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Abstract. Testing multi-threaded systems is quite a challenge. The non-
determinism of these systems makes their implementation and their test imple-
mentation far more susceptible to error. It is common to have tests of these
systems that may not pass sometimes and whose failures are not caused by ap-
plication faults (bugs). For instance, this can happen when test verifications
(assertions) are performed at inappropriate times. Unreliable tests make de-
velopers waste their time trying to find non-existing bugs, or else make them
search for bugs in the wrong place. Another problem is that developers may
cease to believe that certain test failures are caused by software bugs even when
this is the case. In this paper, we propose an approach to avoid test failures
that are caused, not by application bugs, but by test assertions performed either
too early or too late. Our basic idea is to use thread monitoring to support test
development. Moreover, we put forward a testing framework that follows the
proposed approach, and we also evaluate the effectiveness of this framework for
testing a multi-threaded system.

1. Introduction
Software testing is a fundamental activity of software engineering [Bertolino 2007], and
its purpose is to secure the quality of the final product. Test activities usually include the
following steps: 1) designing test cases; 2) executing the software with these test cases;
and 3) examining the results produced by these test executions [Harrold 2000].

When testing multi-threaded systems, it is not always easy to determine when the
results produced by the system execution can be examined. This happens when the tests
being run exercise the system’s asynchronous operations. In some cases, we have tests
that may fail because we did not examine the operation results at the right time - for
instance, when the test assertions are performed either too early (when the system is still
carrying out the desired operation), or too late (when the state being verified is no longer
valid).

The main purpose of our work is to suggest a way of preventing this particular
problem and increase test reliability. As tests do not indicate the absence of bugs, but
their presence [Dijkstra 1969], we want to make sure that behind a test failure there will
always be a bug that needs to be searched.

One of the facts that has motivated our work is that multi-threaded applications
have become increasingly common, especially with the advent of multicore processors.



On the other hand, this has contributed to expand still further the complexity of soft-
ware development. As a result, it has established the need for more resourceful pro-
gramming tools capable of pinpointing defects in a more systematic fashion and assisting
programs debugging, identifying performance bottlenecks, and facilitating testing activi-
ties [Sutter and Larus 2005].

In this paper’s context, testing is especially challenging due to the inherent non-
determinism of multi-threaded applications. Different thread interleavings may happen
for different executions of the same test case [MacDonald et al. 2005]. However, one
expects the system to work correctly for all possible executions. Failures that only occur
in some executions must have been caused by intermittent bugs, and not by test defects,
as it would be the case sometimes. Because these bugs are difficult to find, when the
test itself is the problem, developers will waste too much time trying to find bugs that
do not exist, or searching for bugs in the wrong place. Another negative effect is that
developers may become suspicious of test results. For instance, in the event of a test
failure, developers may not believe the failure has been caused by a bug, even when that
is exactly the case. This has also been observed elsewhere [Stobie 2005].

Our main purpose is to help test developers to avoid failures in multi-threaded
systems tests caused by assertions performed at inappropriate times. To avoid that, a pos-
sible solution is to make the tests wait until a certain stable state of the system threads
has been obtained, as discussed in another work [Goetz and Peierls 2006]. Neverthe-
less, this solution has been described by Goetz and Peierls as an ‘easier said than done’
technique. Because of that, developers tend to use, in practice, explicit delays (such as
Thread.sleep(timeInterval) ), which can lead to spurious test failures.

We propose in this work an approach to avoid such spurious test failures caused by
test assertions performed too early or too late. This approach is based on the monitoring of
application threads and on simple operations made available to test developers. In order
to support this approach, we have developed a testing framework which uses Aspect-
Oriented Programming [Kiczales et al. 1997] to monitor and provide a better control of
application threads during tests. Moreover, we have evaluated the application of this
framework to some tests of OurBackup [Oliveira 2007] – a peer-to-peer backup system.

This paper is organized as follows. In Section 2, we give an overview of the main
research directions on multi-threaded systems testing. Besides, we also introduce in this
section the specific problem we are dealing with. In Section 3 we present our approach
and in Section 4 we present more details about the framework to support this approach.
In Section 5 we present an evaluation of our work. In Section 6 we discuss some related
work, and finally, in Section 7, we present our conclusions and point out directions for
future research.

