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Resumo. Embora seja de alto custo, a atividade de teste é de fundamental im-
portância no processo de desenvolvimento de software. Técnicas e ferramentas
são essenciais para a melhoria da qualidade e da produtividade na atividade de
teste. A técnica de teste estrutural usa estruturas de fluxo de controle e de dados
para derivar requisitos de testes. Buscando exercitar tais requisitos o testador
supostamente fornece casos de teste que melhoram a qualidade do software. O
teste estrutural requer a execução de várias atividades que exigem a análise de
código que, em geral, é realizada no código fonte do produto em teste. Com
o advento da linguagem Java tornou-se usual a realização da análise direta-
mente no código objeto (bytecode) o que traz algumas vantagens. Neste artigo,
é discutido como usar as características da análise de bytecode Java e como
estendê-la para a implementação de critérios de teste estruturais para dois do-
mínios específicos: programas orientados a aspectos e aplicações de banco de
dados.

Abstract. Software testing is an important and expensive activity of the software
development process. Techniques and tools are essential to improve test quality
and productivity. Structural testing is a technique that uses characteristics such
as control-flow and data-flow structures to derive testing requirements. By ex-
ercising such testing requirements the tester supposedly provides test cases that
improve the software quality. Structural testing requires several activities that
make use of code analysis, in general performed on the program source code.
With the advent of Java it has become usual to perform such analysis directly
on the bytecode instead of the source code, with a number of advantages. In
this paper we discuss how to use the characteristics of Java bytecode analysis
and how to extend it to implement structural criteria for two specific domains:
aspect oriented programs and database applications.

∗This project is supported by the Brazilian Funding Agencies – CNPq, FAPESP and Capes.
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1. Introduction

Software testing is one of the most important validation and verification activities, com-
plementing other techniques as technical revision and formal methods. A critical factor in
the testing process is the quality of the test set used to execute the software. Its selection
should be done based on testing requirements that establish which aspects of the software
must be exercised.

Structural testing is a technique that determines testing requirements from an im-
plementation code. Requirements can be statements, branches or data flow associations,
for instance. The application of structural criteria requires program analysis in order to
abstract the program structure and to compute testing requirements. In general, structural
testing uses a program representation known as def-use graph that abstracts the flow of
control and variable definition and use.

Several approaches have explored the use of structural testing criteria and a solid
theoretical basis has been built [Boujarwah et al. 2000, Herman 1976, Maldonado 1991,
Rapps and Weyuker 1985, Zhao 2000]. Some of them explore the use of structural criteria
in specific application domains. In [Spoto et al. 2000] it is proposed a technique to iden-
tify definition and use of persistent variables (tables) in relational database applications
and defined a set of structural criteria for unit and integration testing of such applications.
In [Lemos et al. 2007] it is defined structural criteria to deal with specific characteristics
of aspect oriented programs.

Traditionally, static analysis and testing requirement computation are performed
on the source code. More recently, the use of object code (bytecode) analysis has be-
come popular, since bytecode analysis can, in some cases, present advantages over source
code analysis. For example, it allows the analysis and use of structural coverage in-
formation of third part components when the source code is not available and allows
to test programs with code mobility features in which source code is not available as
well [Delamaro and Vincenzi 2003]. In addition, it is language independent, i.e., it can be
used to test any program, in any source language.

A number of papers can be found in the literature that discuss static bytecode anal-
ysis [Boujarwah et al. 2000, Haddox et al. 2002, Zhao 2000]. In [Vincenzi et al. 2005]
the authors discuss its use in the implementation of a tool that supports control and
dataflow testing on Java programs and components.

In this paper we present the techniques used to analyze Java bytecode in order to
implement structural testing support in the two mentioned domains: relational database
applications and aspect oriented programs. The main operational characteristics of our
testing tool are shown in Section 2. Section 3 discusses the implementation of the control
and data flow models used in the tool, based on bytecode analysis. Sections 4 and 5
discuss the fundamentals and the static analysis techniques used to support structural
testing to aspect-oriented and database applications, respectively. Section 6 presents the
final remarks.

