

Unveiling and Taming Liabilities of

Aspect Libraries Reuse

 Roberta Coelho
1, 2

 Uirá Kulesza
2
 Awais Rashid

3
Arndt von Staa

1
 Carlos Lucena

1

1 Computer Science Department, Pontifical Catholic University of Rio de Janeiro, Brazil

2 Informatics and Applied Mathematics Department (DIMAp),
Federal University of Rio Grande do Norte, Brazil

3Computing Department, Lancaster University, Lancaster, UK and
Ecole des Mines de Nantes, France

{roberta,arndt,lucena}@inf.puc-rio.br
uira@dimap.ufrn.br awais@comp.lancs.ac.uk

Abstract. Aspect Libraries have introduced new possibilities of application

composition, facilitating the reuse of crosscutting functionalities. However, if

on the one hand this facilitates the independent development of reusable

aspects, on the other hand it can bring additional complexity to software

reuse, especially, in exception-aware systems. In this work, we present a set of

potential fault scenarios associated with aspect libraries reuse. We show that

the reuse of aspect libraries is indeed fault prone in exceptional conditions

and present a principled reuse approach supported by a static analysis tool

that leads to significant improvements.

1. Introduction

Although prebuilt aspect libraries are a relatively new reuse artifact, several useful

collections have already become available, including: the Spring AOP aspect library [33],
the Glassbox Inspector [15], the JBoss Cache [19], and GOF patterns aspect library [18].
Such libraries typically involve collaboration among aspects, classes, and interfaces, and

enable the developer to extend the functionalities of existing applications avoiding
significant coupling and large re-investments [3]. They implement crosscutting

functionalities (e.g., performance monitoring, security, and transaction management) that
would be spread in many application modules otherwise. According to Bodkin [3] “reuse

will prove to be the most important benefit from adopting Aspect Oriented

Programming.”

 While aspect libraries introduce new possibilities for application composition, in

some circumstances they may threaten the client application’s robustness and design
consistency. In this paper we focus on the robustness and consistency issues pertaining to

exceptional flow of programs using such aspect libraries; the additional behavior injected
by aspect libraries may also bring new exceptions. Exceptions are abnormal computation
states that arise as a consequence of, for instance, faults in the application itself (e.g.,

access of null references), a noisy user input or faults in underlying middleware or
hardware. Aspect libraries developers may do their best to ensure that library functions

do not create faults that impact client applications. However, unexpected behavior in

aspect library code (e.g., unanticipated null values, undocumented runtime exceptions

thrown by libraries) is often present [9]. In order to know which exceptions may flow
from aspect libraries, programmers must rely on library documentation – which, very

often, is neither complete nor precise [6, 29, 34]. As a consequence, the developer may
only notice the existence of unexpected exceptions thrown by an aspect library, by
observing the failures caused by them on the application (e.g., uncaught exceptions [26]:

exceptions that are not caught on the application code and lead to a software crash; or
unintended handler actions [26, 28]: exceptions that are mistakenly handled by an

existing handler in the base code).

 One may argue that the problems associated with aspect libraries reuse also occur
when OO libraries are reused: we do not know the exceptions that may flow from OO

libraries as well and, consequently, cannot prepare the code to deal with them. Indeed,
this is a real problem in OO libraries reuse, and some static analysis tools, e.g., as

proposed in [14, 28], could be used to deal with it. However, some characteristics of
aspect compositions strengthens this problem, such as: (i) the invasive modification of

the base code [1], (ii) some developers and approaches advocating an oblivious
development process [12], (iii) the load-time weaving [11] available in some Aspect
Oriented (AO) languages, (iv) and the quantification property [12] (as detailed in

Section 2.3).

