
Integration testing of aspect-oriented programs: a
characterization study to evaluate how to minimize the

number of stubs
Reginaldo Ré1, Paulo Cesar Masiero2

1 Universidade Tecnológica Federal do Paraná – Campus Campo Mourão
Caixa Postal 271 – 87301-005, Campo Mourão, PR, Brazil

reginaldo@utfpr.edu.br

2Depto de Ciências de Computação e Estatística – ICMC/USP - São Carlos
Caixa Postal 668 – 13560-970, São Carlos, SP, Brazil

masiero@icmc.usp.br

Resumo. Um dos problemas encontrados no teste de programas orientados a
objetos é a ordem em que classes são integradas e testadas. Esse problema
também pode ser observado em programas orientados a aspectos. A estraté-
gia incremental, que sugere que classes sejam testadas primeiramente e, então,
integradas aos aspectos, é frequentemente sugerida como a estratégia mais ade-
quada para integrar classes e aspectos. Este trabalho apresenta um estudo so-
bre ordenação de classes e aspectos em programas orientados a aspectos para
miniminar o número de módulos pseudo-controlados implementados durante a
integração. Um estudo de caracterização em que um sistema de telecomuni-
cação é integrado utilizando quatro ordens diferentes é apresentado. As estra-
tégias de ordenação analisadas foram a combinada, que é uma extensão da
estratégia OO otimizada; a incremental+, que é a ordem incremental melho-
rada; a reversa, que é a ordem inversa da combinada; e a randômica, que foi
definida aleatoriamente.

Abstract. A problem related to the integration test of object-oriented programs
is the order that classes are integrated and tested. This problem also appears in
aspect-oriented programs. The incremental integration strategy, which suggests
that classes are tested first and then integrated to the aspects, is often propo-
sed as the more adequate strategy to integrate classes and aspects. This work
presents a study about ordering classes and aspects in aspect-oriented program-
ming to minimize the number of stubs in integration testing. A characterization
study in which a Telecom system is integrated in four different orders is repor-
ted. The ordering strategies analyzed were the combined, which is an extension
of an optmized OO strategy; incremental+, which is the incremental order im-
proved; reverse, which is the combined reverse order; and, random, which was
aleatorily defined.

1. Introduction
Aspect-Oriented programming (AOP) aims at facilitating software development through
the separation of concerns related to functional and non-functional software characteris-
tics [Kiczales et al. 1997]. Despite its numerous advantages this approach also presents

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

411



several new challenges for software development [Alexander and Bieman 2004; Krinke
and Störzer 2003]. Several proposals have been made to support the development of
aspect-oriented software and solve some of these new challenges [Aldawud and Bader
2003; Baniassad and Clarke 2004]. In the context of software integration testing strate-
gies, several authors proposed the strategy of incremental test of aspect-oriented programs
[Ceccato et al. 2005; Zhou et al. 2004]. In general terms, the incremental approach sug-
gests that the base code (or component) should be developed, unit-tested, integrated and
tested; then the aspects are developed and integrated to the base code. Supporters of the
incremental approach justify it by the fact that AOP is an extension of object-oriented
programming (OOP) and an aspect usually only adds behavior (or functions) to the base
code, which is not conscious of this.

This problem is similar to the integration testing of object-oriented programs: the
order that classes are tested and integrated with other classes [Tai and Daniels 1999]. The
order in which classes are developed, the number of stubs that need to be implemented,
and the order and easiness errors are found are all influenced by the order of integration.
When one class requires another to be available before it can be executed there is a de-
pendency relationship [Abdurazik and Offutt 2006]. This problem arises when the system
under test is composed by classes in a dependency cycle. The effect of breaking a depen-
dency cycle is that a stub must be created for the class that is the sink of the edge removed.
When there is no cycle, this problem can be easily solved by a reverse topological orde-
ring of classes based on the dependency relationship. Several proposals have been made
to order implementation and test of classes aiming at minimizing the number of stubs and
therefore minimize the development effort [Briand et al. 2003; Kung et al. 1995; Le Traon
et al. 2000; Tai and Daniels 1999].

This paper presents a characterization study conducted to analyze the results of
four integration orders of a extended Telecom system implemented using AOP: combined
[Ré et al. 2007; Ré and Masiero 2005], which is an extension of an optimized OO strategy;
incremental+, which is the incremental order improved; reverse, which is the combined
reverse order; and, random, which was aleatorily defined. The first two use an algorithm
proposed by Briand et al. [2003]. In Section 2 we discuss related work and motivation
for our work. In Section 3 we briefly review the ordering algorithm proposed by Ré et al.
[2007] and present an aspect-oriented program that was used in the study. In Section 4
we describe the study and discuss the results for the four orders considered. Concluding
remarks are presented in Section 5.

2. Related Work and Motivation

Following well known strategies from object-oriented software development testing, test
of aspect-oriented programs comprises several general steps: first it must consider a class,
its methods and crosscutting aspects (intra-class/aspect), then test several classes and as-
pects combined (inter-class/aspect). Zhao [2003] proposed a structural testing technique
to test aspect-oriented software that considers clusters of classes and aspects. However,
Zhao´s paper focuses more on the data structure and algorithm to do the test than in an
integration strategy.