2. The JaBUTi testing tool

The use of structural criteria for software testing requires the execution of a few tasks like
static analysis of the program under test, computation of the required elements, program
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instrumentation, execution of the instrumented program and coverage analysis. Obvi-
ously, the complexity of those tasks prevents their application manually, requiring sup-
porting tools to execute them automatically.

In theJaBUTi [Vincenzi et al. 2005] architecture two distinct parts can be iden-
tified. One of them is responsible to perform the static analysis of the program under
test, the generation of the required structural elements and the test case coverage analysis.
The other dynamic part takes care of the program instrumentation, test case execution and
trace data collection.

The first step onJaBUTi utilization is the creation of a hierarchical abstraction of
the program being tested. It is known that a Java program is composed by a set of classes
organized in a tree hierarchy, having the classjava.lang.Object as its root. The
model used byJaBUTi delimits the program to a restrict set of classes. From a “base
class” – the one containing the program entry point – the tool computes a set of needed
classes that excludes: 1) the Java API; 2) classes which the class file is not found in the
class path; and 3) packages which the tester decides to ignore.

InsideJaBUTi, such a model is used in the creation of a testing project. The tester
chooses the base class and theclasspath to locate the rest of the classes and the tool
computes and exhibits the set of required classes to execute the program. The tool shows
the packages and classes that compose the program and allows the tester to select those
which should really be tested and those which should be ignored i.e., excluded from the
program structure. In addition, the tester defines a project file name to store the project
data.

Once the testing project is created, the tester has eight structural criteria to work
with. These criteria are summarized in Table 1. More details can be found else-
where [Vincenzi et al. 2005]. By selecting a criterion, the tester visualizes information
about the program, concerning the selected criterion. For example, using criterionall-
nodesei one can see the source code (if available), the bytecode or the def-use graph. In
either case, the tester is provided with hints about which testing requirement should be
covered to achieve higher coverage.

JaBUTi introduces a control flow graph with two different types of edges. One
represents the normal control flow between blocks of commands and the other represents
the flow created by the handling of an exception, inside a given method. Using these con-
cepts, the criteria require normal test cases, in which no abnormal condition or exception
occurs and test cases in which such conditions occur.

Figure 1 shows the source code of a program with information aboutall-nodesei.
The colored pieces of code (in gray scale in this article) indicate the requirements (in
this case, statements) that have not yet been covered. Each color is an indicative of the
number of nodes that would be covered when that part of the code is executed. With this
information, the tester can prioritize the code with higher weight.

The “native” form to view a program inJaBUTi is its bytecode, since the analysis
is totally performed at the bytecode level, not at source code level. The same kind of hints
about requirement coverage is shown when the tester chooses the source code view. In
fact, that information is computed at bytecode level and mapped back to source code level
using the bytecode-to-source code mapping, present in the class file.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

327



Table 1. Testing criteria implemented in JaBUTi.
Name Meaning Explanation
all-nodesei all nodes, independent of excep-

tions
requires the execution of each node in the
graph that can be executed without occur-
ring an exception

all-edgesei all edges, independent of excep-
tions

requires the execution of each edge in the
graph that can be executed without occur-
ring an exception

all-usesei all uses, independent of excep-
tions

requires the coverage of each def-use pair
that can be executed without occurring an
exception

all-pot-usesei all potential-uses, independent
of exceptions

requires the coverage of each def-
potential-use [Maldonado 1991] pair that
can be executed without occurring an
exception

all-nodesed

all-edgesed

all-usesed

all-pot-usesed

same criteria, dependent of ex-
ceptions

require, respectively, the coverage of
nodes, edges, def-use pairs and, the cov-
erage of nodes, edges, def-use pairs and
def-potential-use pairs that only can be ex-
ecuted with the occurrence of an exception

Figure 1. Source code visualization, with information about all-nodesei.

The same information is also provided in the graph visualization. Figure 2 shows
how the nodes are displayed in different colors, representing the weight in relation to
the total method coverage. Node 114 corresponds to a handler for exceptions that may
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be raised in nodes 24 or 57. Then, the outgoing edges from those nodes to node 114
represent flow of control that happens when an exception occurs and is treated by the
exception handler. They are drawn as dashed arrows in the graph visualization. Node
114 is not colored because it is not part of the criterion being displayed, i.e.,all-nodesei.
Placing the mouse pointer on a graph node, additional information is provided to the tester
as, for instance, the set of variables used or defined in the node.