While the invasiveness of aspect library compositions often allows the reuse of
crosscutting implementations, they might render less useful if they introduce new

exceptions that may lead to potential faults. Currently, there is no approach or
supporting tool to help application developers to: (i) discover which exceptions may flow

from an aspect library, (ii) prepare the code to deal with them; or (iii) check whether
such exceptions were adequately handled. Such approach would reduce or altogether

avoid the threats posed by aspect libraries to the application’s robustness in exceptional
scenarios.

In a previous study [9] we assessed the error proneness of AOP mechanisms on

exception flows of programs. In the present work we focus on the exceptions that may
flow from library aspects, the consequences that they may bear, and how to deal with
them. Thus, the main questions we seek to address are the following:

• What are the potential consequences of reusing aspect libraries that may throw

exceptions?

• How can one reduce the number of potential faults associated with them?

We believe the answers to these questions are of interest to a broad audience, due

to the increasing number of AO developers. The contributions of this work are as
follows:

• We explore the potential faults associated with aspect libraries reuse – showing a

concrete example.

• We propose an approach for principled aspect reuse that takes into account

exceptional situations neglected by existing approaches. The approach is based
on an exception analysis tool called SAFE [8] developed to support this

approach. This tool aims at finding the exceptions that may flow from aspect

libraries (exception interfaces [26]) and how such exceptions flow on the base

code (exception paths).

The remainder of this paper is organized as follows. Section 2 presents some
background on exception handling, and discusses the characteristics of aspects

compositions and the challenges they can bring when reusing aspects in the presence of
exceptions. Section 3 presents the reuse approach and how the static analysis tool can be
used to support some steps in the approach. Section 4 summarizes our experience when

applying this approach to reuse two different aspect libraries. Section 5 provides further
discussion of lessons learned. Finally, Section 6 presents our conclusions and directions

for future work. Due to space limitation, throughout this article we assume that the
reader is familiar with AOSD terminology (e.g., aspect, join point, pointcut, and advice)

and AspectJ language constructs [11, 20].

2. Background

2.1 Exception Handling

Exception handling [16] is a technique for structuring the error recovery code of a

system. It promotes (i) the explicit separation between normal and abnormal code; and
(ii) the explicit declaration of modules’ exception interfaces. In modern languages such

as Java and AspectJ the error recovery measures are encapsulated into handlers (try-

catch blocks), and exceptions are represented as objects that are raised when an

exceptional condition is detected. Raising an exception results in the interruption of the

normal activity of the program; followed by the search for an appropriate exception

handler to deal with the signaled exception. After the execution of an exception handler,

control returns to the code that immediately follows the handler code.

The list of exceptions that may flow from a method and is associated with its
signature is the method’s exception interface [26]. The exception interface should

provide complete and precise information to the method user. The user can, therefore,
prepare the code for the exceptions that can flow from it. However, some languages,

such as Java and AspectJ, allow the developer to bypass this mechanism. In such
languages exceptions can be of two kinds: checked exception – that needs to be declared

on the method’s signature that throws it – and unchecked exception – that does not need
to be declared on the signaler method’s signature. As a consequence, the client of a

method cannot know which unchecked exceptions may be thrown by it, unless s/he
recursively inspects each method called from it. For convenience, in this paper we split
this concept of exception interface into two categories:

• the explicit exception interface that is part of the module (method or method

like construct) signature and explicitly declares the exceptions; and

• the complete (de facto) exception interface which captures all the exceptions

signaled by a module, including the implicit ones not specified in the module
signature. For the rest of the paper, unless it is explicitly mentioned otherwise,

exception interface refers to the complete (de facto) exception interface.

In AspectJ programs the explicit exception interfaces of advices (i.e. method like
constructs that encapsulates the crosscutting behavior of an aspect) must be based on the

explicit exception interfaces of the advised methods. They should follow a rule similar to

the “Exception Conformance Rule” [26] applied during inheritance, when methods are
overridden. As a result an advice can only throw a checked exception if it is thrown by

“every” advised method. To overcome this limitation, most of the advices throw
unchecked exceptions (e.g., SoftExceptions in AspectJ) which do not need to be
specified by every advised method. In other AO languages such as Spring AOP [33] and

JBoss [19] aspect advices are represented as regular Java methods which can throw any
exception (checked or unchecked).

