n
e

n
ts

Utility

A
O

P
U

s
e

C
a

s
e

s

Architectural

Application

Figure 7. Aspect Oriented DSM with Semantic Dependencies.

As expected, the AO version presented a better crosscutting modularity. However,
we observed problems related to class modularity as a result of aspect-class compositions,
since it is not possible to reason about each class separately (without observing all existing
aspects).

4.4. AO Health Watcher version with New Design Rules
Design Rules in AO systems must include additional constraints to define how classes
and aspects interact. Examples of such constraints are: required join point, name patterns,
class members, general invariants, and pre/post-conditions.

The definition of design rules that decouple classes and aspects is a non-trivial
task. This activity depends on previous experiences in the development of applications
with the same architectural characteristics. One possible solution is the establishment
of design rules during the architectural use case development activity. In the absence of

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

177

the aforementioned design rules, both class and aspect developers must be aware of each
other and communicate frequently to state how classes and aspect interact, which would
not allow the parallel development.

For example, in order to avoid the problem of unintended synchronization (pre-
sented in Section 4.3), we could recur to the design rule defined in Figure 2 to eliminate
the semantic dependency between EmployeeRepository and the aspect responsible for
implementing the Concurrency concern. Similar design rules were defined to decouple
classes from Distribution and Transaction aspects.

Figure 8 presents a new parameter (row 18) corresponding to the design rules that
decouple classes and aspects. Notice that using these design rules the directly dependen-
cies between classes and aspects were reduced and localized in the New Design Rules
(dependencies marked in the intersection of rows 19-25 with column 18).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Constraints and Requirements 1

Login 2 x

Register new employee 3 x

Register new complaint 4 x

Query information 5 x

Update employee 6 x

Update complaint 7 x

Update health unit 8 x

Register tables 9 x

Change logged employee 10 x

Select architectural style and patterns 11 x x x x

GUI technology 12 x x x x x

Security mechanism 13 x x x x x

Persistence 14 x x x x x

Distribution mechanism 15 x x x x x

Concurrency mechanism 16 x x x x x

Transaction mechanism 17 x x x x x

New Design Rules 18 x

Employee 19 x x x x x x x +

Health Unit 20 x x x x x x x +

Complaint 21 x x x x x x x + x x

Authentication 22 x x x x x x + x

Distribution aspect 23 x x +

Concurrency aspect 24 x x +

Transaction aspect 25 x x +

A
O

P
U

s
e

C
a

s
e

s

Architectural

Application

A
rc

h
it
e

c
tu

ra
l
D

e
c
is

io
n

s

Design Parameters

C
o

m
p

o
n

e
n

ts

Utility

Figure 8. Aspect Oriented DSM with New Design Rules.

By introducing design rules, which play the role of interfaces between classes
and aspects, classes must only be aware of the design rules they depend on, ignoring all
aspects implementations, achieving both class and crosscutting modularity. In summary,
we conclude that design rules are a useful technique to construct modular AO systems.

5. Related Work

Sullivan et al. [Sullivan et al. 2005] presented a comparative analysis, also based on
DSMs, between an AO system developed following an oblivious approach, with the same
system developed with clear design rules that document interfaces between classes and
aspects. Such work does not consider parameters like architectural style and use cases as
we do. Griswold et al. [Griswold et al. 2006] showed how to transform part of the design
rules into a set of Crosscutting Programming Interfaces (XPIs) that are useful to document
and check part of the design rules (contracts). In contrast, these works do not consider
semantic dependencies, leading to unfaithful notion of dependencies when considering

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

178

AO systems. In our work, the design rules are responsible for dealing with dependen-
cies (both syntactic and semantic) between classes and aspects. They could be mapped
into XPIs, but we are convinced that, even without defining these XPIs, they are of great
importance to achieve a better modularity in AO development.

It is important to notice that we considered crosscutting concerns like Transac-
tion Management, Concurrency, Persistence, and Distribution, that are present in most
of applications nowadays, drawing our conclusions over real problems faced by OO and
AO developers, instead of concentrating in analyzing concerns that are usually subsidiary
features, like Logging and Tracing.

Kiczales and Mezini [Kiczales and Mezini 2005] defend that the complete inter-
face of a module can only be determined once the complete configuration of the systems
is known. They introduce the notion of aspect-aware interfaces, that describe the existing
dependencies between classes and aspects, giving support to reasoning about the effect of
aspects over classes by point out where aspects are affecting a certain class. This interface
must be automatically recomputed whenever classes or aspects change and, in fact, tools
like AJDT already offer similar functionality through IDE resources that indicate which
advices apply in a certain point. However, we do not believe that this kind of interface can
really help during earlier phases of software development, when it is necessary to parti-
tion the system into classes and aspects, and distribute the task developing them between
teams. At that moment, it is necessary to establish design rules that will govern both class
and aspects development.

Lopes and Bajracharya [Lopes and Bajracharya 2006] used DSM and Net Option
Value (NOV) to compare the value of modularity achieved by different design options.
They concluded that aspects can increase the value of an already modularized design. We
did not measure the HW NOV but we discussed the dependencies observed in the DSMs,
both in OO and AO versions, and reason about their influence over parallel development,
flexibility, and comprehensibility. In addition, we explored the concept of dependencies
between aspects and classes in more detail and confirmed the importance of establishing
design rules as a way of dealing with these dependencies.