2. Multi-threaded systems testing
There are several works that deal with tests in multi-threaded systems. The pur-
pose of some of them is to find concurrent defects, such as unintentional race con-
ditions or deadlocks. The research areas in this field include: data race detec-
tion [Naik et al. 2006, Savage et al. 1997], static analysis [Rinard 2001], replay tech-
niques [Ronsse and De Bosschere 1999, Choi and Srinivasan 1998], techniques to force
some thread interleavings [MacDonald et al. 2005], and techniques to generate differ-



ent interleavings in order to reveal concurrent faults [Stoller 2002] (such as the ConTest
tool [Copty and Ur 2005]).

However, none of these works deals with the problem we are handling. In the
present work, our purpose is to help test developers in better predicting the moment to
perform test assertions. This is most demanding when the test involves asynchronous
operations. Our intention is to avoid intermittent failures in tests and, more specifically,
failures which are not caused by application faults.

Before performing a test assertion, we have to guarantee that the system has com-
pleted the operation being tested. However, this is not always easy, as it has also been
observed by Goetz and Peierls [Goetz and Peierls 2006]. The authors say that a possible
strategy is to wait until the thread blocks. A similar observation can also be found in
the HarnessIt tool documentation [United Binary ]. According to this documentation, test
methods on multi-threaded objects should not exit before all child threads created by the
target object have completed their processing.

In order to better understand what has been discussed, we will present an overview
of the tests that involve asynchronous operations. We will also discuss some common
techniques used in these tests.

Waiting Before Assertions

When we have asynchronous operations in a test, the following test phases are generally
found:

1. Exercise the system
2. Wait
3. Perform assertions

Let us consider, for example, a case in which phase 1 exhibits the following op-
eration: mySystem.initialize() . This operation initializes the system, and, in order
to do that, it creates other threads, which may also create some more threads (see Figure
1). These threads will perform operations and then stand waiting until other stimuli are
provided.

Figure 1. Example: Threads created by an asynchronous operation being tested

Considering the same example, suppose that in the assertions part (phase 3), we
have the following code: assertTrue(mySystem.isCorrectlyInitialized()) .

This code verifies whether the system has been correctly initialized. In case it
has not, the test will fail. Nevertheless, before verifying whether the system has been
correctly initialized, we have to wait until the initialization process has finished. Defining
how much time to wait before performing assertions, especially when multiple threads



are created, may be challenging. Moreover, depending on the approach used, some test
failures may occur.

When there are asynchronous operations in a test, some of the common forms to
implement the wait phase before assertions are:

1. Explicit Delays. Ex:
Thread.sleep(t);

2. Busy Waits. Ex:
while (!stateReached())
Thread.sleep(t);

3. Control of threads. Ex:
myThread.join();

Explicit Delays and Busy Waits

It is common to use explicit delays in tests because they are easy to implement. How-
ever, they may bring in two problems: test failures due to insufficient delay times; or
tests that take too long because of extremely large delay times chosen by test develop-
ers [Meszaros 2007].

Busy waits may also be common, especially when the condition being verified in
each iteration is easily obtained from the system. However, guards using busy waits have
some drawbacks [Lea 2000], such as: i) they can waste an unbounded amount of CPU
time spinning without necessity; and ii) they can miss opportunities to fire if they are not
scheduled to execute during times when the condition is momentarily true.

Control of Threads

A more secure way to know when an assertion can be performed is through the control of
the threads created in the test. We must assure that they have finished or are in a stable
state (such as all threads waiting) before assertions are performed.

When we have the instances of the thread objects in the test, this is simpler, and
operations such as Thread.join() can be invoked. When this operation is used in a
test, the test will only proceed when the given thread instance has finished its job. How-
ever, it is not always possible to have access to the instances of all threads created by the
test. Sometimes we will need to monitor the application threads in order to know when
to perform assertions. Besides, some thread control mechanisms may also be needed, be-
cause some threads may wake up and mess up test results when assertions are still being
performed.

