
Integration Testing of Aspect-Oriented Programs:
a Structural Pointcut-Based Approach∗

Otávio Augusto Lazzarini Lemos and Paulo Cesar Masiero

Departamento de Sistemas de Computação, ICMC/USP - S̃ao Carlos
Caixa Postal 668 13560-970 São Carlos-SP-Brasil

{oall;masiero }@icmc.usp.br

Resumo.Várias abordagens de teste focam o descobrimento de falhas em
implementaç̃oes de unidades de software. Um problema não tratado pelo teste
de unidadée a interaç̃ao entre unidades, no que diz respeitoà corretude das
interfaces. Em Programação Orientada a Aspectos, esse problemaé dificul-
tado por mecanismos de conjuntos de junção, que definem interfaces implı́citas
no programa base. Neste trabalhoé apresentada uma abordagem de teste de
integraç̃ao estrutural baseada no mecanismo de conjuntos de junção para pro-
gramas AspectJ. Um modelo chamadoPCCFG (Pointcut-based Control Flow
Graph) é definido para representar regiões de execução afetadas por conjuntos
de junç̃ao. Baseado nesse modelo, dois critérios de fluxo de controle para uma
medida de cobertura transversal são propostos: todos-ńos-de-adendo e todas-
arestas-de-adendo. Como avaliação preliminar da aplicabilidade e efetividade
da abordagem proposta, os critérios s̃ao implementados em uma ferramenta
de teste chamada JaBUTi/PC-AJ eé apresentado um exemplo de aplicação.
O exemplo mostra evidências da efetividade dos critérios quando comparados
com crit́erios de teste de unidade.

Abstract. Several testing approaches focus on finding faults in software units of
implementation (i.e., unit testing). A problem not addressed by unit testing is
the interaction among units, with respect to the correctness of their interfaces.
With the use of Aspect-Oriented Programming this problem is further compli-
cated by pointcut mechanisms that cut new interfaces in the base program. In
this paper a structural integration testing approach for AspectJ programs is
presented. A model calledPCCFG (Pointcut-based Control Flow Graph) to
represent the flow of control between base units and pieces of advice is defined.
Based on thePCCFG, two control-flow criteria for a crosscutting coverage
measure are defined: all-pointcut-based-advice-nodes and all-pointcut-based-
advice-edges. As a preliminary evaluation of the feasibility and effectiveness of
the proposed approach, an implementation of the criteria in an AspectJ testing
tool (JaBUTi/PC-AJ) is presented along with an application example. The ex-
ample shows evidence of the effectiveness of the pointcut-based criteria to find
AO related faults compared to unit testing criteria.

1. Introduction
Aspect-Oriented Programming (AOP) is a technology that builds on top of other software
engineering paradigms to support the modularization of crosscutting concerns. To en-

∗The authors are financially supported by FAPESP and CNPq.

hance the confidence in AO programs, some researchers have proposed the adaptation of
traditional testing techniques to this type of software. However, none of them focus on
the pointcut mechanism of AOP to enhance the confidence that the crosscutting concerns
correctly interact with base units. In this paper we present an integration testing approach
for AO programs consisting of a testing model and criteria based on the pointcut mech-
anism. These criteria support a measure of adequacy for test sets with respect to advice
interactions.

Although AOP seems to partially solve the problem of tangling and scatter-
ing concerns, it does not guarantee quality software in terms of correctness. In fact,
some authors believe that the AOP power of expressiveness can even lead to new
types of faults [Mortensen and Alexander 2005]. Previous work on testing AO programs
have targeted some of these shortcomings, but do not focus on the pointcut mecha-
nism [Zhao 2003, Lemos et al. 2007, Franchin 2007].

Pointcut descriptors cut new interfaces in the base structure of a sys-
tem [Kiczales and Mezini 2005], making pieces of advice be executed at several (join)
points. Since some faults might be revealed only when a piece of advice is executed at
a particular join point, we propose a coverage measure that ensures the execution of all
statements and branches of each advice at each related join point1. To support such type
of coverage measure, we define a model to represent the execution regions of a program
that are affected by pieces of advice through pointcuts. Based on this model, we define
two control-flow criteria: the all-pointcut-based-advice-nodes and the all-pointcut-based-
advice-edges. We also extend the JaBUTi family of tools [Vincenzi et al. 2006] to support
these model and criteria for AspectJ programs. As a preliminary effectiveness evaluation
of our approach, we apply the criteria to an AspectJ example.