6. Concluding Remarks
We have shown in this work a more precise study for analyzing software modularity,
being useful for assessing what are the real benefits of AO concerning both class and
crosscutting modularity.

Additionally, we discussed that crosscutting concerns can be localized in single
modules (aspects), providing better crosscutting modularity. On the other hand, this ap-
proach does not provide class modularity because in order to reason about any class it is
necessary to consider all aspects implementations.

Aiming to confirm that, we have presented an analysis of different versions of the
Health Watcher system using DSMs. We shown that the AO version provides crosscutting
modularity but at the same time reduce class modularity. This weakness can be mitigated
by using adequate design rules between classes and aspects.

Such design rules were necessary in order to reduce syntactic and semantic depen-
dencies in the AO version. Another version considering design rules was analyzed and

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

179

we confirm that it provides a better design for modularity than the other ones.

Finally, we showed the possibility of using different parameters in DSMs. Such
parameters consist of not only software components as used in other works, but also
architectural decisions and use cases, representing a more realistic software development
process.

7. Acknowledgments
We would like to thank CNPq and CAPES, Brazilian research funding agencies, for par-
tially supporting this work. In addition, we thank SPG5 members for feedback and fruitful
discussions about this paper.

References
AJDT (2007). Getting started with AJDT. http://www.eclipse.org/ajdt/gettingstarted.php.

Baldwin, C. Y. and Clark, K. B. (2000). Design Rules, Vol. 1: The Power of Modularity.
The MIT Press.

Garcia, A., SantÁnna, C., Figueiredo, E., Kulesza, U., Lucena, C., and von Staa, A.
(2006). Modularizing Design Patterns with Aspects: A Quantitative Study. In LNCS
Transactions on Aspect-Oriented Software Development I, pages 36–74. Springer.

Greenwood, P., Bartolomei, T., Figueiredo, E., Dósea, M., Garcia, A., Cacho, N.,
SantÁnna, C., Soares, S., Borba, P., Kulesza, U., and Rashid, A. (2007). On the Impact
of Aspectual Decompositions on Design Stability: An Empirical Study. In Proceed-
ings of the 21st European Conference on Object–Oriented Programming, ECOOP’07.
to appear.

Griswold, W. G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., and Rajan,
H. (2006). Modular Software Design with Crosscutting Interfaces. IEEE Software,
23(1):51–60.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. (2001).
Getting Started with AspectJ. Communications of the ACM, 44(10):59–65.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and Ir-
win, J. (1997). Aspect–Oriented Programming. In European Conference on Object–
Oriented Programming, ECOOP’97, LNCS 1241, pages 220–242.

Kiczales, G. and Mezini, M. (2005). Aspect-Oriented Programming and Modular Rea-
soning. In Proceedings of the 27th International Conference on Software Engineering
(ICSE 2005), pages 49–58. ACM Press.

Lea, D. (1999). Concurrent Programming in Java. Addison–Wesley, 2nd edition.

Lopes, C. V. and Bajracharya, S. K. (2006). Assessing Aspect Modularizations Using
Design Structure Matrix and Net Option Value. In LNCS Transactions on Aspect-
Oriented Software Development I, pages 1–35. Springer.

Meyer, B. (1992). Applying “design by contract”. Computer, 25(10):40–51.

Meyer, B. (1997). Object-Oriented Software Construction. Prentice-Hall, 2nd edition.
5http://www.cin.ufpe.br/spg

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

180

Neto, A. C., de Medeiros Ribeiro, M., Dósea, M., Bonifácio, R., Borba, P., and
Soares, S. (2007). Semantic Dependencies and Modularity of Aspect-Oriented Soft-
ware. In 1st Workshop on Assessment of Contemporary Modularization Techniques
(ACoM’07), in conjunction with the 29th International Conference on Software Engi-
neering (ICSE’07). to appear.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058.

Santánna, C., Garcia, A., Chavez, C., Lucena, C., and von Staa, A. (2003). On the Reuse
and Maintenance of Aspect-Oriented Software: A Assessment Framework. In Proc. of
Brazilian Symposium on Software Engineering (SBES’03), pages 19–34.

Soares, S., Laureano, E., and Borba, P. (2002). Implementing distribution and persistence
aspects with AspectJ. In 17th Annual ACM Conference on Object-Oriented Program-
ming, Systems, Languages and Applications, OOPSLA’2002, pages 174–190, Seattle,
USA.

Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N., and Rajan, H.
(2005). Information Hiding Interfaces for Aspect-Oriented Design. In Proceedings of
the 10th European Software Engineering Conference held jointly with 13th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (ESEC/FSE),
pages 166–175, New York, NY, USA. ACM Press.

Zhao, J. (2004). Measuring Coupling in Aspect-Oriented Systems. In 10th International
Software Metrics Symposium (Metrics’04).

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

181

	SBES
	ST4-1