Figure 2. Def-use graph visualization, with information about all-nodesei.

The tester can manage testing requirements, for example, marking a requirement
as infeasible. A testing requirement can be covered by the execution of a test case. This is
done “outside” the tool, by a test driver that instruments the program under test and then
starts the instrumented program. Ended the execution of the test case, the tool collects
the trace data from the trace file written by the instrumented program and updates the
information about coverage of each criterion.

TheJaBUTi tool has a large variety of reports that allow the tester to check testing
requirement coverage. For example, the tester can create a summary of the coverage by
criterion, by class or by method. It can also createHTML files with static or dynamic
data obtained until that point in the project. In addition to the testing criteria, the tool
implements a slicing tool to help the tester to locate possible existing defects in the code
and a set of static complexity metrics.

Next section presents a few considerations about the implementation of the tool. In
particular, the computation of the control-flow graph and the definition/use of information
associated to the nodes of the graph are discussed.

3. Implementation aspects

All the analysis performed by theJaBUTi tool is done directly at the bytecode. A third
part library named BCEL [Dahm 2001] is used to manipulate the bytecode. More pre-
cisely,JaBUTi does not implement low-level structures to represent classes and bytecode
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or to access class files. It constructs, on top of the resources furnished by BCEL, its own
abstractions, like a program hierarchy and a method control-flow graph and implements
its own functionality, as def-use computation.

This section discuss an important aspect in the analysis performed byJaBUTi: the
computation of the control and data flow models extracted from the bytecode.JaBUTi
packagegraph contains the classes to represent a method in the form of a graph and to
associate data flow information to it.

ClassGraph is the base class for constructing and manipulating graphs inside
JaBUTi. Associated to it, there is aGraphNode class, which represents a vertex (node)
of the graph. EachGraphNode object stores a list of successors and predecessors. The
Graph class stores general information about the graph, for instance, the initial node and
the list of final nodes.

ClassesGraph endGraphNode implement the basic functionality to graph con-
struction and manipulation, such as node and edge insertion and deletion, computation of
strongly connected components, computation of the depth-first tree, computation of the
dominator nodes, etc.

The analysis of the program code is conducted at the method level. Initially, each
method is parsed, extracting from it a graph representation calledinstruction graph (IG).
In this graph, each node corresponds to a single bytecode instruction.

An IG is represented by aInstructionGraph object, a subclass ofGraph.
One important factor in the construction of theIG is exception handling. In the bytecode,
exception handling is defined by a table that relates exception handlers to contiguous
blocks of code. In the implementation ofJaBUTi the list of successors and predecessors
are split in two, in order to represent the two different types of control-flow. Thus, each
node in the graph has a list of successors (predecessors) independent of exceptions and a
list of successors (predecessors) dependent of exceptions. This characteristic is important
to the definition of the structural criteria described in Table 1.

A second characteristic of the Java bytecode that influences the construction of the
IG is the use of subroutines. The JVM has instructionsJSRandRET that allow pieces of
code inside the method to be used as subroutines, being called from several points of the
same method. This feature is commonly used to translatefinally blocks. One such
example is show in Figure 3.

The solution adopted to deal with subroutines was to expand each subroutine call.
In this way, each subroutine call is represented by an independent set of nodes that refer
to the same instruction in the bytecode. Figure 4 gives the graph for the code in Figure 3,
according to the adopted model. The exception edges are not shown in the figure.