The example shows evidence that the pointcut-based approach is effective in find-
ing AO specific faults, when compared with unit testing criteria. A preliminary cost
evaluation of a previous work on which the approach presented in this paper is re-
lated [Franchin et al. 2007], shows that the cost of application of the criteria is relatively
low [Lemos et al. 2008]. These two sets of results summed with the extension of the
JaBUTi tool, which shows evidence of the feasibility of the approach, represent a prelim-
inary evaluation that motivates the application of our model and criteria. The remainder
of this paper is structured as follows. Section 2 presents background on the main topics
of this paper: AOP and Software Testing; and Section 3 presents the pointcut-based in-
tegration testing approach. Section 4 presents an example of application of the approach
and Section 5 shows implementation details of our approach. Finally, Section 6 presents
related work and Section 7 concludes the paper with some remarks and future directions.

2. Background

The underlying concept behind Aspect-Oriented Programming (AOP) is that while tradi-
tional programming techniques help modularizing different concerns present in a software
system, there are still some concerns that cannot be clearly mapped to isolated modules
of implementation [Kiczales et al. 1997]. For instance, concerns such as persistence, ac-
cess control, synchronization policies, and logging; tend to be tangled with and scattered

1In a previous paper we presented a preliminary exploration of this idea [Lemos et al. 2006].

throughout the basic modules of implementation (also denominatedbasecode). These
concerns are often calledcrosscuttingconcerns [Elrad et al. 2001].

AOP supports the implementation of separate modules – called aspects – that have
the ability to cut across other modules, adding behavior that would otherwise be spread
throughout the base code. General-purpose AOP languages must define four features:
(1) a join point model that describes hooks in the program where additional behavior may
be defined; (2) a mechanism for identifying these join points; (3) modules that encapsulate
both join point specifications and behavior enhancements; and (4) aweavingprocess to
combine both base code and aspects [Elrad et al. 2001].

AspectJ [Kiczales et al. 1997] is an extension of the Java language to support
general-purpose AOP. In AspectJ, aspects are modules that combine join point specifi-
cations (pointcuts or, more precisely, pointcut designators – PCD2); pieces of advice,
which implement the desired behavior to be added at join points; and regular OO struc-
tures such as methods, fields, and inner classes. Aspects can also declare members (fields
and methods) to be owned by other types,i.e., inter-type declarations. AspectJ also sup-
ports declarations of warnings and errors that arise when certain join points are identified
or reached. Advice can be executed before, after, or around join points selected by the
corresponding pointcut, and are implemented as method-like constructs. Advice can also
pick context information from the join point that caused them to execute.

2.1. Example

Consider an online system (named Online Music) for playing and displaying information
about songs in a large music database. The basic requirements of the system are the
following. Each user has an account with a certain balance and can access songs available
in the database. At a specific price, stipulated per song, users can play songs, read lyrics,
and display related songs. Users are charged the same price for all operations (playing,
reading lyrics, and displaying related songs). Users can also display the names of the
composers of a song, free of charge. Finally, a song can be a bonus, which makes any
operation on it be free of charge (playing, reading lyrics, etc.).

Figure 1 shows a partial class/aspect diagram with the basic classes and aspect of
the Online Music system. The main modules are theSong class and theBilling as-
pect. TheSong class represents songs available in the database and has methods respon-
sible for playing, showing lyrics, showing related songs, and showing the names of the
composers of a song. TheBilling aspect is responsible for billing users of the system
when using chargeable operations. Thebill advice insideBilling checks whether
the user has sufficient balance for executing the related operation and bills him/her ac-
cording to the stipulated price. If the user does not have sufficient balance, an exception
is thrown.bill is executedafter returningfrom join points defined by theuseTitle
pointcut designator: namely, the execution of theplay method and the execution of the
methods whose names start with “show” (e.g., showRelated) in theSong class. The
partial source code ofSong andBilling are presented in Figures 2 and 3.

2A pointcut is the set of selected join points itself and the PCD is usually a language construct that
defines pointcuts. For simplicity, we use these terms interchangeably, meaning the language construct that
defines a set of join points.

Figure 1. Simplified class diagram of the online music system.

2.2. Testing aspect-oriented programs

Software testing is usually performed at three levels:

1. Unit testing, where the smallest parts of a system are tested in isolation;
2. Integration testing, where interactions among units are tested (i.e., their inter-

faces); and
3. System testing, which consists in verifying the integration of the general elements

of a system to assure that they combine adequately and that expected global func-
tioning/performance is obtained.

In this paper we focus on structural integration testing, building on top of unit and
integration testing approaches described before [Lemos et al. 2007, Vincenzi et al. 2005,
Vincenzi et al. 2006, Franchin 2007]. We consider a method and an advice as the small-
est units to be tested (i.e. the units targeted by unit testing). In structural testing,
the control-flow graph (CFG) is used to represent the flow of control of a program,
where nodes represent a statement or a block of statements executed sequentially, and
edges represent the flow of control from one statement or block of statements to an-
other [Rapps and Weyuker 1985].