An incremental testing approach is proposed by Ceccato et al. [2005] in which all
base classes are initially tested without considering aspects, then gradually the aspects are

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

412



added and tested with the test cases designed to test the base classes and finally test cases
to evaluate the behavior of base classes in the presence of aspects (integration test) are
added. They comment that a problem of this approach is the need of frequently creating
stubs to simulate the behavior of aspects from which the base classes are dependent. This
happens for example with data persistence. This very same problem has been noted by
Soares et al. [2002], who used the incremental approach to develop and test an application
in the area of health care and implemented data persistence and distribution using aspects.
However, they did not detail this subject in their paper: they did not mention the use of
stubs for integration testing neither proposed a specific order for the integration of classes
and the integration of aspects.

Also, many researchers have found crosscutting concerns that are dependent of
other crosscutting concerns, which leads to implementations with one aspect depending
on another aspect. The AspectJ Team [2002] shows an example of a Telecom system to
control long distance calls that uses an aspect to measure call durations. This aspect, by
its turn, is also crosscut by a logging aspect. This is also an example of aspect that imple-
ments a functional requirement. Use of aspects to implement (variable) requirements in
software product lines and to implement business rules have also been studied and repor-
ted by Loughran and Rashid [2004] and Cibrán et al. [2003].

All these considerations and the works reviewed here motivated us to look into
this problem of what is a good strategy to do integration testing of classes and aspects in
the context of a software development process. In particular, we are interested in the order
of integration of classes and aspects aiming at minimizing the need to create stubs in the
line of the works of Briand et al. [2003] and Le Traon et al. [2000]. From the analysis of
the literature we found that aspects can form dependency cycles among themselves and in
some cases they may form cycles with classes thus leading to the need of creating stubs
during integration testing [Kienzle et al. 2003].

We did not find articles in the literature that discuss integration testing strategies to
minimize the number of stubs for AO programs as well as studies regarding the influence
of the implementation of functional concerns as aspects and of aspects that are partially
known to the base code they advise, such as persistence. In this paper we report a cha-
racterization study to practically compare several integration strategies that builds on our
previous work [Ré et al. 2007; Ré and Masiero 2005] proposing the use of the algorithm
of Briand et al. [2003] to calculate the order of integration testing of classes and aspects
[Ré et al. 2007; Ré and Masiero 2005].

3. Strategies for Ordering Classes and Aspects

The work of Kung et al. [1995] was the first to propose a solution to the problem of de-
pendency cycles and to apply it to integration testing of OO programs. They proposed a
diagram called ORD (Object Relationship Diagram - a digraph) to represent the depen-
dency relationships of inheritance (“I”), aggregation (“Ag”), and association (“As”). The
ordering algorithm applied to an ORD is based on two main concepts: cluster, which is
the set with the maximum number of vertices mutually reachable in the ORD, and break
of cycles, which is the temporary removing of an edge with the objective of making the
digraph acyclic. They proposed that only the edges representing associations must be re-
moved, because inheritance and aggregation present data coupling, control coupling, and

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

413



code dependency. When an edge is removed, a stub is created to simulate the behavior of
a class participating in the relationship that generated the dependency. The dependency
of code and coupling of data and control result in more complex stubs. The class ordering
for test is given after a reversal topological ordering of the acyclic graph.

The work of Tai and Daniels [1999] improved on the work of Kung et al. [1995].
They calculated level numbers for each class and proposed a criterion for removing edges
based on the calculus of weight for a vertex, which is the multiplication of the number
of edges reaching the source vertex by the number of edges leaving the sink vertex. Le
Traon et al. [2000] proposed another type of graphical representation for class dependency
and used recursively the algorithm of Tarjan to identify strongly connected components
(SCC)[Tarjan 1972].

Briand et al. [2003] presented a proposal that uses ideas from the algorithms of Le
Traon et al. [2000] and of Tai and Daniels [1999]: the algorithm of Tarjan is used recur-
sively to identify SCCs and weights are associated to edges that represent dependency of
the type that should be removed to break the dependency cycle. This strategy is determi-
nistic and minimizes the number of specific stubs, differently from Le Traon et al. [2000],
and the result is not sub-optimal as the result of Tai and Daniels [1999]. A stub of a class
A is specific when it is implemented to test the integration with only one other class B. It
is realistic when it can be used to test not only B but any other class that depends on A.

Ré et al. [2007] proposed an adaptation to the ORD to represent dependencies
created by an aspect-oriented program so that the algorithm of Briand et al. [2003] can be
used to compute the integration testing order of classes and aspects and the stubs needed.
This algorithm is briefly described later in this section.

Figure 1 shows part of a class and aspect diagram of a simple Telecom application
proposed by The AspectJ Team [2002] as an example of AspectJ programming and ex-
tended by the authors to include data persistency and changed to make the aspect Timing
to depend on the aspect Billing. It is used here to show how to create the extended
AO-adapted ORD and as the basis for the study reported in Section 4. The example im-
plements the concerns of timing, billing and call transfers as aspects. This system helps
customers to accept, join, and end local and long distance calls. The base classes simulate
the customers, calls and connections. Some classes of the system are:

Figura 1. Telecom System.

