
Pairwise structural testing of object and aspect-oriented
Java programs∗

Ivan Gustavo Franchin, Otávio Augusto Lazzarini Lemos and Paulo Cesar Masiero

Departamento de Sistemas de Computação,
ICMC/USP - S̃ao Carlos - Caixa Postal 668

13560-970 S̃ao Carlos-SP-Brasil

{ivan;oall;masiero}@icmc.usp.br

Resumo.Em um trabalho recente, explorou-se o teste estrutural de unidade –
tanto de ḿetodos quanto de adendos – de programas Java orientados a obje-
tos (OO) e a aspectos (OA). Um problema não tratado pelo teste de unidadeé
a interaç̃ao entre as unidades, no que diz respeitoà corretude das interfaces.
Neste artigóe apresentada uma abordagem de teste de integração que estende
a abordagem de teste de unidade apresentada anteriormente. Para que a ativi-
dade de teste seja factı́vel, em vez de considerar nı́veis arbitŕarios de chamadas
de uma śo vez, trata-se do teste de cada par de unidades. Um modelo para rep-
resentar o fluxo de controle e de dados de pares de unidades de programas Java
OO e OA chamado grafoPWDU (PairWise Def-Use)́e proposto juntamente
com tr̂es crit́erios de teste. Uma implementação da abordagem utilizando como
base a faḿılia de ferramentas de teste JaBUTi (Java Bytecode Understanding
and Testing) juntamente com um exemplo de uso também s̃ao apresentados.

Abstract. Most structural testing approaches are targeted at units of implemen-
tation (i.e., unit testing). A problem that is not addressed by unit testing is the
interaction among units, with respect to the correctness of their interfaces. We
present a structural integration testing approach for object-oriented (OO) and
aspect-oriented (AO) Java programs as an extension of a unit testing approach
we have developed before. To make the activity feasible, instead of consider-
ing arbitrary call depths, we address the testing of pairs of units. We propose
a model calledPWDU (PairWise Def-Use) graph to represent the control and
data-flow of pairs of units. Based on thePWDU , three testing criteria are
defined: all-pairwise-integrated-nodes, all-pairwise-integrated-edges (control-
flow based criteria), and all-pairwise-integrated-uses (a data-flow based crite-
rion). We also present the implementation of our approach as an extension to
the Java Bytecode Understanding and Testing (JaBUTi) family of testing tools
along with an example of usage.

1. Introduction

In a recent work [Lemos et al. 2007], we explored the structural testing of units – both
methods and pieces of advice – of object-oriented (OO) and aspect-oriented (AO) Java
programs in isolation (i.e., unit testing). A problem that is not addressed by unit testing

∗The authors are financially supported by CNPq and FAPESP.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

377



is the interaction among units, with respect to (wrt) the correctness of their interfaces. In
such context, unit testing is not enough. In this paper we propose a step ahead to provide
more confidence in OO and AO Java programs: integration structural testing of units that
interact with each other.

Since even for small systems there might be a great number of interactions among
units, it is usually infeasible to test the integration of units in arbitrary call depths. More-
over, for large systems the problem can be exponentially worse [Stobie 2005]. Therefore
to keep the integration testing activity more feasible, we propose the testing of pairs of
units, both intra-module (units that interact with each other inside classes and aspects)
and inter-module (units of different classes and aspects that interact with each other). We
thus also address a problem that has not been fully addressed yet: the case of interactions
between advice and methods, which is an important issue related to testing AO programs.

Based on a Java bytecode data-flow and control-flow model, we defined three
specific testing criteria to test both OO and AO Java programs. These model and criteria
were implemented in a testing tool, extended from a family of tools named JaBUTi (Java
Bytecode Understanding and Testing) [Vincenzi et al. 2006].

The rest of the paper is structured as follows. Section 2 presents basic knowledge
about AO programming (since OOP can be considered common knowledge), to provide
a basis to understand our approach; and Section 3 presents the proposed model and cri-
teria for testing pairs of OO and AO Java programs. Section 4 presents our prototype
testing tool that implements our model and criteria and Section 5 presents an example and
explanation of the tool usage. Finally, Section 6 concludes and discusses future work.

2. AOP

The AOP main idea is that while OO programming, procedural and other programming
techniques by themselves help separating out the different concerns implemented in a
software system, there are still some requirements that cannot be clearly mapped to iso-
lated units of implementation [Kiczales et al. 1997]. Examples of those concerns are
mechanisms to persist objects in relational data bases, access control, quality of ser-
vices that require fine tuning of system properties, synchronization policies and log-
ging. These are often calledcrosscuttingconcerns, because they tend to cut across
multiple elements of the system instead of being localized within specific structural
pieces [Elrad et al. 2001].

AOP supports the construction of separate units – called aspects – that have the
ability to cut across the system units, defining behavior that would otherwise be spread
throughout the base code. A generic AOP language should define: a model to describe
hooks in the base code where additional behavior may be defined (these hooks are called
join pointswhich, for our purposes, are well-defined points in the execution of a program);
a mechanism of identification of these join points; units that encapsulate both join point
specifications and behavior enhancements; and a process to combine both base code and
aspects (which is called theweavingprocess) [Elrad et al. 2001].