Lemos et al. [Lemos et al. 2007] defined a basic unit testing model for OO and
AO Java programs – the aspect-oriented def-use (AODU) graph – which builds on top
of the work of Vincenzi et al. (for OO programs only). TheAODU is generated for
each unit to be tested, both methods and pieces of advice. It is defined as a directed
graph with elements(N, E, s, T, C). Informally, N represents the set of nodes – which
are composed by blocks of bytecode instructions that are executed sequentially;E rep-
resents the set of edges connecting nodes when there is transfer of flow from one to the
other;s represents the entry node;T is the set of exit nodes; andC is the set of nodes
affected by pieces of advice (calledcrosscutting nodes). Following Vincenzi et al.’s work,
we also differentiate regular edges – edges that connect regular nodes – from exceptional
edges – edges that connect regular nodes to nodes that represent exception handling state-
ments. The elementC was added to the original def-use model defined by Vincenzi et al.
[Vincenzi et al. 2005, Vincenzi et al. 2006] to represent the basic interaction that occurs
in AO programs.

TheAODU graph is represented by the following conventions: single circled
nodes represent regular blocks of instructions, double circled nodes represent method

public class Song implements Playable {
private String name;
private boolean bonus;
private String composer;
private ArrayList<Song> related = new ArrayList<Song>();

public Song(String name, String composer, boolean bonus) {
super ();
this .name = name;
this .composer = composer;
this .bonus = bonus;

}

...

public void play() {
...

}

public void showLyrics(){
...

}

public void showRelated() {
if (!related.isEmpty()) {

System.out.println("Related songs:");
for (Iterator<Song> it = related.iterator (); it.hasNext ();) {

System.out.println(((Song)it.next()).getName());
}

}
}

public void showComposer(){
System.out.println("The composer of the song is " + getComposer());

}

public boolean equals(Object o){
Song other = (Song) o;
return this .name.equals(other.name);

}

public int hashCode() {
return name.hashCode();

}

public boolean isBonus() {
return bonus;

}

...
}

Figure 2. Source code of the Song class.

calls, bold nodes represent exit nodes, dashed elipses (crosscutting nodes) represent ad-
vice execution and contain additional information of what kind of advice is affecting that
point and to which aspect it belongs, regular edges represent regular control flow, and
dashed edges represent exceptional control flow.

Five examples ofAODU graphs with explanations of each part of the graph are
presented in Figures 4 and 5. The units refer to four methods of theSong class that are
affected by thebill advice of theBilling aspect, and the advice itself. The code of
the two modules were presented in Figures 2 and 3.

public aspect Billing {
public pointcut useTitle() :

execution (* Song.play(..)) ||
execution (* Song.show * (..));

@AdviceName("bill")
after (Song song) returning throws InsufficientBalanceException :

useTitle() && this (song) {

if (song.isBonus())
return ;

User user = (User)Session.instance().getValue("currentUser");
int amount = song.getPrice();
if (amount > user.getAccount().getBalance())

throw new InsufficientBalanceException(
"Insufficient available balance.");

user.getAccount().debit(amount);
System.out.println("Charge: " + user + " " + amount);

}
}

Figure 3. Source code of the Billing aspect.

(a) AODU of theplay method (b) AODU of the showComposer
method

(c) AODU of the showLyrics
method

(d) AODU of theshowRelated method

Figure 4. Examples of AODUs.

Figure 5. AODU of the bill advice.

2.2.1. Pairwise Structural Integration Testing of AO Programs

Franchin et al. [Franchin et al. 2007] presented a pairwise integration testing approach
for Object-Oriented (OO) and AO Java programs that builds on top of the unit testing
approach referred to in the last section. A model to represent pairs of interacting units
(called Pair-Wise Def-Use Graph –PWDU) was proposed, and a family of structural
testing criteria was defined based on such model. The idea is to force the tester to ade-
quately cover the structure of each unit in the contexts that it is integrated. The motivation
is that there can be faults in units that are only sensitized in the context of other partic-
ular units. Although pairs that may contain an advice as one of the units are treated, no
particular attention is given to them (i.e. they are treated just as method pairs).

3. Pointcut-based integration testing of aspects

To test aspect-oriented programs, an interesting measure of adequacy for test sets is the
global coverage of each crosscutting concern present in the program. For instance, to have
more confidence that an access control concern has been thoroughly tested in a program
P , it is important to know the coverage of the structure of the corresponding advice at
each join point. Based on the pairwise approach discussed before [Franchin et al. 2007],
we propose the representation of all pairs of interacting units related to each advice in a
single model. The idea is to help understanding and testing the pieces of advice at each
join point of the program.