• Customer, which handles the customer´s data such as name, phone number, area
code, and password to have access to services offered by the operator on the Web.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

414



• Connection, an abstract class extended by the Local and LongDistance clas-
ses, which handle these types of calls.

• Call and Timer, whose names are self-explanatory.

Some of the system’s aspects are:

• Timing, which implements the timing concerns and measures the duration of each
call connection by initializing and stopping a timer associated to each connection.

• Billing, which implements the billing concern establishing a customer to pay
each connection and the correct amount, according to the call type: local or long
distance.

• TimerLog, which implements a log file and displays on the screen the initial and
final times of each timer.

A crosscutting persistence framework has been added to this system to persist the
data related to each connection [Camargo and Masiero 2005]. Figure 1 shows only part
of the framework: the class PersistentRoot and the aspects PersistentEntities
and MyPersistentEntities. The abstract aspect PersistentEntities contains
methods typically used for data persistence, such as store and load data, which are in-
troduced by the class PersistentRoot. The aspect MyPersistentEntities makes
concrete the aspect PersistentEntities and is responsible for indicating which clas-
ses are persistent and also to make possible to insert new methods related to persistence
operations in persistent classes without changing the framework´s structure.

Aspects always depend only on the join points defined by the pointcuts and ob-
jects of context used by advices, except the join points with a conditional clause. These,
besides the dependency defined by the join point, have also dependency on the instances
of the classes that appear in the expression for the conditional clause. Pointcuts can be de-
fined by a combination of several syntactic elements contained in their declaration. Thus,
to define the dependency relationship it is necessary to analyze all the elements in the de-
claration of a pointcut. Depending on how early planning of integration test is done, the
pointcuts could not be already coded. Thus, the information contained in the design arti-
facts, which is sometimes called a crosscutting interface [Krechetov et al. 2006], could be
used. There are several proposes in the literature for notation that extend class diagrams
to represent aspects. However, in this case some fine grained details of the model may be
lost. For example, we can have an aspect representing persistence when in fact an actual
implementation of persistence may contain a greater number of aspects.

The regular vertex in the ORD definition is extended to represent both classes and
aspects and new relationships among the two types of vertices representing classes and
aspects that contain advices and intertype declarations. An aspect can associate one or
more advices to one or more pointcuts. The association between a pointcut and a base
code, be it a class method or other advice, is a crosscutting association represented by a
dependency relationship noted by a “C” (from Crosscutting). This example is depicted in
Figure 2: the aspect Billing crosscuts the class Call. In the same figure, the aspects
Billing and Timing are examples of relationships that occur only between aspects.
The type of dependency generated by this relashionship is a use dependency, denoted by
a “U”. The use dependency can also happen between aspects composed just by pointcuts,
when a pointcut is defined using another pointcut. Advices defined in pointcuts someti-

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

415



mes need context information from the pointcuts. These information are captured by the
pointcut using the clauses this, target, and args, or by the use of thisJoinPoint.
In that case, there is an association dependency (“As”) with objects involved in pointcut
definition. This is shown in Figure 2, by the relationship between Timing and Customer.

It is possible in AspectJ to use intertype declarations to change the class structure
adding methods and attributes and modifying inheritance relationships. Attributes intro-
duced in the class can be used regularly by any other method of the class if it is visible.
Methods introduced can also use private attributes of the base class. Therefore, there is
a strong relationship between the base classes and the aspects containing intertype relati-
onships. These cannot be tested independently from the base code. This dependency type
is labeled with “It”. This type of dependency is also characterized when an aspect chan-
ges an inheritance hierarchy using a declare parents clause. In Figure 2, we can see
these types of dependencies in two clusters of classes and aspects: between Billing and
Local; and among MyPersistentEntities, PersistentRoot and Connection.
The use of this type of construction has a strong impact on the base classes and on tes-
ting since a change on the system structure can be significant. It is also used in regression
testing to identify which classes are affected when classes belonging to the system are
changed [Kung et al. 1995; Milanova et al. 2002].

Call

Customer

As

Connection

As

Local

As

LongDistance

As

PersistentEntities

As

As

As

As As

As

PersistentRoot

I

As

As

I

As

I

As

I

Timer

Billing

C

As_I

As_It

As_It As_It

AsTiming

As

As

C

As_It

As_It

As

As

As

TimerLog

As

C

As

As

It

MyPersistentEntities

It

It

I

As

Figura 2. ORD of the Telecom system

Finally, there can be inheritance relationships among aspects and among clas-
ses and aspects. Aspects can be specialized if there is a concrete aspect, the last in

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

416



the inheritance hierarchy, and an aspect can be a specialization of a class. These rela-
tionships generate an inheritance dependency in the extended ORD, labeled “I”, which
is similar to the inheritance among classes already defined in the ORD, as is illustra-
ted by the aspects PersistentEntities and MyPersistentEntities, in Figure 2.
The order proposed by the algorithm to this ORD (and the stubs required) showed in
Table 1 is: PersistentRoot, Connection (Customer,PersistentEntities),
PersistentEntities(Customer), Customer (Call, Local,LongDistance),
LongDistance, Local, Call, MyPersistentEntities, Timer, Billing

(Timing), Timing and TimerLog.