2.1. The AspectJ Language

AspectJ is an extension of the Java language to support AOP. In AspectJ, aspects are units
that combine: join point specifications (pointcuts), pieces of advice, which are the desired

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

378



01. public aspect Logging {
02. pointcut loggedOp(int a1, int a2):
03. execution( * src.Calculus.calculate(..))

&& args(a1,a2);
04.
05. before(int a1, int a2) : loggedOp(a1,a2) {
06. System.out.println("Numbers: " +

a1 + " and " + a2);
07. }
08. }

09. public class Calculus {
10. public int resSum;
11. public int resSub;
12.
13. public void calculate(int p1, int p2) {
14. this.resSum = p1 + p2;
15. if ( p1 > p2 )
16. this.resSub = p1 - p2;
17. else
18. this.resSub = p2 - p1;
19. }
20. }

21. public class Main {
22. public static void doCalculation(

int d1, int d2) {
23. int num1 = d1;
24. int num2 = d2;
25. Calculus calc = new Calculus();
26. calc.calculate(num1, num2);
27. System.out.println("Sum = " +

calc.resSum);
28. System.out.println("Subtraction = " +

calc.resSub);
29. }
30. }

Figure 1. Source code of a simple sum and subtraction application with a logging
aspect.

behavior to be added at the join points and methods, fields and inner classes. Also, as-
pects can declare members (fields and methods) to be owned by other types, what is called
inter-type declarations. The current version of AspectJ also support declarations of warn-
ings and errors that arise when join points are identified or reached [AspectJ Team 2003].
Before, after and around advice are method-like constructs that can be executed before,
after and in place of the join points selected by a pointcut, respectively. These constructs
can also pick context information from the join point that has caused them to execute.
Figure 1 lists the source code of a simple sum and subtract aspect-oriented program that
will be used along this paper.

In any AOP language implementation, aspect and non-aspect code must run in
a properly coordinated fashion. In order to do so an important issue is to ensure that
pieces of advice run at the appropriate join points as specified by the program. Previ-
ous versions of AspectJ used the strategy of inlining the advice code directly into the
join points, which resulted in.class files that were a mixture of aspect and non-aspect
code [Hilsdale and Hugunin 2004]. In fact, older versions of AspectJ did the weaving
process based on source code: first files were pre-processed into standard Java and then
these new files were compiled with a standard compiler. The recent AspectJ advice

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

379



weaver is based on bytecode, so this process is made by bytecode transformation rather
than on source code files.

The AspectJ advice weaver statically transforms the program so that at runtime it
behaves according to the language semantics. The compiler accepts both AspectJ byte-
code and source code and produces pure Java bytecode as a result. The main idea is to
compile the aspect and advice declarations into standard Java classes and methods (at
bytecode level). Parameters of the pieces of advice are now parameters of these new
methods (with some special treatment when reflexive information is needed). In order
to coordinate aspects and non-aspects the system code is instrumented and calls to the
“advice methods” are inserted considering that certain regions of the bytecode represent
possible join points (these are called join pointstatic shadows). Furthermore if the join
point cannot be completely determined at compile time, these calls are guarded by dy-
namic tests to make sure that the pieces of advice run only at appropriate time (these tests
are calledresidues) [Hilsdale and Hugunin 2004].

3. Structural testing of OO and AO programs

Testing is the execution of a piece of software with the intent of finding faults
[Myers et al. 2004]. The different testing techniques can be classified by the artifact used
to derive the testing requirements.Functional testingderives its requirements from the
specification of the system, without regarding specific implementation details;structural
testing, which is the focus of this paper, derives its requirements from the knowledge of
characteristics and internal details of the implementation; andfault-based testingderives
its requirements from typical faults inserted during the software development process.

Software testing is usually performed in three phases:

1. Unit testing, where the smallest pieces of the software are tested in isolation with
the intent of finding faults in their logic and implementation;

2. integration testing, where interactions among units are tested with the intent of
finding faults in the logic and implementation of the interfaces;

3. and system testing, which consists in verifying the integration of all elements
of the software to assure that the system and these other elements (for instance,
hardware and data bases) combine adequately and that expected global function-
ing/performance is obtained.

Harrold and Rothermel [Harrold and Rothermel 1994] proposed the first structural
integration testing approach for OO programs. They considered the intra-method, inter-
method, intra-class and inter-class testing types, which also considered def-use informa-
tion from call sequences issued to a class (which is not considered in our approach). In
their case, no restrictions were made with respect to the depth of calls that were con-
sidered, which can make the implementation of the approach infeasible. In fact, no
implementations of the approach were provided by the authors. The same leading au-
thor together with other colleagues explored some other problems related to OO pro-
gram testing such as regression testing and incremental testing of OO program structures
[Harrold et al. 1992, Harrold et al. 2001, Orso et al. 2004].

Vilela et al. have also proposed a pairwise integration testing approach, but in
their case targeted at procedural programs [Vilela et al. 1999]. Based on the work of Lin-
nenkugel and M̈ullerberg [Linnenkugel and M̈ullerburg 1990] (also used for definitions

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

380



related to data-flow testing in this paper), they extended the family of Potential-Uses
data-flow criteria [Maldonado 1991] to the pairwise integration testing of procedural pro-
grams. Paradkar [Paradkar 1996] uses the idea of pairwise testing to the integration of
classes.

