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Principles of Software Evolution, Lisbon, September 2005. This paper complements the position paper 
with a more detailed presentation of the proposed approach, a usage example, and an evaluation. 

 

Resumo. À medida que o software evolui, modelos de análise e projeto devem 

ser atualizados. Neste cenário, um dos maiores problemas é detectar quais e-

lementos devem ser modificados em conjunto. Este artigo descreve uma abor-

dagem que aplica técnicas de mineração em repositórios de sistemas da ge-

rência de configuração de software com objetivo detectar rastros de modifica-

ção entre elementos de modelo UML. Os rastros de modificação são apresen-

tados com uma semântica própria que auxilia a análise da sua utilidade no 

processo de manutenção e construção. Ao final, a avaliação dos resultados 

obtidos com a aplicação da abordagem é apresentada. 

Abstract. As software evolves, analysis and design models should be modi-

fied, correspondingly. In this scenario, one of the main problems is to detect 

which elements should be changed due to a given change. This paper presents 

an approach that applies data mining over a versioned UML repository in or-

der to detect change traces among model elements at different abstraction lev-

els. These traces are presented to the software engineer together with context 

information obtained from SCM systems and used within CASE tools. We also 

present the results of a retrieval performance evaluation of our approach, 

which are promising. 

1. Introduction 

The software development process encompasses many distinct phases, each of them 
working on a specific abstraction level. This multi-level structure is important to model 
and refine the knowledge about an application domain, providing control over the com-
plexity of software development. In this scenario, UML notation is a strong candidate 
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for representing analysis and design artifacts (Page-Jones, 1999). However, software 
engineers must ensure that all UML artifacts are up to date and consistent throughout 
the different abstraction levels to avoid misunderstandings. 

 Traceability techniques can be used to solve this problem by identifying all UML 
model elements that shall be updated when a change is introduced (Cleland-Huang and 
Chang, 2003). Software artifact traceability is an important factor at analysis and design 
levels which helps software engineers to identify bad design decisions early on the soft-
ware development process and provides a high level view of the system dependencies 
(Settimi et al., 2004).   

 In this context, traceability links are semantic relationships among software arti-
facts (Kowalczykiewicz and Weiss, 2002). There are some automated approaches to 
keep traceability links updated during software evolution. These approaches are based 
on three major techniques: syntactic analysis (Briand et al., 2003), information retrieval 
(Antoniol et al., 2002; Huffman Hayes et al., 2003; Marcus and Maletic, 2003; Settimi 
et al., 2004), and data mining (Shirabad et al., 2001; Ying et al., 2004; Zimmermann et 

al., 2004). The approaches that use syntactic analysis consider the software structure to 
identify the interrelations among the artifacts. The information retrieval approaches for 
traceability link detection and evolution rely on the assumption that the same concepts 
and terms are used to describe correlated artifacts. Both kinds of approaches do not take 
into account the historical information of software evolution to detect traceability links, 
as presented in Figure 1. 

 

Figure 1. Traceability detection techniques 

 On the other hand, the approaches based on data mining techniques usually 
search for concomitant changes in Software Configuration Management (SCM) systems 
to discover possible dependencies among software artifacts. SCM techniques are com-
monly used to control the evolution of software systems by providing versioning, via 
Version Control Systems (VCS), and support for activities related to change manage-
ment, via Change Control Systems (CCS).  

 The advantage of this kind of approach is that data mining techniques will rec-
ognize that two elements are always changed together even if there are no design rela-
tionships or similar terms between these two elements. For this reason, this kind of ap-
proach can possibly be used to detect bad design decisions.  

 The data mining technique named association rules (Agrawal and Srikant, 1994) 
searches for patterns that determine the dependency between two or more elements in-
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side a database. Table 1 shows how each data mining term can be related to a classical 
data mining domain (i.e., supermarket) and software evolution domain, used by our ap-
proach. 