2.2 Exception Occurrences in AO Libraries

The additional expense that is required to account for the effects of exception
occurrences on aspect libraries may not be justified unless exceptions occur frequently in

practice. A recent study [6] shows that the amount of code dedicated to exception
occurrences (LOC EH) - code dedicate to exception raising and handling - in OO libraries

is approximately 7% of the total number of LOC. We conducted a similar study to
determine the frequency with which aspect libraries use exception-related constructs. In

this study, we examined the assets of aspect libraries from different sources, and obtained
the information summarized in Table 1. In the observed subjects from 2,09% to 8,82% of
the total lines of code were dedicated to exception raising and handling concerns. We

can observe that exceptions also occur frequently in aspect libraries.

Aspect Libraries LOC LOC EH % LOC EH # try # catch # throw

GlassBox Inspector (monitor) 3621 90 2,49% 16 16 14

Spring AOP 98976 8731 8,82% 975 1105 1847

JBoss Cache 41582 870 2,09% 363 363 494

 Table 1.Characterisics of EH code on aspect libraries.

Furthermore, the addition of exception-related constructs in several main stream

programming languages (e.g., Java, C++, C#) attests the importance of exception
handling mechanism in the development of current systems [13,7, 30].

2.3 Characteristics of AO Compositions and their Consequences to Aspect Reuse

As mentioned before some characteristics of aspect compositions bring new challenges

to aspect-oriented development and reuse in the presence of exceptions. Firstly, aspects
perform invasive modification of programs [1] which allow a developer to externally

modify the behavior of a method. This way of composition works by reverse, also
known as the inversion of control: the aspect declares which classes it should affect

rather than vice-versa. This means that adding and removing aspects from a system does
not require editing the affected class definitions.

Consequently, when (re-)using aspects we cannot easily protect the advised code

from the exceptions that may flow from them. Figure 1 illustrates a before advice that

intercepts an application method and throws an exception. This exception will flow

through the base code and interrupt the normal control flow of the advised code. On the
other hand, in OO system development we can simply add a try-catch block

surrounding the reused piece of code to avoid exceptions from flowing from it and

affecting the normal application control flow.

before advice method (inner structure)

methodexception

Legend:

system layer

GUI

Business

BD

Advised application

call graph

advise method

ExEx

statement

Figure 1. Consequences of invasiveness modifications.

Moreover, some AO development approaches rely on the obliviousness property

[12]. According to it the developer of the base code does not need to know that the code
will be affected by aspects. As a consequence, the application developer does not prepare

the code to deal with exceptions that may escape from aspects. Third, some AO
languages enable load-time weaving. The class loader reads a configuration file that
specifies the aspects to be woven when applications are loaded. Thus, the developer only

needs to deploy the aspect bytecode together with the application to be advised. This is
the scenario that occurs most often when aspect libraries are reused. Not having access

to the source code of imported aspects also has its drawbacks: the impact of aspects on
the exceptional flow of applications is only discovered at runtime.

GUI

Business

BD

GUI

Business

BD

unaffected methodmethod possibly affected by a new exception

Legend:

system layer advised method

Advised application

call graph
Application call graph

 Figure 2. Consequences of quantification property in the presence of exceptions.

 Last but not least, AO development is often based on the quantification property
which refers to the desire of programmers to write programming statements with the

following form: “In programs P, whenever condition C arises, perform action A”. As a
result aspects have the ability to affect semantically unrelated points in the code.

Therefore, when a new exception is introduced by an aspect within an application, new
handlers should be defined in different places within the base code (one for each path of

the call graph that may reach the affected method – see Figure 2).