4. Description of the characterization study

4.1. Study definition and planning

The objective of the characterization study was to analyze the effort to create stubs du-
ring integration testing of a system developed with AspectJ using different strategies of
integration from the point of view of software developers and testers to verify the best
strategy to use. The number of stubs, the number of its methods, attributes, pointcut des-
criptors (PCDs), and intertype declarations are used to calculate the cost. The study was
divided into two parts, according with the integration strategy used to test a system. First,
the ORD for the Telecom system was built and the order of classes and aspects was com-
puted by the algorithm of Briand et al. [2003] adapted to POA by Ré et al. [2007]. In
the second part of the study, classes and aspects were integrated in four different orders:
combined, incremental+, reverse and random.

The combined order is the one proposed by the algorithm of Briand et al. [2003]
applied to the ORD combining aspects and classes as presented in Section 3. The incre-
mental+ approach consists of testing classes first using the order proposed by Briand et al.
[2003] algorithm then integrating aspects in the order proposed by the optimization algo-
rithm applied only to the aspects. Reverse is the reverse combined order. The random
order was defined by drawing of lots.

We expected that integration in the reverse order and in the random order would
have an implementation cost greater than the other two strategies. We nevertheless de-
cided to include these order in the study to analyze the stubs that would be created and
to have an idea of what would be the maximum cost of integration, that is, to have them
functioning as controls to the result of the other two orders.

The four integration testings were done in twelve steps – one for each class or
aspect of the Telecom system. Each step comprised six tasks:

1. classes and aspects were analyzed to determine which of them would be the mo-
dule under test;

2. classes and aspects implemented and integrated in previous steps were selected;
3. stubs were implemented;
4. the module under test was integrated to the set of already integrated modules

(step 2) and tested with the stubs;
5. the results were analyzed;
6. data regarding the stubs were collected;

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

417



For each integration testing we collected the actual number of stubs produced and
also the number of attributes, methods, pointcut descriptors and intertype declarations.
The latter was separated into declarations to introduce elements (attributes and methods)
in classes and declarations to change the program structure (change of hierachy and aspect
precedence) as they have different costs when created in a stub and to test.

The following modules and artifacts have been used:

• the module under test in each step (a class or an aspect);
• the modules already integrated and tested in previous steps;
• a test suite, represented by a JUnit class [JUnit 2002];
• a set of stubs of classes and aspects.

All four integration testings have been conducted by one of the co-authors of this
paper. A test suite was created using the functional testing criteria equivalence partitioning
[Myers 1979]. The same testing suite was used in all four integrations with few minor
changes in the JUnit code. A change was made in the Telecom system to facilitate the
study: the aspect Billing, responsible to calculate the price of calls was changed to
indicate when a call was completed so that an aspect responsible for timing could correctly
register the duration of the calls.

4.2. Combined strategy

The plan for the integration testing using the combined strategy is shown in Table 1. The
data collected from the actual integration is shown in Table 2. The final number of stubs
created was 7, as planned and according to the algorithm result. However, we noticed that
to test abstract aspects they must be concretized before integration, which has a cost. This
happened to the MyPersistentEntities aspect. Additionally, we noticed that in some
cases a stub created in a previous step had to be reused. This is for example the case of
class LongDistance that reused the stub of Call through Customer. This reuse has a
very low cost: just copying the stub. We decided to register in Table 2 these two costs in
the sequence 7/1/7. It is also interesting to notice that for the class Customer two specific
stubs were created. Thus, they were computed as two different stubs.

4.3. Incremental+ strategy

The plan for the integration testing for the incremental+ strategy is shown in Table 3
without the fourth column shown in Table 1. The data collected from the actual integration
is shown in Table 4. Figure 3 shows how we split the ORD in two ORDs and applied the
algorithm of Briand et al. [2003] to obtain the order shown in Table 3. Notice that classes
Timer and PersistentRootwere considered together with the aspects because they are
only related to aspects. If they were considered with the classes they coud be integrated
in any order.

A stub was needed to test PersistentEntities to simulate the behavior of a
concrete specialization, the aspect MyPersistentEntities. This stub has a footnote
in Table 4 to indicate that it is a concrete aspect. It is important to notice that creation
of the stub MyPersistentEntities was not expected initially, but the test can only be
executed with a concrete aspect. This increased the actual number of stubs from 5 to 8.
This problem is similar to the test of abstract classes. Thus, we considered the number of
stubs of concrete aspects in our calculation, but kept it separated.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

418



Tabela 1. Integration testing plan for the combined strategy.

Order Module under test Stub Tested modules needed
1 PersistentRoot –
2 Connection Customer and

PersistentEntities
PersistentRoot

3 PersistentEntities Customer Connection and PersistentRoot

4 Customer Call, Local and LongDistance PersistentEntities, Connection
and PersistentRoot

5 LongDistance Customer and Connection

6 Local Customer and Connection

7 Call Customer, LongDistance,
Local, Connection and
PersistentEntities

8 MyPersistentEntities Customer, Connection,
PersistentEntities and
PersistentRoot

9 Timer

10 Billing Timing PersistentEntities, Timer,
Connection, Customer, Call,
Local and LongDistance

11 Timing Billing, PersistentEntities,
Timer, Connection, Customer and
Call

12 TimerLog Timing and Timer

5 stubs of classes
2 stubs of aspects

Tabela 2. Cost of stubs for the combined strategy.