Table 1. Data mining terminology 

Context Item Transaction Database Mining Result 

Supermarket Product Sale Purchase database Customer preference 

Software evolution UML model elements Change UML repository Change traces 

 In the classical usage context of data mining, all sales are analyzed to detect buy-
ing patterns among different customers. These patterns indicate which items are fre-
quently purchased together. In our approach, items are represented by UML model ele-
ments. Therefore, the mined database is a versioned UML repository that stores changes 
performed during the development and maintenance phases. In this context, change 
traces are defined as traceability links obtained from change information. Moreover, 
each database transaction is represented by a change implemented via one or more 
check-in operations. 

 The goal of this work is to detect UML model elements that were changed to-
gether in the past and will probably need to be changed together in the future, and to 
justify the detected UML model elements. Our approach fulfills the two main aspects 
discussed in this section: (1) the automatic detection of change traces among UML 
model elements (using the association rules technique), and (2) the externalization of the 
rationale that explains the existence of the change traces. It is worth to note that this 
work is not focused on applying data mining over a specific project, but providing an 
approach that automates this process and presenting some evaluation of this approach. 

 This paper is organized in five sections besides this introduction. Section 2 de-
scribes our approach for change traces detection via data mining techniques over ver-
sioned UML repositories. Section 3 shows a usage example of our approach, followed 
by a retrieval performance evaluation, presented in Section 4. Section 5 presents some 
related works. Finally, Section 6 concludes the paper with the contributions and limita-
tions of our approach, and presents some future works. 

2. Detecting change traces 

This section introduces our approach for change traces detection among UML model 
elements. This approach was implemented as a standalone tool and as a plug-in of an 
existing software development environment named Odyssey (Werner et al., 2003). Od-
yssey environment provides support for domain engineering and application engineering 
based on UML, among other notations, to describe domain models.  Our approach can 
support other XMI-based CASE tools via the implementation of additional plug-ins. 

 Our approach assumes that the project under analysis applies SCM as an ordi-
nary practice, with a CCS being used to control changes lifecycle and a VCS being used 
to version control UML model elements. Moreover, our approach assumes that both 
CCS and VCS work over an integrated SCM repository, which links change requests to 
the versions of UML model elements that were created to implement them. The current 
implementation of our approach uses a CCS named Odyssey-CCS (Lopes et al., 2006) 
to control changes lifecycle and a VCS named Odyssey-VCS (Oliveira et al., 2005) to 
version control UML model elements. Besides the current implementation, our approach 
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could be implemented over other CCSs and VCSs that fulfills the requirements de-
scribed in the previous paragraph. 

 Odyssey-CCS provides process and information customization, which allows 
configuration managers to model the SCM process and to define which information 
needs to be collected by each activity of the modeled SCM process. This definition is 
done via templates and fields creation. Each activity is associated to a set of templates, 
and each template is composed of a set of fields. For a given template and field, Odys-
sey-CCS is able to inform the value that was filled in during the execution of a specific 
SCM activity. 

 Odyssey-VCS has, as one of its benefits, the feature of flexible configuration 
item granularity. This feature allows the selection of the desired granularity of configu-
ration items for version control. For example, a given project can use broader elements 
as configuration items, such as packages, or narrowed elements, such as attributes or 
operations.  The configuration item granularity determines which elements will be ver-
sioned during the SCM process. For this reason, the granularity of the traced UML ele-
ments depends on the configuration of the Odyssey-VCS. 

 This section is organized into three sub-sections, which explain what change 
traces are, the rationale regarding their existence, and how the detection process shall 
occur. 

2.1. Change traces 

Throughout the lifecycle of a project, software artifacts are changed when new features 
are added, old ones are enhanced, or bugs are fixed. In the CCS, changes have a prede-
fined lifecycle, determined by the SCM activities (IEEE, 2005): (1) change request, (2) 
classification, (3) impact analysis, (4) evaluation, (5) implementation, (6) verification, 
and (7) integration.  During the implementation activity of this lifecycle, different soft-
ware artifacts are modified to perform the change. Each version of the modified artifacts 
is stored in the VCS. Along with the versioned artifacts, other valuable information is 
kept by the VCS, such as message, author, and date of each check-in operation per-
formed during the implementation of a change. 