In the following section, we propose an approach based on the control of threads
to provide this support for test developers.

3. The Thread Control For Tests Approach
In the Distributed Systems Lab (LSD) at Federal University of Campina Grande (UFCG),
the problem of test failures that were not caused by bugs could be easily observed. It was
in general caused by assertions performed at inappropriate times. For instance, when the



test was run in a slower machine, delay times being used could be insufficient and the test
could fail.

As an attempt to avoid this problem in the development of OurGrid
[Cirne et al. 2006], an open source peer-to-peer grid middleware, we have improved
our tests by providing to test developers an operation called waitUntilWorkIsDone

[Dantas et al. 2006]. This operation made the test thread wait until all other threads started
by the test were waiting or have finished.

Many tests have benefited from this operation and did not fail anymore due to in-
sufficient time to execute asynchronous operations before the assertions. However, as the
system evolved, we have noticed that test developers began requiring some specific thread
configurations (besides the all threads waiting or finished configuration). Moreover, an-
other problem noticed was that some periodic threads could wake up during assertions
and mess up test results.

To solve the limitations of busy-waits, explicit delays and also of our previous
work [Dantas et al. 2006], we propose in the present work a general approach to test
multi-threaded systems. This approach is called Thread Control For Tests, and it proposes
that tests involving asynchronous operations should present the following phases:

1. prepare the environment stating the system state in which the assertions should
be performed (the expected state);

2. invoke the system operations, exercising the system;
3. wait until the expected system state has been reached;
4. perform the assertions, with no fear that a system thread will change the system

expected state and disturb the system;
5. make the system proceed normally so that the test can finish.

Concerning these phases, we propose that phases 1, 3 and 5 should be provided by
a testing tool. Our basic idea is that this tool must make some simple operations available
to test developers. In order to do that, the tool should be able to monitor system threads
and it should notify the test thread as soon as an expected system state is reached. Besides,
the testing tool must also avoid system perturbations during assertions (phase 4).

In the Thread Control For Tests approach, a system state to be reached is defined
in terms of thread states. Such expected state can be defined in a general way, such as wait
until all threads created by the test are waiting or have finished. We may also specify a
wait condition in a more specific way, such as wait until certain threads are in certain
states. To illustrate this latter case, let us consider the example previously given and
illustrated by Figure 1. An expected system state (or system configuration) for this case
could be when Thread B has finished and all instances of Thread A are waiting.

As we can observe, in order to support this approach, we must provide mecha-
nisms to monitor state transitions. Figure 2 illustrates some examples of operations to
be monitored, considering the Java language [Gosling 2000]. It also shows some possible
states of system threads which are achieved before or after these operations are performed.

Taking the Java language as an example, we can consider that an application thread
is running after it starts to execute its corresponding run method. We may also say that
it has finished, when this method execution has ended. All these transitions should be



monitored in order to detect as soon as possible when an overall expected system state has
been reached. Once this has happened, the test thread should be informed. Besides that,
after this state is reached, some monitored transitions that could disturb test assertions
should be blocked until they are explicitly allowed by the test thread to proceed.

Figure 2. Some monitored operations and related states

While defining a system configuration in terms of the identification of certain
threads and their associated states, one must define the states of interest. Moreover, one
must also take into account before or after which points in the execution flow of a pro-
gram a state transition happens. This should be considered while implementing test tools
to support this approach. In order to aid the development of such tools, we have formal-
ized some of these concepts in the following:

Let the set of system threads instantiated by a test case execution be T =
{t1, ..., t|T |}. Each thread, at a given time, is at a state s ∈ S, where S is the collec-
tion of all possible states in which system threads can be. The states set S is defined by
the testers considering states where threads should or should not be while assertions are
being performed. The state in which a given thread ti ∈ T is at a given time is given by a
function which we denote as f : T → S.

Furthermore, let the system overall state at a given moment be a set of pairs O =
{(t1, f(t1)), ..., (t|T |, f(t|T |))}. This overall state changes whenever a thread changes its
state. For a thread ti, a state transition happens after or before certain points are reached
in the execution of the system. Let then P represent the set of these moments at which
state transitions happen.