After the IG is built, it is processed with the objective of collecting information
about the state of the JVM, i.e., the vector of local variables and the operand stack for
each node of the graph. For that, each node of theIG stores the following information:

• The set of possible “configurations” that the operand stack can have when the
instruction in the node is executed. A configuration is an array in which each
element describes the type of the value in the stack, the instruction that pushed
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the value into the stack and the type of definition/use the instruction does on that
stack position;

void finallyExample([Ljava/lang/String;)V
0: iconst_0
1: istore_2
2: new <java.io.FileInputStream> (2)
5: dup
6: aload_1
7: iconst_0
8: aaload
9: invokespecial java.io.FileInputStream.<init>

(Ljava/lang/String;)V (3)
12: astore_3
13: jsr #36
16: goto #42
19: astore_3
20: iconst_1
21: istore_2
22: jsr #36
25: goto #42
28: astore %4
30: jsr #36
33: aload %4
35: athrow
36: astore %5
38: iconst_2
39: istore_2
40: ret %5
42: iinc %2 1
45: return

Exception table:
from to target type

2 13 19 <Class java.io.IOException>
2 16 28 <Class all>

19 25 28 <Class all>
28 33 28 <Class all>

Figure 3. Code that uses subroutine call.
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Figure 4. IG for a method with subroutine.
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• The set of possible “configurations” that the local variable vector can have when
the instruction in the node is executed. A configuration is an array in which each
element represents the type of an element in the local variable array.

For example, the following piece of bytecode would generate the set of configu-
rations described in Figure 5.

ILOAD_1
JNE L0
ALOAD_2
GOTO L1

L0: GETSTATIC ClassA.f1
L1: LDC 0

PUTFIELD ClassB.f2

With that information, and knowing the semantic of the instruction in a given
node, it is possible to compute data-flow events in the node. For some nodes, it is a trivial
computation that depends only on the instruction semantics. For example:

ILOAD_1: use of local variable #1 (represented asL@1);
JNE: no use or definition;
ALOAD_2: use of local variable #2 (represented asL@2);
GOTO: no use or definition;
GETSTATIC: use of class variableClassA.f1 (represented asS@ClassA.f1);
LDC: no use or definition.

0

2

1

ClassB

int

stack locals

ILOAD_1

GETSTATIC
ALOAD_2

int
L@1 0

2

1

ClassB

int

stack locals

JNE

L@2 0

2

1

ClassB

int

stack locals

ClassB

0

2

1

ClassB

int

stack locals

ClassB
S@ClassA.f1

LDC

0

2

1

ClassB

int

stack locals

ClassB

int

L@2

0

2

1

ClassB

int

stack locals

ClassB
S@ClassA.f1

int
−−

−−

PUTFIELD

L@2 0

2

1

ClassB

int

stack locals

ClassB

GOTO

Figure 5. Example of stack and local variable configurations associated to the IG
nodes.

Other nodes may require the use of the stack configurations of the node. It is
the case of instructionPUTFIELD in Figure 5. For such an instruction there should be
considered the definition of the fieldf2 in the object whose reference is stored in the

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

332



top of the stack. Since two configurations exist in that node, two definitions should be
associated to that node:L@2.f2 (field f2 of object whose reference is in local variable
#2) andS@ClassA.f1.f2 (field f2 of object whose reference is in static variable
ClassA.f1).

The IG is too complex to be used directly by the tester. A trivial method can
originate a graph with dozens of nodes. This is too much for a model that supposedly
should be an abstraction of the method. For this reason, theJaBUTi tool exhibits a
method in the form of a block graph, i.e., each node represents an indivisible block of
instructions. Such a graph, called def-use graph (DUG) if obtained from theIG by the
application of a reduction algorithm that joins severalIG nodes into a singleDUG node.
The object created by such an algorithm is aCFG, a subclass ofGraph. It stores control
and data flow information, preserving the characteristics obtained from theIG concerning
exception handling and subroutine flows. Figure 6 shows theIG of Figure 4 reduced to
its DUG form.

Labels are assigned to the nodes of theDUG. They are, in general, the offset of
the first instruction in the block. The exceptions are the nodes inside a subroutine. Each
call to the subroutine replicates the instructions in theIG and consequently, the nodes in
theDUG. Such nodes cannot have the same label. Thus, the rules for labeling the nodes
are more precisely described as: 1) a node that is not part of a subroutine is labeled with
the offset of its first instruction; 2) a node in a subroutine is labeled with the label of the
node that has theJSRassociated to the subroutine call followed by a “.”, followed by the
offset of its first instruction. In Figure 6 the three calls to subroutine at offset 36 gave
origin to the nodes 13.36, 19.36, and 28.36.