 The integrated SCM repository allows the detection of which artifacts are af-
fected by a given change. Moreover, it offers an opportunity to gain some insight about 
change rationale (Hassan and Holt, 2003). As the number of change requests grows, it is 
possible to detect, in the intersection of each change, elements that are always changed 
together. Figure 2 shows the two types of change traces that can be obtained by our ap-
proach: intra-model and inter-model. 
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Figure 2. Change Traces 

 The intra-model change trace relates two or more elements in the same abstrac-
tion level. For example, it is possible to detect that some classes are always changed 
together. On the other hand, inter-model change trace relates two or more elements in 
different abstraction levels. For example, it is possible to detect that a use case and a 
class are often changed together.  

2.2. Change traces rationale 

While developers investigate change traces, they pose various questions to uncover the 
rationale of dependencies that were identified. Currently, most approaches that support 
change traces detection lack to provide the semantics of the change traces among soft-
ware artifacts (i.e. rationale). To minimize this problem, our approach provides a view 
of all detected change traces and the details about the rationale, the history, and the peo-
ple behind them. Such details are vital in assisting developers to understand the current 
state of the software system throughout the evolution process (Hassan and Holt, 2003).  

 This rationale follows an information structure widely used in the Computer 
Supported Cooperative Work field to contextualize and provide knowledge about ele-
ments (Gutwin and Greenberg, 2002). This information structure is known as 5W+1H 
and comprises the following pieces of information: who, when, where, why, what, and 
how (see Figure 3). 

 

Figure 3. Change traces rationale 

 The Who question is attributed to the person responsible for the implementation 
of the previous changes. This person is capable of answering questions about future im-
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plementations. The When question has the implementation date of the previous changes. 
This information gives an idea about how recent the previous implementations are. The 
Where question defines the artifacts impacted by the previous changes. The What ques-
tion explains what was done to implement the previous changes. The Why question is 
related to the reason of the previous changes. Finally, the How question is related to the 
strategies of implementation of the previous changes. 

 In practice, manually gathering such information is counterproductive and error 
prone (Hassan and Holt, 2003). On the other hand, SCM repositories store change de-
tails obtained from the SCM activities described in Section 2.1. These change details are 
automatically collected and organized by our approach to provide the required 5W+1H 
information, as shown in Table 2. 

 The automatic gathering of 5W+1H information depends on an integrated SCM 
repository. This integrated SCM repository is automatically analyzed to collect the ra-
tionale information shown in Figure 3. 

2.3. Change traces detection 

The process for change traces detection comprises two main phases: configuration and 
querying. The configuration phase is when the configuration manager sets the desired 
data mining metrics and informs the templates and fields of the CCS that should be used 
to collect rationale information, as mentioned in Table 2.  The querying phase occurs 
when developers want to know the change traces among UML model elements. Usually, 
a UML model element is selected and all change traces from this element are provided. 
This mechanism helps to answer questions such as “Developers that change a given ele-
ment also change which other elements?”, providing support for the developers’ future 
changes. 

Table 2. Rationale gathering 

Information Type Collection Place 

Who 
− Check-in information from VCS 

− Implementation activity from CCS 

When 
− Check-in information from VCS 

− Implementation activity from CCS 

How − Impact analysis from CCS 

Why − Change request activity from CCS 

What 
− Check-in information from VCS 

− Verification activity from CCS 

Where − Check-in information from VCS 

 It is important to notice that this approach does not intend to replace the work of 
software engineers. Since change traces are based on past experience, they do not consti-
tute absolute truth, but suggestions. To categorize the relevance of these suggestions, 
each change trace has a probabilistic interpretation based on the amount of evidence 
from the data that they are derived from.  