Order Module Stub #A
ttr

.

#M
et

.

#P
CD

s

#M
em

be
rs

In
tr

od
uc

ed

#O
th

er
De

cla
ra

tio
ns

1 PersistentRoot C – – – – – – –
2 Connection C Customera C 1 3 – – –

PersistentEntities A 0 1 0 1 1
3 PersistentEntities A Customera C 3 8 – – –

MyPersistentEntitiesb A 0 0 0 0 3
4 Customer C Call C 2 7 – – –

Local C 0 0 – – –
LongDistance C 0 0 – – –
MyPersistentEntitiesbc A 0 0 0 0 3

5 LongDistance C Callc C 2 7 – – –
Localc C 0 0 – – –
MyPersistentEntitiesbc A 0 0 0 0 3

6 Local C Callc C 2 7 – – –
MyPersistentEntitiesbc A 0 0 0 0 3

7 Call C MyPersistentEntitiesbc A 0 0 0 0 3
8 MyPersistentEntities A – – – – – – –
9 Timer C – – – – – – –
10 Billing A Timing A 0 1 0 3 0
11 Timing A – – – – – – –
12 TimerLog – – – – – – – –
Total stubs/concretization/reused 7/1/7 6 20 0 4 4/1

aSpecific stub.
bConcrete aspect.
cIndirectly reused.

To test Connection, which is an abstract class, we made an initial change making
it concrete. This could be done because, differently from the abstract aspects , it did not

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

419



Figura 3. ORD Reorganization to show classes and aspects separated

Tabela 3. Integration testing plan for the incremental+ strategy
Order Module under test Stub
1 Connection Customer

2 Customer Call, Local and LongDistance

3 LongDistance

4 Local

5 Call

6 Timer

7 PersistentRoot

8 PersistentEntities

9 MyPersistentEntities

10 Billing Timing

11 Timing

12 TimerLog

4 stubs of classes
1 stub of aspect

contain abstract methods and therefore can be instantiated. Therefore, it was not necessary
to create concrete specializations of classes to be instantiated.

4.4. Reverse strategy

The actual result of this integration testing is presented in Table 6. It can be noticed
confronting Table 5 and Table 6 that the actual number of stubs used was smaller than the
expected number. We discovered in this study that the join points selected by pointcuts
of type call are not used if context information is used, as for example the clauses this
and thisJoinPoint. This was the cause in this study for the actual number of stubs be
smaller than the expected number. An example is the aspect TimerLog that needs the
class Timer as well as the aspect Timing. Notice also that the dependency of type “C”
between TimerLog and Timing was generated by a join point of type call. During the
testings this dependency became between TimerLog and the class that represents the test
cases and not anymore between TimerLog and Timing.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

420



Tabela 4. Cost of stubs for the incremental+ strategy

Order Module Stub #A
ttr

.

#M
et

.

#P
CD

s

#M
em

be
rs

In
tr

od
uc

ed

#O
th

er
De

cla
ra

tio
ns

1 Connection C Customer C 1 4 – – –
PersistentEntitiesa A 0 0 0 2 0

2 Customer C Local C 0 1 – – –
LongDistance C 0 1 – – –
Call C 2 7 – – –
PersistentEntitiesa A 0 0 0 3 2

3 LongDistance C Callc C 2 7 – – –
Localc C 0 1 – – –
PersistentEntitiesc A 0 0 0 3 2

4 Local C Callc C 2 7 – – –
PersistentEntitiesc A 0 0 0 3 2

5 Call C PersistentEntitiesa A 0 0 0 4 2

6 Timer C – – – – – – –
7 PersistentRoot C – – – – – – –

8 PersistentEntities A MyPersistentEntitiesb A 0 0 0 0 3
9 MyPersistentEntities A – – – – – – –
10 Billing A Timing A 0 1 0 3 0
11 Timing A – – – – – – –
12 TimerLog A – – – – – – –
Total of stub/concretization/reused 8/1/5 3 14 0 12 7

aSpecific stub.
bConcrete aspect.
cIndirectly reused.

Tabela 5. Integration testing plan for the reverse strategy
Order Module under test Stub
1 TimerLog Timer and Timing

2 Timing Connection, Customer, Timer, Billing and PersistentEntities

3 Billing Connection, Customer, Call, Local, LongDistance, Timer and
PersistentEntities

4 Timer

5 MyPersistentEntities Connection, Customer, PersistentRoot and PersistentEntities

6 Call Connection, Customer, Local, LongDistance and PersistentEntities

7 Local Connection and Customer

8 LongDistance Connection and Customer

9 Customer PersistentRoot, Connection and PersistentEntities

10 PersistentEntities Connection and PersistentRoot

11 Connection PersistentRoot

12 PersistentRoot

26 stubs of classes
7 stubs of aspects

4.5. Random strategy

Table 7 presents the planning for the integration testing in random order. The result of
the integration testing is shown in Table 8. It can be seen that the actual number of stubs
needed was smaller that the expected number. There are two reasons for this: dependen-
cies of type call also occurred, as in the reverse strategy, and intertype declarations that
change the specialization hierarchy may not need stubs.