3.1. ThePCCFG graph

To define structural testing criteria based on pointcuts, we need a model to represent
the flow of control at join points. We define a graph that must be constructed for each
advice-pointcut pair called Pointcut-based Control Flow Graph (PCCFG). ThePCCFG

comprises nodes and edges of base units selected by a pointcut and nodes and edges of the
corresponding advice (i.e., theAODUs of the base units and theAODU of the advice)
repeated at each joint point. ThePCCFG models execution regions of the program that
are affected by a pointcut.

The nodes of thePCCFG are labeled with two strings: a prefix and a suffix. The
suffix always corresponds to the offset of the first bytecode instruction of the correspond-
ing block, such as the labels of theAODU nodes. The prefix is (1) a capital letter, if the
node belongs to a base unit; or (2) the number of the join point, if the node corresponds to
the advice structure. A letter is given for each base unit at each join point, and a number
is given for each join point. The prefix is used to avoid repetition, since bytecode offsets
may repeat from unit to unit. A colon is used to separate the suffix from the prefix. Since
we are interested in the coverage of the structure of the advice at each join point, the rep-
resentation of the base units can be reduced for simplification. Also note that if there are
multiple join points in a single unit, the unit will appear multiple times in the graph. An
example of aPCCFG is presented in Figure 6. The graph represents thebill advice and
corresponding pointcut of theBilling aspect presented before, integrated with all the
affected join points. Note that the advice affects four join points in the following methods
of theSong class:play , showLyrics , showComposer , andshowRelated . The
nodes suffixed with45 do not have edges connecting to the base units’ nodes because they
represent the throwing of an exception.

3.2. Pointcut-based integration testing criteria
Testing criteria are important to provide systematic selection and evaluation of test sets.
To enhance the confidence that each crosscutting behavior implemented as an advice is
integrated to a program in a correct way, we propose two control-flow based structural
testing criteria. The idea is to make sure that the advice is thoroughly covered at each join
point selected by the corresponding pointcut.

Let T be a test set for a programP , beingPCCFG the graph of a set of pairs of
units, and letΠ be the set of paths executed byT in P . A nodei ∈ N is included inΠ if
Π contains a path(n1, . . . , nm) wherei = nj for somej, 1 ≤ j ≤ m. Similarly, an edge
(i1, i2) is included inΠ if Π contains a path(n1, . . . , nm) wherei1 = nj andi2 = nj+1

for somej, 1 ≤ j ≤ m − 1. Remember that advice nodes are prefixed with numbers
(the join point number) in thePCCFG. We define two control-flow criteria based on the
traditionalall-nodesandall-edges:

• all-pointcut-based-advice-nodes(all-pc-nodes):Π satisfies the all-pc-nodes cri-
terion if each advice node, for each join point selected by the corresponding point-
cut, is included inΠ. In other words, this criterion requires that eachPCCFG node
whose label is prefixed by a number (i.e.,the join point number) be exercised at
least once by a test case inT . It requires that every statement in the advice be
executed at each join point it may run.

• all-pointcut-based-advice-edges(all-pc-edges):Π satisfies the all-pc-edges cri-
terion if each advice edge, for each join point selected by the corresponding point-
cut, is included inΠ. In other words, this criterion requires that eachPCCFG
edge whose target and source nodes have labels prefixed by a number (i.e., the
join point number) be exercised at least once by a test case inT . It requires that
every possible branch in the advice be executed at each join point it may run.

Figure 6. PCCFG for the bill advice and useTitle pointcut.

3.3. Basic testing strategy

As pointed out in the beginning of this section, most testing processes divide the test-
ing activity in three levels: (1) Unit testing, (2) Integration testing, and (3) System test-
ing [Bertolino 2007]. Following this strategy, our pointcut-based testing criteria would
be more effectively applied after unit testing the program. Thus, the natural testing
strategy to be followed in this context would be: (1) focus on each unit by testing
each method and advice in isolation (by using, for instance, the criteria proposed be-
fore [Lemos et al. 2007, Vincenzi et al. 2005, Vincenzi et al. 2006]); (2) focus on the
crosscutting concerns by testing each advice at each selected join point. Afterwards,
to have more confidence in the program and to consider the integration of methods, the
pairwise testing criteria proposed by Franchin et al. [Franchin et al. 2007] could also be
used. Note that, to have a more efficient testing activity, the test set used in the precedent
level can be used as a starting point for the next level.