 This evidence can be represented by two data mining metrics: support and confi-
dence. According to Agrawal and Srikant (1994), the rule X � Y has support s if s% of 
transactions contain X U Y. Moreover, the rule X � Y holds with confidence c if c% of 
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transactions that contain X also contain Y. In our context, support quantifies the co-
occurrence of artifacts in implemented changes (joint probability) and confidence quan-
tifies the co-occurrence of artifacts in implemented changes given that other artifacts 
also occur (conditional probability). Typically, association rules techniques are inter-
ested in rules that satisfy both minimum support and confidence thresholds. 

 The process for mining change traces comprises two steps: (1) selection of 
changes that will be analyzed, and (2) mining the transactions, searching for rules that 
describe relationships between UML model elements.  To select changes to be analyzed, 
our approach verifies: (1.1) if the change is already concluded, (1.2) if the change has 
affected UML model elements older than the UML model element that is being queried 
by the developer, and (1.3) if the change affects the UML model element that is being 
queried by the developer.  After that, data mining is applied over the changes selected 
according to the above conditions. The data mining algorithm, based on Apriori algo-
rithm (Agrawal and Srikant, 1994), calculates the support and confidence metrics for 
each pair of artifacts that are included in the changes and, then, prunes the elements with 
support and confidence lower than the minimum thresholds. 

 For example, assume that our SCM repository has 3 completed changes: C1, 
affecting the UML model elements A and B; C2, affecting the UML model elements A, 
B, and C; and C3, affecting UML model elements A, C and D. On one hand, our ap-
proach could find that “developers that change B also change A” with 66% of support 
and 100% of confidence. This can be analyzed as follows: 2 out of 3 existing changes 
affected B and A together (which means 66% of support), and all (2 out of 2) changes 
that affected B also affected A (which means 100% of support). On the other hand, our 
approach could find that “developers that change B also change C” with 33% of support 
and 50% of confidence. This can be analyzed as follows: 1 out of 3 existing changes 
affected B and C together (which means 33% of support), and 1 out of 2 changes that 
affected B also affected C (which means 100% of support). With this very simple but 
illustrative example we can note that the first rule (“developers that change B also 
change A”) is more probable than the second one (“developers that change B also 
change C”). In real situations the number of changes grows considerably, and the dis-
tinction between probable rules and improbable rules also tend to increase. The mini-
mum threshold serves as a mechanism to avoid these improbable rules. 

 Our approach presents, together with the mined change traces, the 5W+1H in-
formation based on the CCS configuration (Table 2) and collected from previous 
changes in the integrated SCM repository that were used in the mining process. 
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3. Usage Example 

This usage example shows how the proposed approach works. The goal of this usage 
example is not to apply our approach over a real project (this is provided in the evalua-
tion section), but to illustrate how the approach works using a simple example.    

      

 

Figure 4. Use case, class, and component diagrams used in the example 

 The model used in this example has the following components and classes, 
among other model elements (Figure 4): the “Guest” component is implemented by the 
“Client” and the “Guest” classes; the “Hotel” component is implemented by the “Hotel” 
and the “Room” classes; the “Reservation” component is implemented by the “Reserva-
tion” class; and the “RoomType” component is implemented by the “RoomType” class. 
The change requests, which intend to provide some basic required features for the sys-
tem, are listed in Table 3. 

Table 3. Change requests 

Change Description 

#1 Verify, during the reservation, the availability of rooms for the desired period. 

#2 Show the room type, features, and price when the reservation is queried. 

#3 Search for rooms in other hotels in the same area if there is no room available. 

#4 Do not allow double reservations on the same room at the same period. 

#5 Make the room available if the reservation is canceled. 

#6 Show previously reserved hotels as preferred options. 