Since the exception handling policy1 [27] of an application is almost always based

on its architecture, adding exceptions on unrelated points in the code may potentially
break the existing exception handling policy. The combination of these characteristics,

therefore, results in fault-prone exception handling scenarios in AO systems.

3. The Proposed Approach

In this section, we present an approach and a supporting tool to help developers when
developing an exception-aware aspect-oriented application. Section 3.1 briefly describes

the SAFE tool (Static Analysis for the Flow of Exceptions) developed in this work to
statically discover the exception paths [8, 9] (i.e., the path in a program call graph that

links the signaler and the handler of an exception) of each exception thrown within an
AO program. Section 3.2 presents each step of the proposed approach which covers
both the development of application aspects and the reuse of aspect libraries in the

presence of exceptions – the steps that should be performed to preserve the system
exception handling policy after AO weaving.

3.1. The SAFE Tool

The discovery of exceptions that may flow from aspect libraries can be very complex if
not infeasible to do manually, especially because of the use of Runtime exceptions in Java

and AspectJ. The exceptions that escape from an aspect advice may come from different
sources: (i) they can be explicitly thrown by a throw statement; (ii) they can also be

implicitly thrown from specific operations such as division by zero
(ArithmeticException), and when the developer accesses a null reference

(NullPointerException); (iii) there are also exceptions that can be thrown by JVM
environment when an abnormal situation occurs (OutOfMemoryException); (iv) the
aspect-oriented frameworks (AspectJ, JBossAOP, SpringAOP) can also throw specific

exceptions, that come from the additional code included by their respective weavers; and
finally (v) calls to APIs/library methods may also implicitly throw exceptions.

The SAFE tool [8] statically analyses the woven bytecode in order to discover: (i)

the exception interfaces of each advice; and (ii) the exception paths of each exception
that escapes from an aspect library. To mine such information, the SAFE tool performs

an exception-flow analysis similar to the one presented in [13] for OO systems2. The
exception-flow analysis is a dataflow analysis, resembling the analysis based on def-use

pairs [38] but instead of running on the control flow graphs, it runs on the program call
graph. The graph used by the exception-flow analysis tool is an extension of the program

call graph (PCG) with additional information in each node (program method). Such
information comprises the statements where exceptions may be thrown and handled (by
an enclosing try-catch block) [8].

1 The exception handling policy comprises a set of design rules which define the system elements responsible for

signaling, handling and re-throwing the exceptions; and the system dependability relies on obedience to such rules.
2 Current exception flow analysis tools [13, 25] do not support AOP constructs. Even the tools which operate on

Java bytecode level [13] cannot be used in a straightforward fashion. They cannot interpret the effects on bytecode

after the weaving process of AspectJ.

After constructing the extended PCG the exception-flow analysis algorithm

identifies every statement that may throw an exception, and for each of them, it traverses
the program call graph backwards looking for the handlers defined for it. If no handler is

found, the algorithm reaches the program entrance point and the exception is classified as
an uncaught exception. During the propagation process, each method (a node in the call
graph) in which the exception propagates is recorded as part of the exception path - it is

one of the exceptions that compose the exception interface of the method. Our tool is
based on Soot framework [32] for static analysis of bytecode. It uses Spark, one of the

call graph builders provided by Soot. Spark is a field-sensitive, flow-insensitive and
context-insensitive points-to analysis [32], used by other static analysis tools [13]. The

SAFE tool considers all checked and unchecked exceptions, explicitly thrown by the
application or implicitly thrown (e.g. via library method) by aspects in the library aspect.

3.2. Steps of the Proposed Approach

When implementing application aspects or re-using library aspects (i.e., aspects
developed by third party developers), the developer should account for the exceptional

conditions that may arise from them. Otherwise, exceptions may cross aspects
boundaries and impair the system’s integrity and robustness due to uncaught exceptions
and unintended handler actions. Much of the effort in our approach involves working

out how to effectively integrate aspects into the base code without the risk of introducing
the faults in the exception handling code – which may represent causes of potential

system crashes.