In this paper we focus on integration testing, building on top of unit testing ap-
proaches described in other papers [Lemos et al. 2007, Vincenzi et al. 2006]. We con-
sider a method and an advice as the smallest units to be tested (i.e.the unit) and we
address the testing of each pair of interacting units. We call amodulea part of the pro-
gram that clusters a number of units together with other structures (like fields). For our
purpose a module can either be a class or an aspect.

In structural testing a representation of the structure of the program is required.
The control-flow graph (CFG) is used to represent the flow of control of a program, where
each node represents a statement or a block of statements executed sequentially, and each
edge represents the flow of control from one statement or block to another. With respect
to data flow information, we use the definition-use (or def-use) graph, which extends the
CFG with information about the definition and use of variables in each node and edge of
the CFG [Rapps and Weyuker 1985].

For our purposes the occurrence of a variable is either classified as a definition or
use. As to the use occurrences it is called apredicateuse (or p-use) a use of a variable
in a conditional statement – for instance:if (i == 5) – and acomputationaluse a
use of a variable that directly affects a computation – for instance:j = i + 5. P-
uses are associated to the def-use graph edges and c-uses are associated to the nodes. A
definition clear path (or simply def-clear path) is a path that goes from the definition place
of a variable to a subsequent c-use or p-use, such that the variable is not redefined along
the way. A def-use pair wrt some variable is then a pair of definition and subsequent
use locations such that there is a definition clear path wrt that same variable from the
definition to the use location [Rapps and Weyuker 1985].

The basic unit testing model for OO and AO Java programs is the aspect-oriented
def-use (AODU) graph [Lemos et al. 2007], that builds on top of Vincenzi et al.’s work
for OO programs only. TheAODU is generated for each unit to be tested, both methods
and pieces of advice. It is defined as a directed graph with elements(N, E, s, T, C).
Informally, N represents the set of nodes – which are composed by blocks of bytecode
instructions that are executed sequentially;E represents the set of edges connecting nodes
when there is transfer of flow from one to the other;s represents the entry node;T is the
set of exit nodes; andC is the set of nodes affected by pieces of advice (calledcrosscutting
nodes). The elementC was added to the original def-use model defined by Vincenzi et
al. [Vincenzi et al. 2006] to represent the basic interaction that occur in AO programs.
Examples ofAODU graphs are presented in Figure 2. The units refer to methods of
the example presented in Figure 1. Note that the crosscutting nodes are represented by
dashed elipses containing additional information of what kind of advice is affecting that
point and to which aspect it belongs.

3.1. Pairwise integration testing

The anticomposition axiom defined by Weyuker [Weyuker 1988] states that testing each
piece of a program in isolation is not necessarily sufficient to deem the entire program

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

381



0

11

20

(a) AODU of the
doCalculation
method

0

14

26 36

43

8
<<before-src.Logging>>

(b) AODU of the calculate
method

Figure 2. Examples of AODUs.

adequately tested. Thus, additional testing is required when units are combined or in-
tegrated. For integration testing, the interface between the units is the focus. Interface
problems include errors in input-output format, incorrect sequencing of subroutine calls,
and misunderstood entry or exit parameter values. Therefore, after each unit is individu-
ally tested, it is interesting to test the interactions among them [Harrold et al. 1992].

Concerned with this problem, we propose the extension of our unit testing ap-
proach to integration testing of pairs of units. To keep the activity more feasible, we
propose the testing of each pair of unit at a time, instead of addressing arbitrary call
depths at once.

With that purpose in mind, we propose a structural model calledPWDU , to rep-
resent the structure of a pair of units. For OO programs we have only one type of pair
of interacting units: method-method – when a method calls another method. For AO
programs, on the other hand, we have four types of pairs of interacting units: method-
method, method-advice – when a method is affected by an advice, advice-method – when
an advice calls another method and advice-advice – when an advice is affected by another
advice.

Based on thePWDU we derive three testing criteria, to make sure that the struc-
ture of the integrated units are being thoroughly covered, both from the control-flow and
from the data-flow perspectives.

3.2. PWDU : a control/data-flow model for Java Bytecode

To adequately represent the execution flow that occurs inside a pair of units, we need to
define a graph which integrates the units’ def-use graphs. With that intention we define
thePWDU , which integrates theAODUs of the pairs of units that interact with each
other.

Before we can define thePWDU graph, we need to define an extra element in
theAODU graph to represent the set ofinteractionnodes, which is composed of all the
crosscutting nodes – which represent the unit-advice interaction – plus the call nodes that

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

382



represent method calls – the unit-method interactions. With these types of nodes we are
able to identify all interactions among units of OO and AO programs.

We call the unit in the pair that is either calling a method or being affected by
an advice as thebaseunit and the unit to which the control flow can be passed as the
integratedunit. ThePWDU is then composed by theAODU of the base unit and the
AODU of the integrated unit.

To differentiate the nodes and edges of the units, we define theintegratednodes
which represent the nodes of the integrated unit and two kinds of edges: theintegrated
edges which are the edges that connect two integrated nodes, and theintegrationedges
which represent the flow of control between a node of the base unit and a node of the
integrated unit, and vice-versa.

Figure 3 presents an example of aPWDU for the doCalculation and
calculate methods whose source code andAODU graphs were presented in Fig-
ures 1 and 2. The table in the upper left corner shows the mapping of the communication
variables used for the data-flow criterion (see Section 3.3) and the notes coming from the
nodes and edges show which variables are being defined (def), computationally-used (cu),
or predicatively-used (pu) at those places.