 During the implementation phase of the change lifecycle, some artifacts are cre-
ated or modified using Odyssey-VCS. Table 4 shows all created or modified artifacts to 
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accomplish the implementation of each change listed in Table 3. These artifacts are 
shown together with their final versions. It is worth to mention that the relationship 
among change requests and changed artifacts is possible due to the integrated SCM re-
pository. 

Table 4. Modified artifacts 

Change Modified Artifacts 

#1 

Use Cases: Make Reservation (v1).  
Classes: Client (v1), RoomType (v1), Room (v1), Hotel (v1), Reservation (v2), Guest (v1). 
Components: Reservation (v2), Hotel (v1), Guest (v1), RoomType (v1). 

#2 

Use Cases: Query Reservation (v3). 
Classes: RoomType (v3), Reservation (v3). 
Components: Reservation (v3), RoomType (v3). 

#3 

Use Cases: Make Reservation (v4). 
Classes: Hotel (v4), Reservation (v4). 
Components: Reservation (v4), Hotel (v4). 

#4 

Use Cases: Make Reservation (v5). 
Classes: Hotel (v5), Reservation (v5). 
Components: Reservation (v5), Hotel (v5). 

#5 

Use Cases: Cancel Reservation (v6). 
Classes: Hotel (v7), Reservation (v6). 
Components: Reservation (v6), Hotel (v7). 

#6 

Use Cases: Query Hotels (v8). 
Classes: Hotel (v8), Guest (v8). 
Components: Hotel (v8), Guest (v8). 

 As discussed before, our approach comprises two phases: configuration and que-
rying. At the configuration phase, it is possible to select threshold values for the support 
and confidence metrics and to define the 5W+1H information gathering with templates 
and fields of Odyssey-CCS, as shown in Figure 5. 

 Support may be defined in a continuous domain with minimum and maximum 
boundaries equal to 0 and 1 (i.e. 0% and 100%), respectively, or in absolute values. 
Confidence is always defined in a continuous domain from 0% to 100%. Although high 
threshold values of support and confidence tend to detect fewer change traces, they also 
tend to be more accurate. On the other hand, low threshold values of support and confi-
dence provide a huge amount of change traces, with many false positives.  
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Figure 5.  Support and confidence (a), and rationale gathering (b) configuration 

 Our experience shows that support and confidence threshold should start with 
high values for new projects, and have their values decreased to a stationary position. In 
a small database, each element has a huge influence in the support and confidence val-
ues, increasing the number of false positives change traces. On the other hand, in a large 
database, an individual element has almost no influence in the value of support and con-
fidence, allowing the reduction of support and confidence thresholds. 

 In this usage example, the data mining metrics have support and confidence thre-
shold values set to 50% (or 3, in absolute value) and 60%, respectively. The meaning of 
these metrics is that the queried artifact has been changed together with the traced arti-
facts in at least 50% of all existing changes, and the traced artifacts have been changed 
in at least 60% of the changes that affect the queried artifact.  

 Assuming that our tool was properly configured, the next phase consists of que-
rying change traces for a given queried artifact. In this example, the queried artifact is 
the “Reservation” class (see Figure 6). 

 Besides the change trace to the model itself, which is always modified, the “Res-
ervation” component is the most impacted artifact, with 100% of confidence. Moreover, 
other change traces are detected for the “Hotel” class and the “Hotel” component, with 
80% of confidence. Change traces to other artifacts are also detected. However, the sup-
port or confidence is lower than 50% and 60%, respectively. 

 At a first glance, these change traces can be expected by the developer. How-
ever, in a real usage scenario, the number of changes implemented in the system is 
greater than 6, as presented in this simple example to clarify the mechanisms behind our 
approach. With a huge amount of UML model elements being changed, our approach 
becomes more relevant, detecting change traces that would hardly be detected by man-
ual approaches. It is worth to note that the listed change traces are in descending order 
regarding support. This strategy provides to the user the more relevant change traces 
first, but the remaining relevant change traces can be accessed via scrolling. 