In order to implement a test tool that follows our approach, one must define the
set of possible states S, the possible state transitions P and also a transition function
g : S × P → S.

To use a test tool with these features, a test developer must define an expected state
(E) for a given system. This state is defined in terms of a subset J ⊆ T of the system
threads and the desired states in which they can be found. An expected state is reached
when for each thread tj ∈ J , ∃(tj, f(tj) ∈ O so that f(tj) is at one of these states.

To illustrate that, considering the example shown in Figure 2, we can
state that {Finished, Running, Waiting} ⊂ S. We may also say that
{After run execution, Before wait call, After wait call} ⊂ P .

This formalization is intended to guide the development of tools that support this
approach, such as the testing framework that will be presented in the following section.
However, an important attribute of the testing tool is to make the expected state definition
as simple as possible, abstracting this formalism from the tool users (test developers).



Moreover, supporting tools that follow our approach should define their states and
transitions of interest. These tools should be as general as possible in order to increase
the reuse of such tools by several applications.

In the following section, while discussing our testing framework to support the
Thread Control For Tests approach, we will show the common states and transitions under
consideration. In addition to that, we will also present some technical details on how this
framework can be extended to incorporate other states and transitions of interest.

4. The ThreadControl Testing Framework
In order to monitor several execution points of interest and also avoid many changes to
the applications’ code, a technique that can be used is Aspect-Oriented Programming
(AOP) [Kiczales et al. 1997]. AOP is a programming paradigm that aims at addressing
the aspects (or system concerns) whose implementation crosscuts traditional modules.
AOP proposes that those aspects that could cause code tangling and scattering should be
kept separate from the functional code.

An example of an AOP language is AspectJ [Kiczales et al. 2001], which is a
general-purpose aspect-oriented extension to Java. AspectJ supports the concept of join
points, which are well-defined points in the execution flow of a program. It provides ways
of identifying particular join points (pointcuts) and a mechanism to define additional code
that runs at join points (advice). Pointcuts and advice are defined in aspects.

Considering these AOP concepts and the Thread Control For Tests approach, we
have identified execution points (pointcuts) that represent main changes on the system
state. Once those execution points are reached, there come the advices (which resemble
methods) to update the system overall state and to delay state changes (just in case an
assertion is being performed). When an expected state with a given configuration of
threads has been reached, the test thread will be notified in order to perform its assertions.
The assertions are performed without any disturbance from any other monitored thread
(e.g. a periodic thread). The other threads do not interrupt the assertions executions
because when they are about to change their state, the advice code blocks them. Therefore,
the test thread can perform assertions, and any other thread trying to change the system
state is not allowed to proceed before completion of these assertions.

Our testing framework is called ThreadControl and it is implemented in Java and
AspectJ. However, other generic and similar frameworks can be built in other languages.
The source code of the ThreadControl framework is available as open source at http:

//www.dsc.ufcg.edu.br/˜ayla/threadControl .

If a framework like ThreadControl is used in a test with asynchronous operations,
the test developer should simply include in the test some calls to framework operations.
The main operations provided are the following:

• prepare : it is used to specify desired system configurations (in terms of thread
states) for which the system should wait before performing assertions;

• waitUntilStateIsReached : it allows the assertions to be performed at a se-
cure moment, when the state specified through the prepare operation has been
reached. If a monitored thread tries to disturb the system after this moment, it will
not be allowed to proceed;



• proceed : this is the operation responsible for making the system proceed its
normal execution. Any threads that were not allowed to proceed because asser-
tions were being performed are then released. This way, the test may terminate or
continue with other assertions.

As we can observe, these operations correspond to phases 1, 3 and 5 of the phases
proposed in the previous section. An illustration of the use of these operations is shown in
the code below. This code is based on the system initialization example from Section 2.
It shows a test case that uses the JUnit framework [Massol 2004].