The second case is illustrated by the aspect MyPersistentEntities which
changes the inheritance hierarchy of Customer and turns it in a specialization of
PersistentEntities. Therefore, all methods and attributes are inherited by

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

421



Tabela 6. Cost of stub for the reverse combined strategy.

Order Module Stub #A
ttr

.

#M
et

.

#P
CD

s

#M
em

be
rs

In
tr

od
uc

ed

#O
th

er
De

cla
ra

tio
ns

1 TimerLog A Timer C 2 3 – – –
2 Timing A Connection C 2 4 – – –

Customer C 0 1 – – –
Timer C 2 3 – – –
Billing A 0 0 2 0 1

3 Billing A Connection C 2 6 – – –
Customer C 2 6 – – –
Local C 0 0 – – –
LongDistance C 0 0 – – –
Timer C 2 3 – – –

4 Timer C – – – – – – –
5 MyPersistentEntities A Connection C 0 0 – – –

Customer C 0 0 – – –
PersistentRoot C 1 2 – – –
PersistentEntities A 0 0 0 0 0

6 Call C Connection C 3 6 – – –
Customer C 2 4 – – –
Local C 0 3 – – –
LongDistance C 0 3 – – –

7 Local C Connection C 2 4 – – –
Customer C 0 0 – – –

8 LongDistance C Connection C 2 4 – – –
Customer C - - – – –

9 Customer C PersistentRoot C 0 0 – – –
Connection C 3 8 – – –
PersistentEntities A 0 0 0 0 0

10 PersistentEntities A Connection C 4 7 – – –
PersistentRoot C 0 0 – – –

11 Connection C PersistentRoot C 0 0 – – –
12 PersistentRoot C – – – – – – –
Total of stub/concretization/reused 28/0/0 29 60 2 0 1

Except for the single stub Billing in step 2, all other stubs are specific.

Customer and during integration of class Connection it is not necessary to imple-
ment a module to simulate neither PersistentRoot nor MyPersistentEntities,
because their methods and attributes were simulated directly by the stub of
PersistentEntities. Although the number of modules became smaller, the num-
ber of methods and attributes is not changed. From this we can infer that there is a small
reduction of effort because it is not necessary to implement the code of the stub’s body.

This can be generalized as follows. Let M be the set of classes and aspects spe-
cified by an ORD and let m1, m2, m3 ∈ M be tested in this order. Let m1 be a module
depending on m2 and m3. Let m2 contain a set of attributes Att and/or a set of methods
Met that are either introduced by m3 or a change of the inheritance hierarchy introduced
by any aspect that makes m3 a generalization of m2. Since s2 e s3 are stubs that simulate
m2 e m3, respectively, then s2 can simulate directly the attributes and methods belonging
to Att and Met, therefore making unnecessary to implement s3.

4.6. Analysis of the results obtained

A summary of the results of this study is shown in Table 9. Notice that we considered
the sum of specific and concrete aspects as the total of stubs. Considering the numbers of

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

422



Tabela 7. Integration testing plan for the random strategy
Order Module Stub
1 Timer

2 Connection Customer, PersistentRoot and PersistentEntities

3 Local Customer

4 Billing LongDistance, Call, Customer, Timing and PersistentEntities

5 Customer Call, PersistentRoot, LongDistance, PersistentEntities
6 TimerLog Timing

7 PersistentEntities PersistentRoot

8 Timing Call

9 MyPersistentEntities PersistentRoot

10 PersistentRoot

11 Call LongDistance

12 LongDistance

13 stubs of classes
5 stubs of aspects

Tabela 8. Cost of stubs for the random strategy

Order Module under test Stub #A
ttr

.

#M
et

.

#P
CD

s

#M
em

be
rs

In
tr

od
uc

ed

#O
th

er
De

cla
ra

tio
ns

1 Timer C – – – – – – –
2 Connection C Customera C 1 2 – – –

PersistentEntitiesa A 0 0 0 2 0
3 Local C Customera C 1 2 – – –

PersistentEntitiesb A 0 0 0 2 0
4 Billing A Customera C 1 2 – – –

LongDistancea C 0 0 – – –
Timing A 0 1 0 1 0
PersistentEntitiesa A 0 0 0 3 0

5 Customer C Call C 2 7 – – –
LongDistancea C 0 1 – – –
PersistentEntitiesa A 0 0 0 4 0

6 TimerLog C – – – – – – –
7 PersistentEntities A MyPersistentEntitiesc A 0 0 0 0 3

PersistentRoot C 0 0 – – –
Callb C 2 7 – – –

8 Timing A MyPersistentEntitiesbc A 0 0 0 0 3
Callb C 2 7 – – –
PersistentRootb C 0 0 – – –
LongDistanceb C 0 1 – – –

9 MyPersistentEntities A Callb C 2 7 – – –
LongDistanceb C 0 1 – – –
PersistentRootb C 0 0 – – –

10 PersistentRoot C – – – – – – –

11 Call C LongDistanceb C 1 0 – – –
12 LongDistance C – – – – – – –
Total of stub/concretization/reused 11/1/10 5 15 0 10 3

aSpecific stub.
bConcrete aspect.
cIndirectly reused.