(b) 

(a) 
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Figure 6.  Detected change traces 

   In this example, change traces show which artifacts have been changed together 
with the "Reservation" class. Based on this information, the developer can decide if the 
mined artifacts will be changed together or not. The rationale provided together with the 
change traces is an important instrument to help in this decision.  

 By analyzing this simple usage example we can verify that the approach can con-
tribute to the impact analysis activity, avoiding under-prediction of the scope of a 
change and helping to identify critical side-effects. Also, it can indicate anomalies in the 
design structure which may be subject to restructuring. For example, if the “Reserva-
tion”  class of the “Reservation” component is always changed together with a class of 
the “Hotel” component, then the architecture design probably presents inconsistencies, 
allowing high coupling between these two classes.  

4. Evaluation 

In this section we present an evaluation of the retrieval performance of our approach. 
The retrieval performance of our approach is objectively evaluated via some traditional 
information retrieval measures, which indicate how accurate the approach is in terms of 
how many correct change traces are retrieved and how many incorrect change traces are 
retrieved (Settimi et al., 2004). A good approach is supposed to retrieve a high number 
of correct change traces without adding undesired noise (incorrect change traces) to the 
results. 

 This evaluation consists on a retrospective study over an existing system, named 
Odyssey (Werner et al., 2003). Odyssey is a medium size software development envi-
ronment under development at COPPE/UFRJ since 1997 (around 60,000 NCLOCs). 
However, Odyssey does not have complete versions of UML models available. For this 
reason, we decided to reverse engineer the source-code to reconstruct the UML model of 
each source-code configuration. This allows a fair analysis over the evolution of the 
Odyssey system in a short-term period. Another important advantage of this strategy 
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regards biases. The study was not even designed during Odyssey development. For this 
reason, the study results cannot be biased by actions taken at that time. 

 To perform this study, we gathered Odyssey versioning data produced during the 
period of November 26, 2003 until March 1, 2005, totalizing more than 15 months of 
development and containing 264 check-ins. This data was reorganized, reverse engi-
neered, and divided into two sets: training set and evaluation set. The training set is 
composed of 160 check-ins dating from November 26, 2003 until September 5, 2004, 
totalizing more than 9 months of development. The evaluation set is composed of 104 
check-ins dating from September 8, 2004 until March 1, 2005, totalizing around 6 
months of development. 

 The 160 source-code check-ins originally in the training set, and the 104 source-
code check-ins originally in the evaluation set were converted after the reverse 
engineering step into 38 and 34 check-ins of UML models, respectively.  This situation 
occurs because some source-code check-ins do not represent changes in UML models. 
For example, when a method is changed, the changed code may only affect already 
imported classes, not creating new dependencies in the UML model. Due to that, a new 
configuration (check-in) of UML model is not generated. In our case, a UML model 
change occurred for each 3.66 changes in source-code. This means that there is less 
historical information available during a given period of time when dealing with 
models. As a consequence, only changes that really affect the high-level structure of the 
system are considered. This may explain the differences in precision and recall of our 
approach if compared to existing file-based approaches. Moreover, our approach may be 
used during analysis and design phases, where no source-code is available yet. 

 Some restrictions were applied to the Odyssey historical data before performing 
the evaluation to reduce possible confounding factors. First, only UML classes were 
processed. Classes are composed by attributes and operations. When an operation is 
modified, the class that owns the operation is also changed. This composition rule 
would improperly increase the performance of our approach. For instance, it is useless 
to know that “class ‘C’ is changed when attribute ‘A’ of class ‘C’ is changed” (that is 
obvious!). An analogous situation may occur regarding packages and classes. For this 
reason, we decided to avoid composition structures in our evaluation and only focused 
on elements of the same type: classes. However, our approach is not restricted to this 
element type. Finally, only model elements that were changed at least once in the train-
ing set and in the evaluation set were processed. 