1 public void testSystemInitialization(){
2 threadControl.prepare(expectedSystemConfiguration);
3 mySystem.initialize();
4 threadControl.waitUntilStateIsReached();
5 assertTrue(mySystem.isCorrectlyInitialized());
6 threadControl.proceed();
7 }

In this example, the system is exercised through the mySystem.initialize

method call, which is not synchronous. In order to avoid executing the assertion
at line 5 before the initialization has completed, we simply included a call to the
waitUntilStateIsReached operation from the framework (see line 4). However,
before it is invoked, there must have been a call to prepare in order to specify the
system configuration to wait for (line 2).

To provide the operations above through the testing framework, we have imple-
mented an aspect called ThreadControlAspect and some auxiliary classes. This code
is combined (weaved) with the application code through the AspectJ compiler before ex-
ecuting the tests.

The pointcuts defined in this aspect correspond to state transitions. To identify
what must be done before or after these points in the execution flow of the program,
we define before and after advices. They are responsible for managing the current
overall state of the system. Besides, they also have code to control threads that are about
to change the system state while assertions are being performed.

In order to know when a state transition happened, we had to select some execution
points that would lead to these transitions in the testing framework. Initially, we included
support for the following Java operations involving threads: calls to Thread.start ,
executions of the run method from classes that implement the Runnable interface,
calls to Thread.sleep , calls to Object.wait , calls to Object.notifyAll and
Object.notify . The possible states for threads that have been considered were: un-
known, started, running, waiting, sleeping, notified, possibly notified and finished. Con-
sidering the formalization presented in the previous section, these states correspond to the
S set for this framework. The determination of the states to which the threads should go
when some execution points (such as the operations above) are reached corresponds to
the implementation of the transition function g.

Some other operations from java.util.concurrent package (released in Java
5) are also managed by the framework, such as: calls to take and put methods on
classes that implement the BlockingQueue interface, and also calls to acquire ,



release and drainPermits methods from the Semaphore class. During the im-
plementation of the support for these methods, one should bear in mind the need for
monitoring the internal elements of these structures (e.g. the elements of the queue or
the semaphore permits). Depending on these elements, we will be able to determine with
more precision in which state the threads are.

Other operations, including application specific operations, can also be managed.
In order to do that and extend the framework, new pointcuts and corresponding advices
should be added to the ThreadControlAspect. The pointcuts should correspond to
the points in the execution that lead to state transitions. The advices should inform to
auxiliary classes when a state transition has happened. Besides that, they should perform
verifications in order to decide whether or not a state transition is allowed to proceed.

All the state management of the framework is done by the auxiliary classes, ac-
cording to notifications sent by the aspect. We do not rely on the thread state informa-
tion provided by the Thread.getState Java operation as this information may not
be reliable. We have observed that such information may take some time to be up-
dated according to some initial experiments we have performed. This was also observed
by [Goetz and Peierls 2006], which also states that this operation is of limited usefulness
for testing, although it can be used for debugging.

To illustrate how the framework can be extended to consider other transitions, we
present below a code snippet of the ThreadControlAspect consisting of one of its
advices:

1 after(Object o): waitCalls(o) {
2 verifyAndBlockThreadIfNecessary(thisJoinPoint);
3 threadWatcher.threadFinishedToWaitOnObject(
4 Thread.currentThread(), o, false,
5 WaitType.WAIT_ON_OBJ_LOCK);
6 verifyAndBlockThreadIfNecessary(thisJoinPoint);
7 }

This advice states what must be done after the call to Object.wait method re-
turns. In general, the instances of auxiliary classes of the framework should be informed,
as illustrated by lines 3-5. However, before informing about the state transition and after
this notification, the framework verifies if the state transition is allowed to proceed (lines
2 and 6). If it is not, the current thread will be blocked until a proceed call is invoked
by the test. It is important to notice that operations to inform about state changes should
be synchronized to avoid data race conditions.

As we could observe, the framework presented follows the approach previously
proposed. However, this framework does not constitute the only possible implementa-
tion. Solutions based on design patterns are also possible. We have decided to use AOP
in order to avoid too many code changes in the application under test, making it also ap-
plicable to existing systems. By using AOP, it was possible to monitor several execution
points in a transparent and modularized way, which did not require changes in the base
code of the application. Should we need to remove this monitoring code used just for
testing purposes, we simply compile the application without the aspect that introduces
this functionality.