Table 9, it can be observed that in the combined strategy there is a tendency of producing
a greater number of stubs of classes than stubs of aspects thus leading to a greater number
of methods and attributes simulated. On the other hand, there is a tendency of producing a
greater number of stubs of aspects in the incremental+ strategy than stubs of classes thus
leading to a tendency of a greater number of both types of intertype declarations.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

423



In the reverse order we notice that the number of stubs was much greater than
the number of aspects, specially the number of stubs of classes. This is due to the early
integration of aspects and to the greater number of associations among aspects and other
modules. This shows that it is not a good idea starting integration from the aspects,
confiming intuition. The random strategy had a worse cost than the incremental+ and
combined strategies and better than the reverse strategy considering only the number of
stubs.

Tabela 9. Effort to create stubs in absolute numbers
Strategy #Attr. #Met. #PCDs #Intr. #Decl. Cost of

members
#Stub of class #Stub of aspect #Total of

stubs
Combined 6 20 0 4 4 34 5 3 8
Incremental+ 3 14 0 12 7 36 4 5 9
Reverse 29 60 2 0 1 92 25 3 28
Random 5 15 0 10 3 33 7 4 12

We also calculated the cost that each member adds to the stub. In Table 10 we show
the average number of stub’s members considering that all have the same weight. This
was done simply diving the total number of stubs by the total number of each member.
Using this metric, the random order improves its performance as it produced a number
of stubs slightly better than the combined order. This topic is further discussed in the
conclusions, but we can see that if we consider the number and cost of members, other
sequences than the one analyzed may be better.

Tabela 10. Average cost of each stub
Strategy Attr. per stub Met. per stub PCDs per stub Intr. per stub Decl. per stub Avg. cost of each stub
Combined 0,75 2,50 0,00 0,50 0,50 4,25
Incremental+ 0,33 1,56 0,00 1,33 0,78 4,00
Reverse 1,04 2,14 0,07 0,00 0,04 3,29
Random 0,42 1,25 0,00 0,83 0,25 2,75

Concluding, the combined strategy performed slightly better in this study than
the incremental+ strategy considering only stubs and sligthly worse considering also the
members created in the stubs.

5. Concluding Remarks

The first conclusion of our study is that we can adapt the rules to construct the ORD
for AOP programs to have a result closer to the actual number of stubs found in the
experiments. This could be done leting out of the ORD the dependencies generated by
pointcuts of type call without context information. This is possible to do but depends
on the artifacts avaliable to create the ORD: design documentation only may not contain
the information about pointcuts. The same can be done with intertype declarations that
change the hierarchy of specializations, as occured with MyPersistentEntinties.

The second conclusion is that we need to investigate further the role of members in
a stub. The work of Milanova et al. [2002] and Labiche et al. [2000] address this problem
and tries to minimize it for object oriented programs. Milanova et al. [2002] present a
proposal based on Java bytecode, that is different from our approach of deriving the ORD
from design documentations. The proposal of Labiche et al. [2000] consists in: postpone

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

424



the test of abstract classes up to the test of one of its concrete specializations; change the
dependencies from an abstract class to one of its concrete specializations. Although the
solution of Labiche et al. [2000] do not use ORDs, it seems to be easy to adapt it and use
it in the construction of ORDs. Generaly, let M be the set of classes and aspects present
in an ORD and m1, m2 ∈ M , such that m1 depends on m2. Let MHC be the set of
all concrete specializations of m2. The dependency between m1 and m2 disappears and
dependency among m1 and all members of MHC are created.

We also noticed that many stubs of aspects are very close to the actual implemen-
tation. Thus, the effort to implement them later in the integration phase is small. Also,
stubs of aspects that implement concerns that cannot be completely uncounsious from the
base code, as persistence, can be reused in other applications, paying back the effort to
develop them.

Referências
Abdurazik, A. and Offutt, J. (2006). Coupling-based class integration and test order. In

AST ’06: Proceedings of the 2006 international workshop on Automation of software
test, pages 50–56, New York, NY, USA. ACM Press.

Aldawud, O; Elrad, T. and Bader, A. (2003). A UML profile for aspect-oriented software
development. In 3rd Int. Workshop on Aspect-Oriented Modeling. Aldawud, O.; Kandé,
M.; Booch, G.; Harrison, B. and Stein, D.

Alexander, R. T. and Bieman, J. M. (2004). Towards the systematic testing of aspect-
oriented programs. Technical Report CS-4-105, Colorado State University, Fort Col-
lins, Colorado.

Baniassad, E. L. A. and Clarke, S. (2004). Theme: An approach for aspect-oriented
analysis and design. In 26th International Conference on Software Engineering (ICSE
2004), 23–28 May 2004, Edinburgh, United Kingdom, pages 158–167. IEEE Computer
Society.