The verification approach presented here complements the available AO testing
approaches that focus on the system’s normal control flow [22, 36, 21, 2, 37, 23]. These

approaches perform unit and integration tests and look for faults in the AO code (e.g.,
too general or too specific pointcuts, conflicting aspect interactions). These approaches

neglect the exception handling code, firstly due to the difficulty of simulating exception
occurrences during tests and, secondly, because the large number of possible exceptions

can lead to a test case explosion problem.

The approach based on the SAFE tool, that we have developed, comprises of the
steps described below, which are also illustrated in Figure 3.

1. Discover the
Exception

Interfaces of
Aspects

2. Specify the

Exception
Handling

Contracts

Application code
(source or bytecode)

Aspect Library

3. Implement

the Exception
Handling Code

5. Check the
Exception

Handling
Contracts

4. Calculate
the Exception

Paths

excep. interfaces +

affected joinpoints
(per advice)

Aspect

Aspect

Aspect

Aspect

Except ion Interface

SEIF

SEIF

Exception Paths

Application after

aspect library integration

Aspect

Aspect

<<crosscuts>>

SEIF

<exception>:

<signaler>: <handler>

Exception handling

contracts

GUI

Business

BD

Figure 3. The proposed approach.

1. Discover the Exception Interfaces of Aspects. In this step the SAFE tool is used to

discover the exception interfaces of each aspect advice defined on application aspects or
library aspects that crosscut the base code - as detailed in Section 2.1, the exception

interface of a method-like construct such as an advice comprises the list of exceptions

that can be thrown from it. Since the SAFE tool works on the woven bytecode, at this
step the aspect library needs to be combined (i.e., woven) with the base code. In case the

elements to be affected by the aspect were not already implemented, a set of stubs may

be defined and combined with the aspect to enable the analysis3.

2. Specify the Exception Handling Contracts. Once the exception interfaces of aspect
advices have been discovered, the developer should specify which elements are

responsible for handling them. In our approach, this information is represented as a set of
exception handling contracts. The exception handling contracts specify the Signaler-

Handler relation per exception thrown by aspects and are specified by the SAFE tool in
XML format as illustrated below:

<exception type=””>

 <signaler signature=”” />

 <handler signature=”” type=””/>

</exception>

In case the application has already defined an exception policy, the exception handling

contracts defined for aspect-signaled exceptions should be defined in accordance to it.
The advantage of representing the exception handling contracts in a semi-structured way

is that they can be used afterwards to partially automate the contract checking step.

3. Implement the Exception Handling Code. In this step, the developer should

implement exception handling solutions according to the specified contracts. Examples
of exception handling solutions to be implemented in this step are:

• Error isolation: This strategy avoids the exception signaled by an aspect from

flowing to the client application. The handler can be defined in an exception
handling aspect (i.e., an aspect defined to handle exceptions [7] that directly

intercepts library aspects or application aspects). Or in the case the developer
has access to the aspect source code, handlers can be defined within every
advice that signals the exception.

• App-specific error handling: the developer can also define catch clauses inside

application elements that will be responsible for handling the exceptions thrown
by aspects (handling on the base code), or define an exception handling aspect

that intercepts specific join points in the application code (handling on aspects).

4. Calculate the Exception Paths. In this step, the SAFE tool analyses the bytecode of

the advised application, and calculates the exception path of each exception that may be
thrown by aspects. Notice that if there is no handler for a specific exception, the

exception path starts from the signaler and finishes at the program entrance point. After
the exception paths are calculated, if the exception handling contracts were defined on

3 Some approaches as the one proposed by Xie et al [36] automatically generate a set of stubs to be intercepted by

aspects.

the structured way, the SAFE tool analyzes every exception path in order to discover

whether the handling contracts, defined in Step 2, were obeyed by them.