3.3. A family of pairwise structural testing criteria

Testing criteria are a very important way to provide systematic selection and evaluation
of test sets. To enhance the confidence that two units are combined in a correct way, we
propose three structural testing criteria: two control-flow based and one data-flow based.
The main idea is to make sure that the integrated unit is thoroughly covered by test cases
issued to the base unit, stressing the interface between the units.

Let T be a test set for a programP , beingPWDU the graph of a pair of units,
and letΠ be the set of paths executed byT in P . We say that a nodei is included inΠ if
Π contains a path(n1, . . . , nm) wherei = nj for somej, 1 ≤ j ≤ m. Similarly, an edge
(i1, i2) is included inΠ if Π contains a path(n1, . . . , nm) wherei1 = nj andi2 = nj+1

for somej, 1 ≤ j ≤ m− 1.

Control-flow criteria

For the control-flow based criteria, we decided to extend the basic all-nodes and
all-edges criteria, revisiting them in the pairwise OO and AO structural testing context.
One way of stressing the interface between two units is to try to make sure that each
node of the integrated unit – the integrated nodes – is being executed in the context of the
base unit. The same idea can also be applied to the integrated edges. Thus, we define the
all-pairwise-integrated-nodesand theall-pairwise-integrated-edgescriteria:

• all-pairwise-integrated-nodes (All-PW-Nodesi): Π is adequate wrt the all-
pairwise-integrated-nodes criterion if each integrated nodeni ∈ Ni of thePWDU
graph is included inΠ. In other words, this criterion requires that each integrated
node in aPWDU graph be exercised at least once by some test case inT .

• all-pairwise-integrated-edges (All-PW-Edgesi): Π is adequate wrt the all-
pairwise-integrated-edges criterion if each integrated edgeei ∈ Ei of aPWDU

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

383



0

11

i.0

i.14

i.26 i.36

i.43

20

i.8
<< before-src.Logging >>

d = {num1, num2}

d = {calc, calc.resSum,

calc.resSub}

cu = {p1, p2}

cu = {c-p1*,

c-p2*}

cu = {this, p1, p2}

d = {this, this.resSum}

cu = {this, p1,

p2}

d = {this,

this.resSum}

cu = {this, p1, p2}

d = {this, 

this.resSum}

cu = {calc, calc.resSum,

calc.resSub}

pu = {this, p1, p2}

pu = {this, p1, p2}

this.resSubcalc.resSub

this.resSumcalc.resSum

thiscalc

p2 

c-p2

num2

p1

c-p1

num1

Integrated unitBase unit

Mappping of the 

communication variables

∗Variablesc-p1 andc-p2 are copies ofp1 andp2. They are generated by the AspectJ compiler during weaving.

Figure 3. The PWDU for the pair of methods doCalculation and calculate.

graph is included inΠ. In other words, this criterion requires that each integrated
edge of aPWDU graph be exercised at least once by a test case inT .

Data-flow criterion

With respect to the data-flow criteria we decided to revisit the known all-uses criterion.
We took the work of Linnenkugel and M̈ullerberg [Linnenkugel and M̈ullerburg 1990]
as a basis to define the data-flow interactions between two units. Since the data-flow
information is very much dependent on the language and representation used, all
definitions in this part of the paper are based on the Java and AspectJ languages, and on
the Java bytecode specification.

Data-flow based integration testing is about testing the variables that affect the
communication between base and integration units. These variables are called communi-
cation variables. They can be of any Java type, that is, both primitive and reference. In
an OO and AO program the following communication variables types can be identified:

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

384



Formal Parameters –FP ; Actual Parameters –AP ; and Static field of the module(s) of
the base or integrated units or from other modules of the program –SF . Instance Fields
– IF – can also be considered communication variables when the integrated unit is an in-
stance method, however, they are treated as actual parameters (AP) and formal parameters
(FP ). An instance field is a field whose value is object-specific and not class-specific. In
this case, the object reference from which the method is being called is considered as a
parameter being passed to the integrated unit.

Our pairwise structural testing approach considers only paths (or def-use relations)
that directly affect the communication between units, that is:

• wrt the communication variablesx used as inputs, we consider the paths composed
by the sub-paths that go from the last definition ofx prior to the call to the call
inside the base unit and the sub-paths that go from the integrated unit entry to
wherex is used inside the integrated unit.

• wrt the communication variablesx used as outputs, we consider the paths com-
posed by the sub-paths that go from the last definition ofx inside the integrated
unit to the exit of the integrated unit and the sub-paths that go from the return of
the integrated unit to the use ofx inside the base unit.

An OO and AO program consists of unitsUn. For eachUn we define the following
sets:

• FP -IN(Un) is the set of formal parameters ofUn used as inputs.
• FP -OUT (Un) is the set of formal parameters ofUn used as outputs.
• SF -IN(Un) is the set of static fields used insideUn.
• SF -OUT (Un) is the set of static fields defined insideUn.

Let Ua be the base unit andUb be the integrated unit. The point where the flow
of control is transferred fromUa to Ub is represented byUba. For this point the following
sets are defined:

• AP -IN(Uba) is the set of actual parameters used as inputs inUba.
• AP -OUT (Uba) is the set of actual parameters used as outputs inUba.