4. Application example
To demonstrate the use of the pointcut-based testing criteria and an evidence of its ef-
fectiveness, we will use the Music Online application presented in Section 2. Following

the basic testing strategy presented in the last section, we should first unit test each of the
methods and advice present in the program. For that purpose, we can use a functional test-
ing approach and check the structural coverage by using the criteria proposed by Vincenzi
et al. [Vincenzi et al. 2005, Vincenzi et al. 2006] and Lemos et al. [Lemos et al. 2007].
Figure 7 shows part of a complete functional test set implemented in JUnit for the Music
Online application adequate for the structural unit testing criteria. We can see that the
test set is adequate by using the JaBUTi/AJ tool [Lemos et al. 2007] (see Figure 8). Even
though the test set is adequate for these criteria, no faults are revealed when they execute.

public class InitialTS extends TestCase {
static final Song TEST_SONG1 =

new Song("test song1", "Bach", 10, false);
static final Song TEST_SONG2 =

new Song("test song2", "Beethoven", 10, true);
static final Song TEST_SONG3 =

new Song("test song3", "Dave Brubeck", 10, false);
...

public void testEquals() {
...
assertTrue(s1.equals(TEST_SONG1));

}

public void testPlaySong() {
...
assertTrue(strOut.indexOf

("Playing song test song1") != -1);
}

public void testShowLyrics() {
...
assertTrue(strOut.indexOf

("Displaying lyrics for test song1") != -1);
}

public void testShowComposer() {
...
TEST_SONG2.showComposer();
String strOut = baos.toString().trim();
assertTrue(strOut.indexOf("Beethoven") != -1);

}

public void testSongHashcode() { ... }

public void testDebit() {
...
user.getAccount().credit(10);
TEST_SONG1.play();
assertEquals(0, user.getAccount().getBalance());

}

public void testInsufficientBalance() {
...
user.getAccount().credit(9);
try {

TEST_SONG1.play();
fail();

} catch (InsufficientBalanceException e) { }
}

public void testDontChargeBonus() {
...
user.getAccount().credit(9);

TEST_SONG2.play();
assertEquals(9, user.getAccount().getBalance());

}

public void testDontChargeShowComposer() {
...

90 user.getAccount().credit(9);
91 TEST_SONG2.showComposer();
92 assertEquals(9, user.getAccount().getBalance());

}

public void testRelated() {
...
TEST_SONG2.showRelated();
String strOut = baos.toString().trim();
assertTrue(strOut.indexOf("test song1") != -1);

}

public void testRelated2() {
...
TEST_SONG1.showRelated();
String strOut = baos.toString().trim();
assertTrue(strOut.indexOf

("No related songs.") != -1);
}

public void testPlaylist() {
...
Playlist p1 = new Playlist("my playlist");
...
p1.play();
String strOut = baos.toString().trim();
assertTrue(strOut.indexOf

("playing album my playlist") != -1);
assertEquals(0, user.getAccount().getBalance());

}

public void testPlaylistRemove() {
...
p1.add(TEST_SONG1);
p1.remove(TEST_SONG1);
...
try {

p1.play();
fail();

} catch (RuntimeException e) {}
}

public void testSession() {
...
session.putValue("currentUser", user);
session.removeValue("custom user");
assertNull(session.getValue("custom user"));

}
}

Figure 7. Test set adequate for the structural unit testing criteria, for the Music
Online application.

To use the pointcut-based criteria we can run the JaBUTi/PC-AJ tool (presented
in the next section). We can import the unit test set presented above and see the coverage
for each criterion, checking how thebill advice is being covered at each join point
(according to thePCCFG graph presented in Figure 6). The testing requirements derived
for this example are presented in Table 1.

When we import the test set in the JaBUTi/PC-AJ tool, some of thebill advice

Figure 8. Coverage obtained after executing the 14 test cases of the unit testing
test set.

Table 1. Set of requirements derived by the pointcut-based integration testing
criteria for the bill advice and corresponding pointcut.

Criterion Requirements

all-pc-nodes Rn = { 1:0, 1:4, 1:7, 1:8, 1:11, 1:16, 1:24, 1:30, 1:33, 1:36, 1:46, 1:45, 1:50, 1:54,
2:0, 2:4, 2:7, 2:8, 2:11, 2:16, 2:24, 2:30, 2:33, 2:36, 2:46, 2:45, 2:50, 2:54,
3:0, 3:4, 3:7, 3:8, 3:11, 3:16, 3:24, 3:30, 3:33, 3:36, 3:46, 3:45, 3:50, 3:54,
4:0, 4:4, 4:7, 4:8, 4:11, 4:16, 4:24, 4:30, 4:33, 4:36, 4:46, 4:45, 4:50, 4:54}