42

33

13.36 19.36

28.36

0

2

28

13 19

Figure 6. Example of a DUG.
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4. Testing aspect-oriented programs

Most programming languages do not support the clear separation of some types of re-
quirements that tend to be spread throughout (crosscut) several modules of implementa-
tion (for instance the implementation of logging). Aspect-oriented programming (AOP)
supports the modularization of such concerns by a mechanism that can add behavior to
selected elements of the programming language semantics (thejoin points), and thus iso-
lating implementations that would otherwise be spread. In a number of presently available
AOP languages these join points constitute regions in the dynamic control flow of an ap-
plication. A join point can, for instance, represent a call to a method, the execution of a
method, the setting of a field or the handling of an exception.

Adviceis the behavior implemented in a block of code (similar to a method) that
can be executed before, after or instead of (around) a join point. Also, there arepointcuts
which are used to select sets of join points in a program where advice will be added to.
Aspects are units that combine pieces of advice, pointcuts and other basic elements. After
classes and aspects are coded, a process namedweavingmust take place together with the
compilation so that aspect and non-aspect units are combined into an executable program.

One of the most prominent AOP languages is AspectJ, an extension of Java to sup-
port AOP. The basic new constructs are the aspect itself; before, after and around advice,
that are used to define crosscutting behavior at the join points; and the pointcuts which
are used to define sets of join points in the program. In AspectJ, aspects are units that
combine: join point specifications, pieces of advice, methods, fields and inner classes.
Also, aspects can declare members (fields and methods) to be owned by other types, what
is called inter-type declaration. Latest versions of AspectJ also support declarations of
warnings and errors that arise when join points are identified at compile time or reached
at runtime, respectively [The AspectJ Team 2006]. Before, after and around advice are
method-like constructs that can be executed before, after and in place of the join points,
respectively. These constructs can also pick context information from the join points that
caused them to execute. Figure 7 lists part of the source code of an aspect-oriented pro-
gram that simulates a telephony system. TheBilling aspect implements the billing
concern and declares a payer to each connection and also makes sure that local, long
distance and mobile calls are charged accordingly. The rest of the system models connec-
tions, calls, customers and other elements involved in a telephony system.

With respect to the implementation of AspectJ, its advice weaver statically trans-
forms the program so that at runtime it behaves according to the language semantics. The
compiler accepts both AspectJ bytecode and source code and produces pure Java byte-
code as a result. The main idea is to compile the aspect and advice declarations into
standard Java classes and methods (at bytecode level). Parameters of the pieces of advice
become parameters of these new methods (with some special treatment when reflexive
information is needed) [Hilsdale and Hugunin 2004]. These methods have special names
to be identified as pieces of advice in the bytecode (they start with ‘ajc$’). In order to
coordinate aspects and non-aspects, the code of the system is instrumented and calls to
the “advice-methods” are inserted considering that certain regions of bytecode represent
possible join points (also calledstatic shadows[Hilsdale and Hugunin 2004]).

With the AspectJ implementation strategy one can identify the places where pieces
of advice are adding behavior in the bytecode resulted from the compilation/weaving pro-
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cess. That is, every call made to an advice-method found in the bytecode represents an
execution of the corresponding advice of some aspect in the affected join point. Figure 8
shows part of the resulting bytecode of the constructor of theCall class. Advice execu-
tions are identified by calls to methods starting withajc$adviceType$ generated by
the AspectJ compiler.

public class Call {
private Customer caller, receiver;
private Vector connections = new Vector();

public Call(Customer caller, Customer receiver, boolean iM) {
this.caller = caller;
this.receiver = receiver;
Connection c;
if (receiver.localTo(caller)) {
c = new Local(caller, receiver, iM);

} else {
c = new LongDistance(caller, receiver, iM);

}
connections.addElement(c);

}
...

}
public aspect Billing {

declare precedence: Billing, Timing;
...
after(Customer cust) returning

(Connection conn): args(cust, ..)
&& call(Connection+.new(..))