To describe the relations between actual and formal parameters and between static
fields used by the units we define two mappings:Iba andOba. It is important to note
that while doing the parameters and static fields mappings for reference types, we also
map fields (for object references) and aggregated variables (for array references) related
to these references. Another side note is related to static fields: they have the same name
both in the base unit and in the integration unit.

The Iba mapping relates each input actual parameter used inUba with the corre-
sponding input formal parameter inUb and each input static field with itself.

• Iba : AP -IN(Uba) ∪ SF -IN(Ub) → FP -IN(Ub) ∪ SF -IN(Ub), where
AP -IN(Uba) → FP -IN(Ub) andSF -IN(Ub) → SF -IN(Ub)

TheOba mapping relates each output actual parameter used inUba with the corre-
sponding output formal parameter inUb and each output static field with itself.

• Oba : AP -OUT (Uba)∪ SF -OUT (Ub) → FP -OUT (Ub)∪ SF -OUT (Ub), where
AP -OUT (Uba) → FP -OUT (Ub) andSF -OUT (Ub) → SF -OUT (Ub)

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

385



Based on these definitions and on the units’PWDU , other sets must be defined.
Let def(i) be the set of variables defined in the nodei; c-use(i) be the set of variables
for which there are computational uses ini; andp-use(j, k) be the set of variables for
which there are predicate uses in edge(j, k) [Rapps and Weyuker 1985]. Thus, for each
integrated unitUb we define the following sets:

• C-USE-INTEGRATED(Ub, x) is the set of nodesi in Ub such thatx ∈ c-
use(i) and there is a def-clear path wrtx from the entry node ofUb to the nodei,
andx ∈ FP -IN(Ub) or x ∈ SF -IN(Ub).

• P -USE-INTEGRATED(Ub, x) is the set of edges(j, k) in Ub such thatx ∈ p-
use(j, k) and there is a def-clear path wrtx from the entry node ofUb to the edge
(j, k), andx ∈ FP -IN(Ub) or x ∈ SF -IN(Ub).

• DEF -INTEGRATED(Ub, x) is the set of nodesi in Ub such thatx ∈ def(x)
and there is a def-clear path wrtx from the nodei to the exit node ofUb, and
x ∈ FP -OUT (Ub) or x ∈ SF -OUT (Ub).

For theUba we define the following sets:

• DEF -BASE(Uba, x) is the set of nodesi in Ua such thatx ∈ def(i) and there
is a def-clear path wrtx from i to the interaction node, andx ∈ AP -IN(Uba) or
x ∈ SF -IN(Ub).

• C-USE-BASE(Uba, x) is a set of nodesi in Ua such thatx ∈ c-use(i) and there
is a def-clear path wrtx from the return nodes toi, andx ∈ AP -OUT (Uba) or
x ∈ SF -OUT (Ub).

• P -USE-BASE(Uba, x) is the set of edges(j, k) in Ua such thatx ∈ p-use(i)
and there is a def-clear path wrtx from the return nodes to(j, k), andx ∈ AP -
OUT (Uba) or x ∈ SF -OUT (Ub).

From those definitions, we define theall-pairwise-integrated-usescriterion, used
to derive testing requirements based on the interface variables of pairs of units.

• all-pairwise-integrated-uses(All-PW-Usesi): Π is adequate wrt the all-pairwise-
integrated-uses if:

1. for eachx ∈ AP -IN(Uba) and eachx ∈ SF -IN(Ub), Π includes a
def-clear path wrtx that goes from each nodei ∈ DEF -BASE(Uba, x)
to each nodej ∈ C-USE-INTEGRATED(Ub, Iba(x)) and each edge
(j, k) ∈ P -USE-INTEGRATED(Ub, Iba(x)). In other words, this cri-
terion requires the execution of a def-clear path wrt each communication
variable from each relevant definition in the base unit to each computa-
tional and predicative use in the integrated unit.

2. for each x ∈ AP -OUT (Uba) and eachx ∈ SF -OUT (Ub), Π
includes a def-clear path wrtx from each nodei ∈ DEF -
INTEGRATED(Ub, Oba(x)) to each nodej ∈ C-USE-BASE(Uba, x)
and each edge(j, k) ∈ P -USE-BASE(Uba, x). In other words, this cri-
terion requires the execution of a def-clear path wrt each communication
variable from each relevant definition in the integrated unit to each com-
putational and predicate use in the base unit.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

386



Table 1. Requirements’ set derived by the pairwise integration testing criteria.
Criterion Requirements
All-PW-Nodesi Rn = { i.0, i.8, i.14, i.26, i.36, i.43 }
All-PW-Edgesi Re = { (i.0, i.8), (i.8, i.14), (i.14, i.26), (i.14, i.36), (i.26, i.43),

(i.36, i.43)}
All-PW-Usesi Ru = { (num1, 0, i.0), (num2, 0, i.0), (num1, 0, i.8), (num2, 0, i.8),

(calc, 11, i.14), (calc, 11, (i.14, i.26)), (calc, 11, (i.14, i.36)),
(num1, 0, i.14), (num1, 0, (i.14, i.26)), (num1, 0, (i.14, i.36)),
(num2, 0, i.14), (num2, 0, (i.14, i.26)), (num2, 0, (i.14, i.36)),
(num1, 0, i.26), (num2, 0, i.26), (num2, 0, i.36), (num1, 0, i.36),
(calc.resSum, i.14, 20), (calc.resSub, i.26, 20), (calc, i.26, 20),
(calc.resSub, i.36, 20), (calc, i.36, 20) }

An exception to clause (2) has to be addressed, wrt the definition of formal para-
meters inside the integrated unit and their following uses after returning to the base unit.
Java only has variables that hold primitives or object references and both are passed by
value. When the actual parameter is of a reference type, the corresponding formal pa-
rameter receives and loads the address of the object in memory referred by the actual
parameter. We can say that the formal parameter is a copy of the actual parameter. Thus,
any modification of the value of the copy of an actual parameter is not going to affect
a later use of it, regardless of the type of the actual parameter (reference or primitive).
Therefore, if there is a later use of the actual parameter after the interaction, a def-use pair
is not created for it.