5. Evaluation

In order to evaluate our approach and its supporting framework, we have initially observed
in some systems from our lab the problem of test failures which were not caused by
bugs. In this section, we present some experiments we have performed using test cases
of OurBackup [Oliveira 2007], a peer to peer backup system. Our main objective was to
evaluate the use of the Thread Control Approach in a real system compared to the use of
alternative approaches.

OurBackup was chosen as the real system of our evaluation because it presented
several tests with asynchronous operations. Besides, we have observed that running those
tests several times could in some rare executions lead to failures due to the problems of
assertions performed at inappropriate moments.

The approach currently used by OurBackup to wait before assertions is based
on a combination of busy waits and explicit delays. Explicit delays were used in addi-
tion to busy waits because the guard condition used in the busy waits was based on the
Thread.getState operation, which is not always reliable, as previously discussed.
In order to use the current approach being used there, some code conventions must be
followed while implementing application threads. As following such conventions is not
always possible for existing systems, many developers tend to use in similar occasions
the Explicit delays approach [Goetz and Peierls 2006, Meszaros 2007]. Taking this into
consideration, we have also decided to compare the use of this approach with the Thread
Control for Tests Approach.

In order to do that, we have selected some tests from OurBackup that presented
asynchronous operations. Then, we have evaluated three versions of these tests:

• CurrVersion: The current version of the tests, which uses as wait approach a com-
bination of busy waits and explicit delays;

• ThreadControlVersion: A version of the tests using the ThreadControl testing
framework;

• ExplicitDelaysVersion(delayTime): A version of the tests using explicit delays.
This version has been configured with different delay times as their values would
influence both the tests execution times as well as the occurrence of failures caused
by insufficient delays.

After implementing these three versions, we re-executed these tests several times.
In these initial experiments, each test case was executed 650 times, using the same ma-
chine in a controlled environment. Then we measured the occurrence of failures on each
of the 12 tests that had been selected. For the ExplicitDelaysVersion scenarios, we used,
as the delay time parameter, a percentage of the mean time taken for each wait phase of
the ThreadControlVersion corresponding tests. Therefore, we ended up with 4 variations
of the ExplicitDelaysVersion. One of these variations uses, as delay times for each wait-
ing phase, 100% of the mean delay times obtained from the execution of the ThreadCon-
trolVersion . We named this variation ExplicitDelaysVersion (100%). The same procedure
was used for the other three variations: ExplicitDelaysVersion (80%), ExplicitDelaysVer-
sion (120%) and ExplicitDelaysVersion (150%). Table 1 shows the number of failures per
test obtained from these 650 runs considering the different test variations. .



Table 1. Test failures for each wait approach

As we can observe, depending on the approach used to wait before assertions we
can obtain failures in a test because the verifications are not performed at the appropriate
time. We could make this conclusion by observing the relation between the delay time
and the number of tests with failures in the ExplicitDelaysVersion scenarios. Observing
that fact, the developers of the CurrentVersion have used delay times considered to be
enough in their tests. However, this practice does not guarantee that the test will pass in
different machines. To illustrate this problem, we have performed 1000 executions of the
same tests for the CurrentVersion and the ThreadControlVersion on a machine under a
constant and heavy load. The failures obtained are shown in Table 2.

Table 2. Test failures in a machine under heavy load

As we can notice, more tests have failed in this new run. Analyzing the test code,
we could see that the causes for many of these failures are related to performing the
assertions too early or even too late. Using our framework we could avoid failures caused
by this problem. However, we cannot guarantee that all failures are due to this problem.
For instance, while debugging the failure found in the controlled scenario (see Table 1)
for the ThreadControlVersion, we discovered that this failure (which rarely occurs) was
associated to a bug already known by the OurBackup development team. The objective
of our work is to make developers focus on the real application bugs when a test failure
happens and not on a possible problem with the test.