{ conn.payer = cust; }
...

}

Figure 7. Part of the example of an AO program written in AspectJ.

In order to detect the places where advice runs, only the source code is not suffi-
cient without analyzing the whole system, because before the compilation/weaving pro-
cesses there are no explicit references to the join points identified by aspects. Therefore,
together with the fact that the AspectJ compiler produces pure Java bytecode,JaBUTi
presents itself as a suitable tool to be extended in order to correctly represent control/data
flow of aspect-oriented programs implemented with AspectJ. Moreover, extra aspect-
oriented testing criteria can also be defined based on such extended control/data flow
representation, to exercise the special aspect-oriented elements.

The AODU (aspect-oriented definition-use) graph is an extension of theDUG to
represent the unit control and data flow of the woven methods, pieces of advice and reg-
ular methods of an AspectJ program. The graph was extended with dashed nodes to
represent advice enhancements (crosscutting nodes[Lemos et al. 2007]) with additional
information about the type of advice that affects that point, and the name of the aspect it
belongs to (for instance≪before-AnAspect≫ corresponds to a before advice of the
AnAspect aspect). These nodes are identified when the block of bytecode which it rep-
resents contains a call to an advice-method. Figure 9 shows the AODU of the constructor
of theCall woven class previously presented, based on its bytecode.

Based on the AODU, three aspect-oriented criteria were defined: all-crosscutting-
nodes, all-crosscutting-edges and all-crosscutting-uses. These criteria can give an idea of
how many of the advice executions have been exercised by the test cases, and by which
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ways (with respect to the edges that start or end in crosscutting nodes or def-use pairs
which uses are in crosscutting nodes) [Lemos et al. 2007].

0 aload_0
1 invokespecial #15 <Method Object()>
4 aload_0

...

69 invokevirtual #110 <Method void
ajc$afterReturning$telecom_Billing$1$8a338795(
telecom.Customer, telecom.Customer,
boolean, telecom.Connection)>

72 nop
73 astore 4
75 goto 120
78 aload_1
79 aload_2
80 iload_3
81 istore 9
83 astore 10
85 astore 11
87 new #36 <Class telecom.LongDistance>
90 dup

...

112 aload 12
114 invokevirtual #110 <Method void

ajc$afterReturning$telecom_Billing$1$8a338795(
telecom.Customer, telecom.Customer,
boolean, telecom.Connection)>

117 nop
118 ...

Figure 8. Part of the bytecode of the Call class constructor.

0

4

33

<<afterReturning-telecom.Billing>>

72

78

<<afterReturning-telecom.Billing>>

117

120

Figure 9. AODU of the Call class constructor.

In order to implement the AODU graph, theJaBUTi graph package (see Sec-
tion 3) was extended. In particular a class namedCFGCCNode that extends theCFGNode
class was created to represent the crosscutting nodes with extra information about the type
of advice and the name of the aspect it belongs to. These nodes are identified analyzing
each bytecode instruction to check whether it represents a call to an advice-method. If
such a call is found in the corresponding block, a crosscutting node is used in the graph.
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To gather information about the kind of advice and the name of the aspect it belongs to,
the advice-method name is analyzed. The three new criteria were implemented with the
strategy of gathering all requirements of the all-nodes, all-edges and all-uses criteria and
then selecting only the ones related to crosscutting nodes.

5. Testing database applications
In this section we discuss the use of dataflow testing criteria defined by Spoto et
al. [Spoto et al. 2000] specifically for applications that manipulate persistent data in the
form of relational databases (Relational Database Applications – RDA). Initially, the main
concepts related to the RDA criteria are presented, them we discuss how the support to
such criteria has been implemented, based on Java bytecode analysis, in theJaBUTi tool.

We consider a RDA as a program, written in a “host language” (C, Pascal, Java,
etc) with support to the use of a database manipulation language embedded in its code.
The means by which this is done may differ from one language to another. In the context
of this paper, a RDA is a Java program that uses Java’s native API to manipulate relational
databases. Such API, known as Java Database Connectivity (JDBC), provides a series
of classes and methods that allow the programmer to connect to and to interact with
relational database managers using SQL. Figure 10(a) shows an example of the use of
JDBC.