The same does not occur if the actual parameter is a reference type and its copy
modifies, using the reference address, the fields of the object referred by the actual pa-
rameter. In this case the definition will affect the actual parameter, since the object that
it references was modified. Therefore, if there is a use of the actual parameter after the
interaction, a def-use pair will be created for it. The complete data model used to carac-
terize the definitions and use of variables for Java/AspectJ used in our approach can be
found elsewhere [Franchin 2007].

Table 1 shows the requirements derived for the All-PW-Nodesi, All-PW-Edgesi
and All-PW-Usesi criteria for the pair of units(Main)doCalculate(DD)V -
(Calculus)calculate(DD)V whose source code andPWDU graph were shown
before (Figures 1 and 2).

Notations (x,i,j) and (x,i,(j, k)) used to represent the Ru requirements indicate
that a variablex is defined in nodei and there is a computational use ofx in nodej
(with a def-clear path w.r.t.x going from one to another) or a predicate use ofx in
edge(j, k) (also with a def-clear path w.r.t.x going from one to another). This nota-
tion uses the name of the variable as defined in the base unit. For instance, requirements
(num1, 0, (i.14, i.26)) and(calc.resSum, i.14, 20) indicate that the variablenum1 is de-
fined in the node0 and there is a predicate use in the edge(i.14, i.26). Note that the use in
edge(i.14, i.26) is not exactly related to variablenum1 butp1, which is thenum1 corre-
sponding communication variable in the base unit. The second requirement indicates that
variablecalc.resSum is defined in nodei.14 and there is a computational use in node20.
Note that, in this case, the definition that occurs in nodei.14 is related tothis.resSum,
which is thecalc.resSum corresponding communication variable in the base unit.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

387



4. Tool support
The JaBUTi family of tools [Vincenzi et al. 2006, Lemos et al. 2007] was extended to
make it possible the use of our pairwise testing approach for Java OO programs and
AspectJ AO programs. The extension implementation, that we call JaBUTi/PW-AJ (for
pairwise AspectJ), was divided in four parts: the first part was concerned with the identifi-
cation of the pairs of units that interact with each other in a program; the second part was
concerned with the generation of thePWDU graph; the third part was concerned with the
implementation of the criteria; and the forth part was concerned with the implementation
of the intra and inter-module testing environment.

4.1. Identification of interacting units

The identification of the units’ pairs is made by scanning the Java bytecode of each
unit, searching for theinvokevirtual, invokespecial, invokestatic and
invokeinterface instructions. These instructions identify interactions between
units, both with method calls and advice interceptions (see Section 2.1). Moreover it
is also possible to have knowledge about which unit is being called and to which module
it belongs to thus making it possible to determine whether the interaction is intra-module
or inter-module. The name given to the interaction pairs follow a naming pattern: it is
composed of two parts – one for the base unit and another for the integrated unit. Each
part is formed by the name of the full qualified name of the module inside parenthesis and
the signature of the unit at bytecode level [Lindholm and Yellin 1999]. The ‘-’ is used as
a separator between the parts. Figure 4 shows an example of naming for a pair of units
that interact in the previously shown application. Note that both classes are implemented
under thesrc package.

(src.Main) doCalculation(DD)V - (src.Calculus) calculate(DD)V

base unit integrated unit

module’s name unit’s signature

Figure 4. Naming convention for a pair of interacting units.

When a unit interact with another unit in more than one place in its body, we also
give a number to the pair between parenthesis, to differentiate each interaction. Also,
since there may be polymorphic calls for which called methods cannot be determined at
compile time, we generate pairs for each method that can be possibly called. For this case
we also use a “<P>” before the called unit, to indicate that it refers to a polymorphic call.

Figure 5 shows the inter-module pairs identified by JaBUTi/PW-AJ for the ex-
ample presented in Figure 1. The top part shows which classes (and possibly, aspects)
present inter-module relations, and the bottom shows the pairs of interacting units for
those classes.

4.2. Generation of thePWDU graph

To construct thePWDU , we extended the part of JaBUTi that constructed the unit’s
AODU graph. While constructing theAODUs the interaction nodes are identified, so
that the integration between graphs can happen later.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

388



Figure 5. Pairs of inter-module units identified for classes Calculus and Main.

To aPWDU graph for a particular pair of units, we generate theAODU of the
base unit first. Then, theAODU of the integrated unit is generated, and all of its nodes
and edges are marked as integrated nodes and edges. Before integrating the two graphs,
we remove the edges that connect the interaction nodes (crosscutting and call nodes) and
the following nodes in the base unit. This is to create a gap to integrate the integration
unit. Then, we create an integration edge from the interaction node in the baseAODU to
the entry node of the integratedAODU . We also create additional integration edges from
each exit node in the integratedAODU to the nodes that follow the interaction nodes in
the base unit. With these steps the graphical and internal representation of thePWDU is
ready to be used to derive the requirements.