all-pc-edges Re = { (1:0,1:4), (1:4,1:7), (1:4,1:8), (1:8,1:11), (1:11,1:16), (1:16,1:24),
(1:24,1:30), (1:30,1:33), (1:33,1:36), (1:36,1:45), (1:33,1:46), (1:46,1:50),
(1:50,1:54), (2:0,2:4), (2:4,2:7), (2:4,2:8), (2:8,2:11), (2:11,2:16),
(2:24,2:30), (2:30,2:33), (2:33,2:36), (2:36,2:45), (2:33,2:46), (2:46,2:50),
(2:50,2:54), (3:0,3:4), (3:4,3:7), (3:4,3:8), (3:8,3:11), (3:11,3:16),
(3:16,3:24), (3:24,3:30), (3:30,3:33), (3:33,3:36), (3:36,3:45), (3:33,3:46),
(3:46,3:50), (3:50,3:54), (4:0,4:4), (4:4,4:7), (4:4,4:8), (4:8,4:11),
(4:11,4:16), (4:16,4:24), (4:24,4:30), (4:30,4:33), (4:33,4:36), (4:36,4:45),
(4:33,4:46), (4:46,4:50), (4:50,4:54)}

nodes and edges are not covered at some of the join points, that is, the test set is not
adequate for the all-pc-nodes criterion – 70% of the advice nodes are covered (see Fig-
ure 11(c)) – neither for the all-pc-edges criterion. For instance, at theshowComposer
join point, only the part of the advice that returns without billing due to a bonus song is
executed (path 0–4–7 of theAODU showed in Figure 5; more specifically, path 3.0–3.4–
3.7 in thePCCFG showed in Figure 6). This happens because the test case created to
testshowComposer was called against a bonus song (test casetestShowComposer
at lines 90–92 of the test set code in Figure 7). At this point, the tester is forced to
create additional test cases to adequate the initial test set to the pointcut-based criteria.
Some of these test cases must execute the remaining parts of thebill advice at the
showComposer join point. The tester is then led to discover a fault present in the
program: theshowComposer method should not be affected by thebill advice, be-
cause it refers to a non-chargeable operation (see the basic requirements for the Music
Online application presented in Section 2.1). The fault is related to the pointcut descrip-
tor, that should not affect allSong methods that start withshow, because it includes
theshowComposer method. The error-revealing test case that executes some of the re-
maining parts of thebill advice at theshowComposer context and fails is presented
in Figure 9. When it executes, the assertion fails.

The activity should go on until 100% of the advice nodes and edges are covered
at each join point, or until some coverage percentage set by a test plan is attained. In
the end, five additional test cases are required to adequate the initial unit test set to the

public void testComposerToCoverCharge() {
User user = new User("user1");
Session session = Session.instance();
session.putValue("currentUser", user);

user.getAccount().credit(11);
TEST_SONG1.showComposer();
assertEquals(11, user.getAccount().getBalance());

}

Figure 9. Error-revealing test case created to adequate the initial test set to the
pointcut-based testing criteria.

pointcut-based criteria. No additional faults are found.

Note that although the initial test set was adequate for the structural unit testing
criteria referred to before, it was not able to discover the fault. This happens because the
unit testing criteria do not force the tester to cover the advice statements at each join point,
it only forces it to be covered by whatever means. On the other hand, the pointcut-based
criteria do require a test case that necessarily uncovers the fault3.

5. Implementation
The JaBUTi family of tools [Vincenzi et al. 2006, Lemos et al. 2007] is currently being
extended to make it possible the use of the pointcut-based testing approach for AspectJ
programs. We explain the extension, called JaBUTi/PC-AJ (for pointcut-based AspectJ),
in four parts: (1) the identification of the pairs of units related to pieces of advice in
the program, that is, the identification of join points for a specific advice-pointcut pair;
(2) the generation of thePCCFG graph; (3) the implementation of the criteria; and (4)
the implementation of the pointcut-based testing environment. The extension is being
made on top of the pairwise integration testing version of JaBUTi – the PW-AJ ver-
sion [Franchin et al. 2007]. In fact, the extension is already functional, missing only the
displaying of thePCCFG graphs. In any case, the graphs of the corresponding pairs can
be seen separately, such as in the PW-AJ version.

5.1. Identification of join points for specific pieces of advice

To implement the pointcut-based testing model and criteria defined earlier, we need to
identify all interacting unit pairs for a particular advice, where the base unit contains a
join point related to that advice. For instance, for the example presented in Section 2,
to construct thePCCFG presented for thebill advice and related pointcut, we need
to detect which methods (or possibly pieces of advice) are affected by the advice. We
can use the AspectJ model depicted in Figure 10 to understand the idea more clearly. An
aspect can contain several pointcuts and several pieces of advice and an advice is linked
to a single pointcut4. A pointcut selects several join points which in turn are located at
specific units.

3The tester could indeed discover the fault during the unit testing phase, or even just by looking at the
AODU of theshowComposer method – which shows that the advice is being executed where it should
not –, but not necessarily. That is, there are possible test sets (including the one in Figure 7) that are adequate
for the unit testing criteria, but do not uncover the fault.

4The pointcut itself can be a composition of other pointcuts, but we do not model this type of composi-
tion here. Consider the pointcut as the final composition used by a particular advice.