The main concepts related to the use of dataflow criteria in RDA are:table-
variable and t-use. A table-variable corresponds to a database table used in the RDA
program. For example, taken the following SQL statement, two table-variables can be
identified: teamandplayer.

SELECT teamName, playerName FROM team t inner
join player p ON t.codteam=p.codteam

A definition of a table-variable (a persistent definition) occurs when data is in-
serted, updated or removed from the database table. A t-use (use of the table-variable)
there exists when a query is executed to recover a value from the database table. We also
consider a t-use on statements that change the value of a table-variable because the vari-
able is first read from the persistent storage and then changed. Thus, updating, removing
and inserting also represent a t-use.

The traditional program graph has been adapted by Spoto et al. [Spoto et al. 2000]
in order to represent persistent definitions and t-uses. Each SQL statement, embedded in
the program code is represented by a different kind of node in the graph. Such nodes
highlight the access to table-variables, as shown in Figure 10, where SQL nodes are rep-
resented as squares and regular nodes as circles.

The definitions and uses of a table-variable are extracted from the code by scan-
ning the SQL node to discover: 1) the type of statement used, which characterizes def-
inition or use of the variables; and 2) the names of the table-variables present in the
statement. A t-use is associated to the edge leaving a node where a use of a table-variable
has been accessed. In this way, normal control flow and the flow caused by an exception
are covered by the dataflow criteria. Thus, the testing criteria can be defined based on
dataflow interactions as for regular programs. For example, theall-t-usescriterion re-
quires every association between a persistent definition and a t-use to be covered by a test
case.
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1 switch(Opt)
{

case 1:
2 stmt.execute(

"insert into client values(1,’Joice’)");
3 System.out.println("Insert selected");
4 break;

case 2:
5 stmt.execute(

"delete from client where codclient=1");
6 System.out.println("Delete selected");
7 break;

}
8 rs=stmt.executeQuery("select * from client c" +

" inner join sale s on c.codc=v.codc");
9 System.out.println("End.");

(a) Java code

1

2

8

5

3 6

9

(b) Program graph

Figure 10. Graph adapted to a RDA

In the example of Figure 10, the embedded SQL statements in lines 2, 5 and 8 are
represented as squares and t-uses are identified on edges (2,3), (5,6) and (8,9). On the first
and second there are t-uses of variableclient and on the last there is a t-use of variable
sale. Persistent definitions of variableclient are present in nodes 2 and 5.

Theall-t-usescriterion has been implemented inJaBUTi. This criterion requires
each association between a persistent definition and a t-use, for every table-variable in the
same method to be covered at least once. In this way, a required element forall-t-usesis
a persistent-def/t-use association, with respect to a table-variable.

In the example of Figure 10, two such elements can be identified: the definition of
table-variableclient in node 2 and its t-use in edge (8,9) and definition ofclient in
node 5 and use in edge (8,9). These two required elements are denoted〈client, 2, (8, 9)〉
and〈client, 5, (8, 9)〉. Table-variablesale also has a t-use on edge (8,9) but no persistent
definition in the method. For those cases, we assume a fake definition in the first node of
the graph, for each t-use without a corresponding definition, originating required elements
〈sale, 1, (8, 9)〉, 〈client, 1, (2, 3)〉 and〈client, 1, (5, 6)〉.

With the implementation ofall-t-usescriterion,JaBUTi identifies the nodes cor-
responding to the SQL statements and represents them as squared nodes. In addition,
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determines which table-variables are accessed in each node. The tool computes the list of
required elements following the same reasoning explained in Section 2, i.e., the require-
ments are split in two groups: the ones independent of exceptions and those dependent of
exceptions.