4.3. Implementation of the pairwise integration testing criteria

To implement the pairwise integration criteria, we created classes to represent the new
types of nodes and edges: integration nodes and edges. The implementation of the crite-
ria was straightforward with the previous unit all-nodes, all-edges and all-uses criteria that
were already implemented. The only difference was that we provided aPWDU instead
of aAODU to the methods, and filtered the testing requirements to consider only the inte-
grated nodes and edges for the all-pairwise-integrated-nodes and all-pairwise-integrated-
edges criteria, and to consider only the communication variables for the all-pairwise-
integrated-uses criterion.

The all-pairwise-integrated-uses criterion is the one that required the most effort
to be implemented. The most important implementation detail is related to the mapping of
the communication variables. For that purpose we used two structures, to do the mapping
and to identify the definition and use of variables along the interaction paths. Thus we
could keep track of the definition and use of variables in both the base and the integrated
unit, and also map variables in the integrated unit to variables in the base unit and vice-
versa.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

389



4.4. Implementation of the intra and inter-module testing environment

To support the pairwise integration testing approach, we added two environments to the
original JaBUTi/AJ tool: one related to the intra-module testing – testing of unit pairs that
interact inside the same class or aspect – and inter-module testing – testing of unit pairs
inside different classes and aspects that interact with each other. These two environments
use the same modules selected to be tested and instrumented in the unit testing environ-
ment – the initial environment of the tool – and, from these modules, we identify the pairs
of interacting units as discussed before.

Each testing environment has to support their specific testing data. Thus, all that
happens in one environment does not affect the others. An example is the execution of test
cases. While executing a particular test case in the unit testing environment, for instance,
we don’t want such execution to affect the integration testing information. The tester can
also save the testing project and the separation among the environments’ information will
be kept for later usage of the same project.

5. Tool usage

To test an application using JaBUTi/PW-AJ we need to first create a testing project. In
this step, the tester selects which classes and aspects he wishes to test. For instance, to
test the simple calculation application showed before, we need to select the classes and
the aspect. After the selection, the tool generates anAODU graph and derives the testing
requirements for each unit of each selected module. The tool also calculates and assigns
different weights to each testing requirement (identified by different colors) to indicate
the requirements that, when covered, can enhance the coverage compared to the other
requirements wrt the criteria that are being considered.

Since the focus of this paper is on integration testing, we will demonstrate a typical
pairwise testing scenario. Assuming that the units have been tested, we can select the
intra-module pairwise testing environment. For our example, no interesting pairs of intra-
module units are present, so we can go on to the inter-module testing environment. When
this environment is selected, the tool shows all the pairs of interacting units so that the
tester can select the ones he wants to test (Figure 5 shows the inter-module pairs for our
example). The first pair represents the instantiation of theCalculus class on line25 of
the source code listed in Figure 1. The second pair represents the call to thecalculate
method on the next line (26). The third pair is related to the call to theaspectOf
method, an internal AspectJ method to get the instance of theLogging aspect. The
fourth pair represents the execution of the advice of theLogging aspect before the call
to thecalculate method on line26.

The tester could select for testing, for instance, pairs 2 and 4, since the integration
between the method and the constructor is not so much relevant (because the constructor
is a default one) and the call toaspectOf is not so much relevant either (because it is
more related to the AOP infrastructure than to the application itself). After selecting pairs
2 and 4, the tool generates the twoPWDUs, and also gathers the requirements for each
pairwise criterion.

Now, if the tester already had test cases for testing thedoCalculation method
(the base unit), he could import those to the tool and check the coverage wrt the integration

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

390



(a) PWDU for the method-method
pair Main.doCalculation-
Calculus.calculate

(b) PWDU for the method-advice
pair Main.doCalculation-
Logging.before

Figure 6. PWDUs of the second and forth pairs of inter-module units after the
execution a one test case.

Figure 7. Summary of the pairwise criteria after importing two test cases.

pairwise testing criteria. If there are no test cases, we must create them to cover the parts
of the integrated unit through the base unit. For pair 2, test cases must be constructed
to cover both sides of theif on line 15 of the source code (Figure 1 and nodei.14 of
thePWDU graph in Figure 3). Analyzing the logic of both methods, two test cases,

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

391



one with a higher number as the first parameter and another with a higher number as
the second parameter, would be sufficient to cover all the integrated nodes, edges and
uses. For pair 4, any test case would be sufficient to execute the before advice and all the
integrated nodes, edges and uses. Figure 6 shows the twoPWDUs after the execution
of one of the test cases with the input as described above. The white nodes represent the
executed integrated nodes. Figure 7 shows the summary of the testing requirements for
all the pairwise integration criteria after two test cases with inputs as described above are
imported to the tool.

6. Conclusion and Future work

In this paper we presented an approach for pairwise structural testing of OO and AO
Java programs. The approach includes a model to represent the structure of pairs of
interacting units and three testing criteria to enhance the confidence at those interfaces.
Since we consider each pair of units separately, the practicality of the testing activity is
also considered.