 After this preparation phase, our tool was executed over the training set for each 
model element. The detected change traces represent predictions provided by our tool on 
September 5, 2004. These predictions were compared to real changes performed in the 
evaluation set, aiming to know if the predictions really occurred (somewhere in between 
September 8, 2004 and March 1, 2005).  

 The results are presented in the following in terms of traditional information 
retrieval measures (Baeza-Yates and Ribeiro-Neto, 1999), such as precision, recall, R-
precision and harmonic mean. Precision indicates how much our predictions were cor-
rect and recall indicates how much correct change traces were predicted. The remaining 
measures provide the notion of precision after a fixed number of change traces are re-
trieved (R-precision) and the best compromise between recall and precision for given 
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values of support and confidence (harmonic mean). The evaluation was performed ac-
cording to the “Retrieval Performance Evaluation” procedures described by Baeza-Yates 
and Ribeiro-Neto (1999).  

 Initially, we performed a precision x recall analysis of the retrieved change trac-
es. In our context, the precision measure consists in the fraction of retrieved change 
traces which is relevant. On the other hand, the recall measure consists in the fraction of 
relevant change traces which has been retrieved: 

Retrieved

RetrievedRelevant
Precision

∩

=  
Relevant

RetrievedRelevant
Recall

∩

=  

 Our tool was queried for each existing model element in the training set. The 
detected change traces were ranked by higher support and confidence  (more relevant 
first). After that, the precision and recall were calculated for each relevant change trace, 
starting from the top of the ranked result. A change trace is considered relevant if the 
traced model element is also modified together with the queried model element in the 
evaluation set. 

 Subsequently, an interpolation procedure was applied to determine precision 
values for each of the 11 standard recall levels, which goes from 0 up to 1, stepped by 
0.1. The interpolation function establishes the precision at a given recall level as the 
maximum value of any available precision in between the current and the next recall 
level, inclusive.  Finally, the precision and recall values already calculated for each sin-
gle query were combined according to an average function. This function consists in 
establishing an average precision value for each recall level: 
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 The results of precision x recall analysis are presented in Figure 7.a. This curve 
shows that a precision of roughly 65% is obtained at 10% recall. In other words, 2 in 
every 3 suggestions of our approach were correct to detect the first 10% relevant change 
traces. Moreover, a precision around 33% is obtained at 50% recall. Finally, a precision 
about 4% is obtained at 100% recall. These results are impressive if compared to exist-
ing results regarding file-based artifacts. For instance, the average results regarding the 
Eclipse IDE are precision around 30% (Ying et al., 2004) or 26% (Zimmermann et al., 
2004) at 15% recall. In our case, we reached precision around 60% at 15% recall. Al-
though promising, it is important to use discretion when directly comparing these num-
bers. Odyssey and Eclipse IDE are different systems, with different complexity and dif-
ferent development processes. 

 Besides the importance of average precision x recall curves as a standard evalua-
tion strategy, it is also desired to visualize the results as a single numerical value. The R-
precision measure computes the precision at the Rth position of the ranked list of re-
trieved change traces, where R is the total number of relevant change traces for the cur-
rent query. For example, if an element has a total of 5 relevant change traces but only 1 
of these is detected among the first 5 retrieved change traces, then R-precision = 20%. 
After calculating R-precision for each individual query, a histogram was drawn to de-
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scribe the number of queries that belong to a specific R-precision range. This histogram, 
depicted in Figure 7.b, shows that five queries could find half of the relevant change 
traces among the first R retrieved change traces. 
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Figure 7. (a) Precision x recall curve and (b) R-Precision histogram 

 Finally, we would like to know the best threshold values of support and confi-
dence that produce optimal combination of precision and recall in our context. The har-
monic mean measure can help in this task by attempting to provide the best compromise 
between precision and recall for given values of support and confidence: 
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=
 

 The average harmonic mean of precision and recall is plotted in Figure 8 for 
specific values of support and confidence. This shows that maximum harmonic mean 
values, indicating the best compromise of precision and recall, are obtained for low sup-
port and confidence values. This kind of analysis should be performed to any target sys-
tem to help configuring the support and confidence values in the tool. 
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Figure 8. Harmonic mean of precision and recall in terms of support and confi-
dence 

 The summary of statistics discussed in this section is presented in Error! Refer-

ence source not found. for each query at minimum support = 1 (any confidence). It 
shows the query number, the precision, recall, R-precision, and harmonic mean of preci-
sion and recall metrics. 