Figure 10. Simplified partial AspectJ model.

An AdvicePointcut class maintains a list of pieces of advice and related
pointcuts, that is, it models the relation betweenAdviceandPointcut. For each instance
of this class, we maintain a list of units that contain the related join points (that is, the
relation betweenJoin PointandUnit). To create theAdvicePointcut instances, since
the JaBUTi family is based on bytecode, we analyze the bytecode itself. To discover
pieces of advice, we use functions provided by the AspectJ compiler, that also work at
bytecode level. The process of identifying join points is simplified because the possible
interactions between pieces of advice and other units are already resolved at the bytecode
level (i.e. the program is already woven). Therefore, we only need to check all bytecode
level method calls that represent join points, and group them by advice.

5.2. Generation of thePCCFG graph

To construct thePCCFG graph, we need to gather all pairs of interacting units for each
advice-pointcut pair. The JaBUTi/PW-AJ version already generates graphs for each pair
of unit; therefore, we only need to group them by advice in a single graph, and construct
the nodes that represent the entry and exit points from the affected execution regions. We
also need to add edges from thePCCFG entry point node to the entry nodes of all of the
base units, and from the exit nodes of these units to thePCCFG exit point node.

5.3. Implementation of the pointcut-based integration testing criteria

The implementation of the two control-flow pointcut-based criteria is done on top of
the integration pairwise criteria implemented in JaBUTi/PW-AJ. The idea is the follow-
ing: since the pairwise criteria already gather requirements for each pair of interacting
units, for the pointcut-based criteria we only need to group the requirements of a set of
pairs for each advice-pointcut pair. For instance, consider the all-pc-nodes criterion and
the example presented on Section 2. The requirements for the all-pairwise-integrated-
nodes [Franchin et al. 2007] criterion include the nodes of thebill advice in each place
it affects the program, however, the requirements are derived by pair of units, separately.
To gather the requirements for the all-pc-nodes criterion, we can collect the requirements
of all the unit pairs that have thebill advice as the integrated unit. The same works
for the all-pc-edges, but in this case using the all-pairwise-integrated-edges criterion as a
basis.

5.4. Implementation of the pointcut-based testing environment

To support the pointcut-based testing approach, we need an additional environment to the
JaBUTi/PW-AJ tool. This environment uses the same modules selected to be tested and
instrumented in the unit testing environment – the initial environment of JaBUTi – and,
from these modules, we can identify the pieces of advice and all their interactions in the
program.

The pointcut-based testing environment supports its specific testing data so that all
that happens in this environment does not affect the others. An example is the execution
of test cases. While executing a particular test case in the unit testing environment, for
instance, we do not want such execution to affect the integration testing information.
The tester can also save the testing project and the separation among the environments’
information will be kept for later usage of the same project.

The pointcut-based testing environment supports the following activities: check-
ing of the requirements derived for each criterion, importing of JUnit test cases, checking
of the coverage obtained by the imported test cases, and visualizing the graphs for each
advice-pointcut pair. Figure 11 presents some screenshots of the pointcut-based testing
environment while testing the example presented in Section 2.

(a) Pointcut-based test-
ing selection.

(b) Selecting the advice-pointcut to be tested.

(c) Requirements and coverage of thebill advice and corresponding pointcut for the All-PC-
nodes criterion.

Figure 11. Screenshots of the JaBUTI/PC-AJ tool.

6. Related Work
To the best of our knowledge few testing criteria were defined for integration test-
ing of Object-Oriented (OO) programs, and even fewer for the integration testing
of AO programs. Zhao has developed a data-flow testing approach for AO pro-
grams [Zhao 2003] based on the OO approach proposed by Harrold and Rother-
mel [Harrold and Rothermel 1994]. He also addresses the testing of interfaces between
class units and aspect units, but does not limit the depth of interactions. Also, Zhao does
not focus on the advice interactions: the presented model treats methods and pieces of
advice indiscriminately, which makes it harder to separately reason about the advice cov-
erage. Moreover, until now, no implementation of the approach has been presented.

Franchin et al.[Franchin 2007] explored the pairwise integration testing of OO
and AO Java programs (see Section 2.2). A limitation of this approach is that pairs of
methods and advice are treated indiscriminately. That is, no particular attention is given
to the integration of crosscutting concerns implemented as advice at join points: these
pairs are treated as method pairs. Moreover, to create test sets that are adequate for each
of the pairwise criteria, the tester must cover all types of pairs (e.g, all methods being
called by other methods), which causes the activity to be more expensive. Also, a tester
concerned with the global coverage of an advice that affects several join point must check
each related pair, because there is no specific coverage measure for pieces of advice.