Briand, L. C., Labiche, Y., and Wang, Y. (2003). An investigation of graph-based class in-
tegration test order strategies. IEEE Transactions on Software Engineering, 29(7):594–
607.

Camargo, V. V. and Masiero, P. C. (2005). Object-oriented frameworks. In XIX SBES -
Brazilian Symposium on Software Engineering, pages 200–216, Uberlândia – Brazil.
in Portuguese.

Ceccato, M., Tonella, P., and Ricca, F. (2005). Is AOP code easier or harder to test than
OOP code? In First Workshop on Testing Aspect-Oriented Programs (WTAOP 2005),
Chicago, Illinois – USA.

Cibrán, M., D’Hondt, M., and Jonckers, V. (2003). Aspect-oriented programming for
connecting business rules. In 6th International Conference on Business Information
Systems.

JUnit (2002). Junit. JUnit.org.
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and

Irwin, J. (1997). Aspect-oriented programming. In Aksit, M. and Matsuoka, S., editors,
ECOOP’97 - Object-Oriented Programming, 11th European Conference, Jyväskylä,
Finland, June 9-13, 1997, Proceedings, volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer.

Kienzle, J., Yu, Y., and Xiong, J. (2003). On composition and reuse of aspects. In Leavens,
G. T. and Clifton, C., editors, FOAL: Foundations of Aspect-Oriented Languages at the
AOSD 2003.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

425



Krechetov, I., Tekinerdogan, B., Garcia, A., Chavez, C., and Kulesza, U. (2006). Towards
an integrated aspect-oriented modeling approach for software architecture design. In
8th Workshop on Aspect-oriented Modeling (AOM’06) at the Fifth International Con-
ference on Aspect-Oriented Software Development (AOSD’06), Bonn, Germany.

Krinke, J. and Störzer, M. (2003). Interference analysis for AspectJ. In Workshop on
Foundations of Aspect-Oriented Languages at the Proceedings of the 2nd international
conference on Aspect-oriented software development (AOSD ’2003), Boston – USA.

Kung, D. C., Gao, J., Hsia, P., Lin, J., and Toyoshima, Y. (1995). Class firewal, test
order and regression testing of object-oriented programs. Journal of Object-Oriented
Program, 8(2):51–65.

Labiche, Y., Thévenod-Fosse, P., Waeselynck, H., and Durand, M.-H. (2000). Testing
levels for object-oriented software. In ICSE ’00: Proceedings of the 22nd international
conference on Software engineering, pages 136–145, New York, NY, USA. ACM Press.

Le Traon, Y., Jéron, T., Jézéquel, J., and Morel, P. (2000). Efficient OO integration and
regression testing. IEEE Transactions on Reliability, 49(1):12–25.

Loughran, N. and Rashid, A. (2004). Framed aspects: Supporting variability and configu-
rability for aop. In Software Reuse: Methods, Techniques and Tools: 8th International
Conference on Software Reuse, ICSR 2004, Madrid, Spain, July 5-9., volume 3107 of
Lecture Notes in Computer Science, pages 127–140. Springer.

Milanova, A., Rountev, A., and Ryder, B. (2002). Constructing precise object relation
diagrams. In ICSM ’02: Proceedings of the International Conference on Software
Maintenance (ICSM’02), page 586, Washington, DC, USA. IEEE Computer Society.

Myers, G. J. (1979). Art of Software Testing. John Wiley & Sons, Inc., New York, NY,
USA.

Ré, R., Lemos, O. A. L., and Masiero, P. C. (2007). Minimizing stub creation during
integration test of aspect-oriented programs. In WTAOP ’07: Proceedings of the 3rd
workshop on Testing aspect-oriented programs, pages 1–6, New York, NY, USA. ACM
Press.

Ré, R. and Masiero, P. C. (2005). Avaliação da abordagem incremental no teste de in-
tegração de programas orientados aspectos. In XIX SBES - Brazilian Symposium on
Software Engineering, volume 19, pages 168–183, Uberlândia – Brazil. in Portuguese.

Soares, S., Laureano, E., and Borba, P. (2002). Implementing distribution and persis-
tence aspects with AspectJ. In Proc. of the 17th ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 174–90. ACM Press.

Tai, K.-C. and Daniels, F. J. (1999). Interclass test order for object-oriented software.
Journal of Object-Oriented Programming, 12(4):18–25,35.

Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160.

The AspectJ Team (2002). The AspectJ programming guide. Xerox Croporation.
Zhao, J. (2003). Data-flow-based unit testing of aspect-oriented programs. In COMPSAC

’03: Proceedings of the 27th Annual International Conference on Computer Software
and Applications, page 188, Washington, DC, USA. IEEE Computer Society.

Zhou, Y., Richardson, D., and Ziv, H. (2004). Towards a practical approach to test aspect-
oriented software. In Beydeda, S., Gruhn, V., Mayer, J., Reussner, R., and Schweiggert,
F., editors, Testing of Component-Based Systems and Software Quality, TECOS 2004
(Workshop Testing Component-Based Systems), pages 1–16, Erfurt – Germany.

XXI Simpósio Brasileiro de Engenharia de Software
SBES 2007

426


	SBES
	ST8-3