(b) (a) 
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Table 5. Statistics summary 

Query # Relevant Retrieved Rel. ∩ Ret. Precision Recall R-Precision H-Mean 

1 3 3 0 0% 0% 0% 0% 

2 12 5 3 60% 25% 25% 35% 

3 10 7 2 29% 20% 20% 24% 

4 6 3 3 100% 50% 50% 67% 

5 6 3 3 100% 50% 50% 67% 

6 5 3 2 67% 40% 40% 50% 

7 2 3 2 67% 100% 50% 80% 

8 11 0 0 0% 0% 0% 0% 

9 11 2 2 100% 18% 18% 31% 

10 4 2 2 100% 50% 50% 67% 

11 4 2 2 100% 50% 50% 67% 

12 12 4 3 75% 25% 25% 38% 

13 3 12 1 8% 33% 0% 13% 

14 0 19 0 0% 0% 0% 0% 

15 9 19 3 16% 33% 11% 21% 

5. Related Work 

In the last decade, researchers have experienced the use of SCM repositories to under-
stand software evolution. Gall et al. (1997) use release data to detect logical coupling 
between modules. Ball et al. (1997) have performed some cluster analysis of C++ 
classes stored in SCM repositories.  

 Other works (Shirabad et al., 2001, Zimmermann et al., 2004, Eick et al., 2001) 
also perform historical analysis over SCM repositories. Shirabad et al. (2001) use induc-
tive learning to find out different concepts of relevance among logically coupled files. 
Eick et al. (2001) argue that code decay is related to the difficulty to perform changes. 
For this reason, they analyze change history applying decay indexes to identify risk fac-
tors. Draheim et al. (2003) argue that product quality is dependent of process quality. 
Due to that, the development process activities are analyzed and some metrics are ap-
plied over the VCS. Finally, Zimmermann et al. (2004) have evidenced that mining 
SCM repositories can be useful for predicting likely further changes, detecting hidden 
dependencies, and preventing incomplete changes. 

  However, these related researches work over file-based SCM repositories. For 
this reason, they lack support for change traces detection of fine-grained UML model 
elements and cannot be applied on early phases of the software development lifecycle. 
Moreover, they do not provide change traces rationale, automatically gathered from an 
integrated SCM repository. This change traces rationale is the main mechanism for help-
ing developers to understand the reason of existence of the change traces. 

6. Conclusion 

This paper presented an approach for the detection of change traces among UML model 
elements. This approach was implemented by a tool available at 
http://www.cos.ufrj.br/~murta/Odyssey-SCM. Some contributions of our approach are: 
(1) automatic change traces detection; (2) use of UML model elements as mining units, 
leveraging the state of the art to fine-grained analysis and design artifacts; (3) descrip-
tion of change traces rationale using 5W+1H structure, automatically collected from an 
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integrated SCM repository. It is worth noting that to the best of our knowledge there are 
not approaches that apply data mining over UML model elements, nor automatically 
gather change traces rationale.  

 Some of our future work includes the extension of the proposed approach to 
other MOF-based meta-models, besides UML, and the summarization of the reasoning 
information. Another future works is to consider the source-code changes together with 
the architectural changes during the change traces detection phase. Moreover, to apply, 
together with data mining techniques, information retrieval and syntactic analysis tech-
niques during the change traces detection phase.  

 Finally, we intend to perform future evaluations to verify if this approach is scal-
able and other case studies to verify how the benefits and limitations of our approach 
affect the maintenance tasks in a real usage scenario. 
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