7. Conclusion

In this paper we have presented a pointcut-based integration testing approach for AO
programs. A model to represent the execution regions of a program affected by pieces
of advice was proposed and two control-flow based criterion were defined. To present
evidence of the efficiency of our approach, we presented an example where a test set
adequate for unit testing criteria can be constructed but still not reveal a pointcut-related
fault present in the program. We showed that a test set adequate for the pointcut-based
criteria necessarily uncovers the fault.

We believe the pointcut-based criteria can also help in other testing activities for
AO programs. For instance, while regression testing programs that are added with aspects,
testers should focus on the points affected by these additions. Since thePCCFG models
exactly these regions of the program, the defined criteria can be used to enhance the
confidence that these regions still work as originally intended.

A limitation of our approach we need to explore is the scalability. Pieces of advice
that affect a large amount of execution regions of the program generate largePCCFGs
and, consequently, large sets of requirements. We are currently working on solutions for
this problem. For instance, the tool could generate warnings for the user when an advice
affects a large number of join points (we also need to quantify what would be a ‘large’
set of join points). In this case, the user could have the possibility to select subsets of join
points to represent the real set, and analyze the coverage for this particular subset. Future
work also includes an evaluation of the application of the criteria on larger applications,
to make a deeper analysis of their efficiency and cost of application.

References

Bertolino, A. (2007). Software testing research: Achievements, challenges, dreams. In
FOSE ’07: 2007 Future of Software Engineering, pages 85–103, Washington, DC,
USA. IEEE Computer Society.

Elrad, T., Kiczales, G., Akşit, M., Lieberher, K., and Ossher, H. (2001). Discussing
aspects of AOP.Communications of the ACM, 44(10):33–38.

Franchin, I. G. (2007). Teste estrutural de integração par-a-par de programas orientados
a objetos e a aspectos: Critérios e automatização. Master’s thesis, ICMC-USP, São
Carlos, SP.

Franchin, I. G., Lemos, O. A. L., and Masiero, P. C. (2007). Pairwise structural testing
of object and aspect-oriented Java programs. InProceedings of the 21st Brazilian

Symposium on Software Engineering, pages 377–393, Porto Alegre, RS, Brasil. SBC
Press.

Harrold, M. J. and Rothermel, G. (1994). Performing data flow testing on classes. In
SIGSOFT ’94: Proceedings of the 2nd ACM SIGSOFT symposium on Foundations of
software engineering, pages 154–163, New York, NY, USA. ACM Press.

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.-M., Lopes, C., Maeda, C., and Men-
hdhekar, A. (1997). Aspect-oriented programming. In Akşit, M. and Matsuoka, S.,
editors,Proceedings of the ECOOP, volume 1241, pages 220–242, Berlin, Heidelberg,
and New York. Springer-Verlag.

Kiczales, G. and Mezini, M. (2005). Aspect-oriented programming and modular rea-
soning. InProceedings of the27th International Conference on Software Engineering
(ICSE’2005), pages 49–58. ACM Press.

Lemos, O. A. L., Ferrari, F. C., Masiero, P. C., and Lopes, C. V. (2006). Testing aspect-
oriented programming pointcut descriptors. InWTAOP ’06: Proceedings of the 2nd
workshop on Testing aspect-oriented programs, pages 33–38, New York, NY, USA.
ACM Press.

Lemos, O. A. L., Franchin, I. G., and Masiero, P. C. (2008). Integration testing of object-
oriented and aspect-oriented programs: a structural pairwise approach for Java. (sub-
mitted for publication).

Lemos, O. A. L., Vincenzi, A., Maldonado, J. C., and Masiero, P. C. (2007). Control and
data-flow structural testing criteria for aspect-oriented programs.Journal of Systems
and Software, 80(6):862–882.

Mortensen, M. and Alexander, R. T. (2005). An approach for adequate testing of AspectJ
programs. InProceedings of the1st Workshop on Testing Aspect Oriented Programs –
in conjunction with AOSD’2005, Chicago/IL, USA.

Rapps, S. and Weyuker, E. J. (1985). Selecting software test data using data flow infor-
mation. IEEE Trans. Softw. Eng., 11(4):367–375.

Vincenzi, A. M. R., Delamaro, M. E., Maldonado, J. C., and Wong, W. E. (2006). Estab-
lishing structural testing criteria for java bytecode.Softw. Pract. Exper., 36(14):1513–
1541.

Vincenzi, A. M. R., Maldonado, J. C., Wong, W. E., and Delamaro, M. E. (2005). Cov-
erage testing of java programs and components.Science of Computer Programming,
56(1–2):211–230.

Zhao, J. (2003). Data-flow-based unit testing of aspect-oriented programs. InProceedings
of the27th Annual IEEE International Computer Software and Applications Confer-
ence (COMPSAC’2003), pages 188–197, Dallas/Texas - USA. IEEE Computer Soci-
ety.