The infeasibility issue, related to paths required by the criteria which cannot be
covered, poses an undecidable problem that can also occur in our context. For instance,
there can be conditions in the integrated unit that can never be satisfied through inputs
issued on the base unit, generating requirements with infeasible paths. This problem is
minimized by the tester setting the infeasible requirements through the JaBUTi/PW-AJ
tool, which make the related requirements to be discarded (since they could never be
covered).

Future work includes studying whether it is possible to enlarge the integration
of units considering deeper call chains, without making the integration testing activity
infeasible. An idea is to make the depth configurable and defining criteria based on an n-
depth integration strategy. With respect to AO programs and their specific types of faults,
we are also investigating a way of collecting sets of interacting pairs of units related to
each pointcut, to detect faults related to faulty pointcuts [Lemos et al. 2006].

References

AspectJ Team (2003). The AspectJ programming guide. Online. Available from:
http://www.eclipse.org/aspectj/doc/released/progguide/
index.html (accessed 20/01/2006).

Elrad, T., Kiczales, G., Akşit, M., Lieberher, K., and Ossher, H. (2001). Discussing
aspects of AOP.Communications of the ACM, 44(10):33–38.

Franchin, I. G. (2007). Teste estrutural de integração par-a-par de programas orientados
a objetos e a aspectos: Critérios e automatização. Master’s thesis, ICMC-USP, São
Carlos, SP.

Harrold, M. J., Jones, J. A., Li, T., Liang, D., Orso, A., Pennings, M., Sinha, S., Spoon,
S. A., and Gujarathi, A. (2001). Regression test selection for java software. InOOPSLA
’01: Proceedings of the 16th ACM SIGPLAN conference on Object oriented program-
ming, systems, languages, and applications, pages 312–326, New York, NY, USA.
ACM Press.

Harrold, M. J., McGregor, J. D., and Fitzpatrick, K. J. (1992). Incremental testing of
object-oriented class structures. InICSE ’92: Proceedings of the 14th international
conference on Software engineering, pages 68–80, New York, NY, USA. ACM Press.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

392



Harrold, M. J. and Rothermel, G. (1994). Performing data flow testing on classes. In
SIGSOFT ’94: Proceedings of the 2nd ACM SIGSOFT symposium on Foundations of
software engineering, pages 154–163, New York, NY, USA. ACM Press.

Hilsdale, E. and Hugunin, J. (2004). Advice Weaving in AspectJ. InProceedings of the
4th AOSD 2004, pages 26–35, Lancaster, UK.

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.-M., Lopes, C., Maeda, C., and Men-
hdhekar, A. (1997). Aspect-oriented programming. In Akşit, M. and Matsuoka, S.,
editors,Proceedings of the ECOOP, volume 1241, pages 220–242, Berlin, Heidelberg,
and New York. Springer-Verlag.

Lemos, O. A. L., Ferrari, F. C., Masiero, P. C., and Lopes, C. V. (2006). Testing aspect-
oriented programming pointcut descriptors. InWTAOP ’06: Proceedings of the 2nd
workshop on Testing aspect-oriented programs, pages 33–38, New York, NY, USA.
ACM Press.

Lemos, O. A. L., Vincenzi, A., Maldonado, J. C., and Masiero, P. C. (2007). Control and
data-flow structural testing criteria for aspect-oriented programs.Journal of Systems
and Software, 80(6):862–882.

Lindholm, T. and Yellin, F. (1999).The Java Virtual Machine Specification. Prentice Hall
PTR, 2 edition.

Linnenkugel, U. and M̈ullerburg, M. (1990). Test data selection criteria for (software)
integration testing. InISCI ’90: Proceedings of the first international conference on
systems integration ’90, pages 709–717, Piscataway, NJ, USA. IEEE Press.

Maldonado, J. C. (1991).Critérios Potenciais Usos: Uma Contribuição ao Teste Estru-
tural de Software. PhD thesis, DCA/FEE/UNICAMP, Campinas, SP.

Myers, G. J., Sandler, C., Badgett, T., and Thomas, T. M. (2004).The Art of Software
Testing. John Wiley & Sons, 2nd. edition.

Orso, A., Shi, N., and Harrold, M. J. (2004). Scaling regression testing to large software
systems. InSIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth in-
ternational symposium on Foundations of software engineering, pages 241–251, New
York, NY, USA. ACM Press.

Paradkar, A. (1996). Inter-Class Testing of O-O Software in the Presence of Polymor-
phism. InProceedings of the 1996 Conference of the Centre For Advanced Studies on
Collaborative Research, page 30, Toronto, Ontario, Canada. IBM Press.

Rapps, S. and Weyuker, E. J. (1985). Selecting software test data using data flow infor-
mation. IEEE Trans. Softw. Eng., 11(4):367–375.

Stobie, K. (2005). Too darned big to test.Queue, 3(1):30–37.

Vilela, P. R. S., Maldonado, J. C., and Jino, M. (1999). Data Flow Based Integration
Testing. InAnais do 13o Simṕosio Brasileiro de Engenharia de Software, pages 393–
409, Floriańopolis, SC, Brasil.

Vincenzi, A. M. R., Delamaro, M. E., Maldonado, J. C., and Wong, W. E. (2006). Estab-
lishing structural testing criteria for java bytecode.Softw. Pract. Exper., 36(14):1513–
1541.

Weyuker, E. J. (1988). The evaluation of program-based software test data adequacy
criteria. Commun. ACM, 31(6):668–675.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

393


	SBES
	ST8-1