To avoid such failures while using alternative approaches, developers tend to in-
crease too much the delay times used. Nevertheless, this leads to longer test execution
times. This common practice of increasing delay times has motivated us to also measure
in our initial experiments of the first scenario the total time taken for the tests execution
considering each approach. The execution mean times of these tests, considering the 650



runs in a controlled environment, are shown in Figure 3. Our main conclusion from this
initial experiment is that, for most of the tests, using the ThreadControl framework did
not impose a great burden on the performance of the tests execution. Indeed, it could
even improve the tests performance, especially considering that it is not always possible
to define the most appropriate delay time to use when dealing with a heterogeneous test
environment.

Figure 3. Mean execution time for the tests (in seconds)

Another conclusion from our experiments is that our approach was able to avoid
the test failures from OurBackup tests that were not due to bugs. This fact was expected,
according to the testing framework implementation, but the experiments gave us an idea
of its use in practice. We could notice that while using other approaches these failures
happen and their frequency would depend on the delay times chosen by the testers. This
has also been observed in the development of OurGrid, in which developers tried to avoid
the problem by just increasing the delay times used. One negative effect of such practice,
besides making the test runs take longer, is that developers may abandon some of these
tests or they may be rarely run, even though such tests can be the only ones that exercise
the system in a given way.

Moreover, we have observed that the use of our testing framework has helped test
developers with their work. By using this framework, we have spared developers from
guessing the appropriate delay times to use. It has also led to test executions that took less
time than the time required for the executions of the same tests using other approaches.

Although bringing such benefits, it is important to notice that the Thread Control
For Tests Approach also presents some drawbacks. The main disadvantage is related to
the fact that monitoring threads does affect thread interleavings. This may diminish the
chances of a problematic interleaving to be executed. In order to avoid that, techniques
and tools to generate different interleavings ([Stoller 2002, Copty and Ur 2005]) should
also be used in addition to our approach. Another drawback of our approach is that it
is not as easy to implement as explicit delays. However, we believe that this effort is
worthwhile as some test failures due to the problems in the test will be avoided, leading
to more reliable tests.



6. Related Work

In a previous work [Dantas et al. 2006], we have discussed how AOP has been used to
help with the testing process of the OurGrid project. In that work, we proposed the
waitUntilWorkIsDone operation in which there was only one system state config-
uration to wait for (e.g. all threads started by the test have finished or are waiting). In the
approach Thread Control For Tests, we extend this initial idea by making the definition
of other expected system states and also of other possible transitions. Besides, changes in
the system state during assertions are also avoided.

The book by Meszaros [Meszaros 2007] is another related work. The author dis-
cusses how difficult it is to develop tests with asynchronous code and presents the problem
of longer test runs due to waiting phases based on explicit delays. Besides presenting the
problem, Meszaros mainly suggests that tests with asynchronous operations should be
avoided at all costs in unit and component tests. We agree that at these levels, such tests
should be avoided. Nevertheless, while testing the system as a whole, considering its
most important operations, we cannot avoid tests with asynchronous operations. In cases
like this, we must face the challenges posed by this kind of tests, using, for instance,
approaches such as the one we propose here.

Works based on randomized scheduling [Sen 2007, Stoller 2002,
Edelstein et al. 2002] during test executions may benefit from our work. This hap-
pens because they depend on reliable tests. While exercising different schedulings, it is
important to avoid problems in tests that would lead to failures not caused by bugs.

The works by Copty and Ur [Copty and Ur 2005], Rocha et al. [Rocha et al. 2005]
and MacDonald [MacDonald et al. 2005] investigate the suitability of AOP for imple-
menting testing tools. In Copty and Ur’s work [Copty and Ur 2005], AspectJ has been
used to implement the Contest tool. This tool is used to force different thread schedulings
during several re-executions of test suites in order to find concurrent problems. It could
be used in addition to our approach to minimize the effect caused by monitoring on thread
interleavings. Rocha et al. [Rocha et al. 2005] present J-Fut: a tool for functional testing
of Java programs. This tool uses AOP to instrument and analyze the program under test.
The use of the AOP technique for both tools showed to be suitable and has allowed a clear
separation between the testing and the application code. This is something we have also
noticed in our work. In [MacDonald et al. 2005], AOP is combined with another tech-
nology called CSSAME to run test cases in a deterministic fashion. It basically controls
the program execution, allowing all paths of a race condition to be tested. In our work,
AOP is used for controlling executions in order to avoid system changes while assertions
are being performed.