All the static analysis performed to implement theall-t-usescriterion is done on
the Java bytecode, as explained in Section 3. The algorithms are basically the same used
to implement theall-usescriterion, but with some particularities to identify the persistent
definitions and the t-uses. Unlike the variables of the host language that are explicitly
present in the program code, the table-variables must be extracted from the SQL statement
that is passed as an argument in a method invocation. For example, let’s consider the
following line of Java code:

stmt.execute("delete from client where codclient=1");

Such statement would be translated to Java bytecode as something like:

ldc "delete from client where codclient=1"
invokeinterface java.sql.Statement.execute

(Ljava/lang/String;)Z

Instruction ldc sends a constant to the top of the JVM stack. Instruction
invokeinterface makes a call to methodexecute using as argument the element
on the top position of the stack, i.e., the string just pushed by the previous instruction. In
Section 3 we explained that each node in theIG stores information about the state of the
JVM that allows computing the dataflow through the graph. Such information includes
the type of the values in the stack, the instruction which pushed each of such values and
the variable being used or defined by the respective instruction.

The verification of definitions and uses is accomplished by an algorithm that ana-
lyzes each instruction during the construction of theIG. Because it is necessary to know
the SQL expression to decide the type of statement it represents and the table-variables
involved, it is also necessary to store the SQL expression itself. Thus, in the case of the
example above, when theldc is analyzed byJaBUTi, the value of the constant pushed
into the stack is registered. In this way, when instructioninvokeinterface is ana-
lyzed, it is possible to verify which method is being called, since this information is part
of the instruction itself, and also what are the arguments passed by analyzing the expected
content of the stack.

The example below shows the case in which the SQL statement is not directly
pushed into the stack. It is first stored in a local variable and then moved to the stack. The
situation highlights the fact that every movement of values to the stack should be analyzed
and the value pushed should be recorded, if possible.

String sqlCommand= "delete from client where codcli=1";
stmt.execute(sqlCommand);

--------------------------------------------------

ldc "delete from client where codcli=1"
astore %5
aload_2
aload %5
invokeinterface java.sql.Statement.execute

(Ljava/lang/String;)Z
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In this case, the type and the value of the constant are pushed into the stack then;
its value is popped and stored in the local variable vector. Next, theStatement object
is pushed to the stack and then the local variable number 5 is pushed to the stack, placing
the SQL statement back on the top of the stack.

In both examples, when theinvokeinterface instruction is ana-
lyzed, the SQL statement is available as a string constant on the top of the
stack. At this point, it is first necessary to check whether the method invoked
is one of interest asStatement.execute, Statement.executeQuery or
Statement.executeUpdate. Next, the analysis focus on the string passed as ar-
gument, placed on the top of the stack. It is scanned and the tool collects the name of the
tables being accessed and the type of access, determined by the SQL statement, which
characterizes a persistent definition or a t-use.

The technique is restricted to the analysis of SQL statements provided directly or
indirectly by a string constant. In the cases where it is not possible to statically identify
the argument passed to the JDBC method, the tool still identifies the SQL node in the
graph but does not assign any definition or t-use to it.

6. Conclusions

Structural testing has been widely studied and constitutes one of the most important tech-
niques both as research subject and as support for industrial software development.

The use of structural testing requires static analysis that traditionally has been
performed at the source code. With the advent of the Java language, it has become more
popular to perform static analysis at Java bytecode level. This approach has a number
of advantages, in particular it hides the peculiarities of the source language that can be
Java, extensions of it or even a completely different language from which Java bytecode
can be generated. In addition, it allows the implementation of testing criteria to deal with
particular aspects of the specific domains.

In this paper we presented two cases of domain specific structural testing criteria
and discussed how to implement them from the bytecode static analysis. The first domain
is aspect oriented programs using the AspectJ language, an extension that allows adding
aspect programming features to the Java language. In this case, there are interactions
between classes and advices that are not explicitly present in the class source code but
can be identified in the generated bytecode. In this scenario we discuss how to define
structural criteria to exercise such interactions.

The second domain we presented is database applications using JDBC. Java pro-
grams can have access to databases by using an API that allows the programmer to embed-
ded SQL statements as arguments to method calls. From the SQL statements it is possible
to extract persistent data-flow associations, i.e., identify points where table variables are
defined and points where they are used, as with regular program variables.

In both cases we also discuss how the domain specific criteria can be implemented
by analyzing only the bytecode and how such analysis differs from conventional control-
flow and data-flow bytecode analysis.
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