Regarding threads monitoring, the work by Moon and
Chang [Moon and Chang 2006] presents a thread monitoring system for multi-threaded
Java programs, which is able of tracing and monitoring running threads and synchroniza-
tion. One of the main differences between that work and ours is that it does not focus on
testing, but mostly on debugging and profiling. Moreover, it uses a different technique for
thread monitoring: code inlining. The authors argue that the use of the inlining approach
is efficient for monitoring Java programs. We believe the use of this technique can also
be explored in the future in our testing framework as an alternative to AOP.



The work by Pugh and Ayewah [Pugh and Ayewah 2007] has also some ideas sim-
ilar to ours. Basically, this work describes the MultithreadedTC framework, which allows
the construction of deterministic and repeatable unit tests for concurrent abstractions. The
objective of the framework is to allow us to demonstrate that a code does provide specific
concurrent functionality. In order to do that, it uses the idea of a clock that advances
when all threads are blocked. This resembles the waitUntilStateIsReached oper-
ation of our framework. However, this work differs from ours in its focus on exercising
a specific interleaving of threads in an application, which is not our focus. While using
our approach, threads may run in different interleavings, but will achieve a common state
in which assertions should be performed and should pass independently of the interleav-
ing (unless there is a bug). Another difference between this work and ours is that, in
order to use the MultithreadedTC framework, an explicit control of the threads behavior
is necessary in the test code as the concurrency functionality is being analyzed. In our
case, while using our framework, we do not need the thread instances in the test code,
but only a way to refer to them (such as their class names) and to their expected state
before assertions. Another similarity between this work and our framework is the fact
that both borrow metaphors from JUnit [Massol 2004], making it easier the acceptance
of the tool and benefiting from existing features of current IDEs (integrated development
environments). This was illustrated in this paper by the testSystemInitialization
test case shown in Section 4.

7. Conclusions and Future Work
We have presented in this paper an approach for determining when to make assertions
while testing multi-threaded systems. We have also presented a testing framework to sup-
port this approach. We conclude from our evaluation that the approach proposed could be
successfully used to determine the adequate moment to perform assertions and to avoid
major changes in the system state while verifications are being performed. As a result, we
could avoid the occurrence of test failures due to assertions being performed at inappro-
priate times. Furthermore, we believe this approach can reduce the overall execution time
for test runs compared with other approaches currently used, such as explicit delays and
busy waits. Using these approaches, the execution time would depend on intervals chosen
by developers, which could either be appropriate or not, depending on the environment.
On one hand, if a small interval is chosen, test failures can occur more often. On the other
hand, if the interval is overestimated, this would lead to long test runs.

We also conclude that it is important to prevent failures caused by problems in
the test from happening. This would avoid time wasting trying to find bugs in the wrong
place or investigating bugs that do not exist. Besides, developers may also think that some
rare failures are caused by a problem in the test, not in the application, even when this
is the case. Another problem is that developers may exclude some important tests from
the application test suite because these tests present the above mentioned problems, even
when they are also able of finding bugs that only manifest themselves in some executions.

Such scenario with these problems may be too common because many developers
tend to use the explicit delays approach. This happens because it is not always possible
to include monitoring code in the application. However, techniques such AOP can make
code monitoring possible in a transparent way. Besides, such monitoring code can be
easily removed from the application when the system is deployed.



Another conclusion is that our approach also presents the advantage of avoiding
the miss of opportunity to fire effect. This way, when a given state is being expected
before assertions, threads that could mess up the test execution while assertions are being
performed are not allowed to proceed.

In the future, in order to reinforce our current results, we plan to explore the
ThreadControl testing framework in other systems. We want to measure how much test
execution time can be saved using this framework and how many failures which are not
caused by bugs could be avoided in those systems. Besides, we also plan to extend these
ideas in tests that use distributed components that may run on different machines.
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