5. Manually Inspect the Exception Handling Code. In this step the developer should
inspect the exception handling code related to the broken exception handling contracts.
By doing so, the developer will diagnose the cause of errors on the exception handling

code. Moreover, the developer may gain a fine-grained view of how exceptions are
handled (e.g., logging, presenting an error message to the user, or swallowing). After

discovering the cause of the exception handling error the implementation steps 3, 4, and
5 should be repeated until every exception is adequately handled on the advised

application.

In the following section, we show how our approach can be used to assure the
quality of the exception handling code in real implementation scenarios involving

application and library aspects.

5. Worked Example

The Health Watcher (HW) [31, 17] system is a web application that allows citizens to
register complaints regarding issues in health care institutions. HW adopts the Layer

architectural pattern which enables the separation of the persistence, business, and
graphical user interface concerns. Several design patterns were also used in HW to refine

each layer, such as: the Facade and the Persistent Data Collections (PDC) patterns [24].
To illustrate our approach, we selected two real change scenarios to be applied to the

HW system. In this case study, we need: (i) to monitor the performance of http requests;
and (ii) to add the transaction management support to the persistence operations.

A common strategy for monitoring an application is to include instrumentation
code around system operations. However, this approach requires scattering duplicate

code in many places in the code, which can be tedious, error-prone, and quite difficult to
maintain. In our case study, we reused the Glassbox Inspector [4, 15], an aspect

monitoring library, in order to implement the monitoring concern in the HW system. In
our case study, the transaction management concern was also implemented using an

aspect library. This concern also represents a typical crosscutting concern. To implement
it, we reused the transaction management aspect library built on top of Hibernate [11] –

an open source object relational mapping tool for a Java. As we can see, both aspect
libraries used in this case study were developed by third party developers.

Figure 4 depicts some of the elements that compose the HW system after
composing it with the aspect libraries described before (i.e., the Monitoring Aspect

Library, and the Hibernate Aspect Library). The HW elements presented in Figure 4 will
be detailed on the next subsections which describe the approach’s steps. Each step aims

at assuring that the aspects integrated with the base code will not threaten the application
robustness in the presence of exceptions.

5.1 Discover the Exception Interfaces of Aspects

The first step of our approach is to discover the exception interfaces of every aspect

advice that affect the base code in each change scenario. In our case study, the aspects
that intercept the base code are: (i) the ServletRequestMonitor – a library aspect that

directly intercepts every application request operation (see Figure 4); and (ii)
HibernateSessionManagerHW – an application aspect that extends the

HibernateSessionManager abstract library aspect in order to specify the join points in
the base code that needs to be intercepted to demarcate a system transaction (see Figure

4).

The SAFE tool recursively analyzes every aspect advice (analyzing every method
called from them and every advice that may intercept them) and calculates their
exception interfaces4. Listings 1 and 2 illustrate, respectively, the partial code of the

ServletRequestMonitor and HibernateSessionManagerHW aspects and the
exception interfaces of some advices defined on them.

4 The SAFE tool runs on the woven bytecode. When building the woven bytecode, AspectJ converts every aspect

into a standard Java class (called aspect class), and each piece of advice into a public non-static method in the

aspect class whose signature is automatically generated [39]. (as illustrated by the Advice Method Signature in

Listing 2).

HealthWatcherFacade

Com plaintDAOI mpl

Com plaint

I Em ployeeDAO

Em ployeeDAOI m pl

ServletI nsertEm ployee

Em ployee

Business Layer

GUI Layer

HibernateSessionManager HibernateDAO

HibernateExceptionManager

< < aspect> >

< < aspect> >

HibernateSessionManagerHW

< < aspect> >

I ComplaintDAOPersistence Layer

ServletSearchCom plaintData

Monitoring Aspect Library

ServletRequestMonitor

< < aspect> >

ErrorContainm ent

< < aspect> >

< < crosscuts> >

< < crosscuts> >

< < declare parents> >

Trace Aspect
< < aspect> >

< < crosscuts> >

Hibernate Aspect Library

Performance Monitoring

Transaction Management

Crosscutting Concerns:

< < crosscuts> >

Exception Handling for Aspect Libraries

SpecificErrorI solation

< < aspect> >
HibernateExceptionHandling

< < aspect> >

< < crosscuts> >

M

M

M

M

T

ST

Exception Handling f0r Aspect LibrariesH

H H

S

< < crosscuts> >

< < crosscuts> >

Figure 4. The Health Watcher system composed with Aspect Libraries.

public aspect ServletRequestMonitor {

//Intercepts every servlet request operation

public pointcut servletRequestExec():
 within(HttpServlet+) &&
 (execution(* HttpServlet.do*(..)) ||
 execution(*HttpServlet.service(..)))…;

 after() returning:monitorEndAllCases()
 { …
 Response response =

 responseFactory.getLastResponse();

 if (response != null) {
 response.complete();

 } else {
 logError("Monitoring problem:

 mismatched monitor calls");
 }

 }

…

} (a)

public aspect HibernateSessionManagerHW
 extends HibernateSessionManager {

 //Intercepts every DAO operation
 Object around() : operationDAO() {
 …

 Transaction tx = null;

 try {
 tx = session.beginTransaction();

 ret = proceed();
 tx.commit();

 } catch(HibernateException ex) {
 if (tx != null) tx.rollback();

 throw getHibernateExceptionManager()

 .createDomainException(ex);

 } finally {
 session.close();
 }

 return ret;
 }

 …

} (c)

Aspect: ServletRequestMonitor

Advice Type: after returning

Sequence: 01

Advice Method signature:

glassbox.monitor.ui.ServletRequestMonitor:

void ajc$afterreturning$glassbox_monitor

_ui_ServletRequestMonitor1a7406ba1(…)

Exception Interface:

org.aspectj.lang.SoftException

(b)

Aspect: HibernateSessionManagerHW

Advice Type: around

Sequence: 01

Advice Method signature:

hibernate.HibernateSessionManagerHW: Object

ajc$around$hibernate_HibernateSessionManager

HW1a506ba1(…)

Exception Interface:

org.aspectj.lang.SoftException

 (d)

 Listing 1. The code snippets of library aspects and their exception interfaces.

Each exception that composes the exception interface of each advice presented in

Listing 1, originates from internal library aspects (TraceAspect and

HibernateExceptionManager aspects in Figure 4) that intercept the advices under

analysis. From the listings above, we can observe that trying to manually discover the
exception interfaces can easily become an infeasible or error-prone task.

5.2 Specify the Exception Handling Contracts

After discovering the exception interfaces of every aspect advice or intertype declaration
that affect the base code, we need to define the elements that should be responsible for

handling them. In our approach, such information is represented in terms of a set of
exception handling contracts. Listing 2 illustrates the exception handling contracts
defined (i) to the instance of SoftException thrown by the after returning advice

presented above, and (ii) to one advice of the HibernateSessionManagerHW aspect

that may also throw an instance of SoftException. The <signaler> and <handler>

elements contain an expression (similar to a pointcut expression) that will match the
methods signature responsible, respectively, for signaling and handling the exceptions.

1. <contract id=1 description=”Glassbox Contract”>

2. <exception type=”org.aspectj.lang.SoftException”>

3. <signaler signature=”glassbox.monitor.ui.ServletRequestMonitor.*”/>

4. <handler signature=”hw.handling.ErrorIsolation”

5. type=”same_exception”/>

6. </exception>

7. </contract>

8. <contract id=2 description=”Hibernate Contract”>

9. <exception type=” org.aspectj.lang.SoftException”>

10. <signaler signature=”HibernateSessionManagerHW.*” />

11. <handler signature=”hw.handling.HibernateExceptionHandling.*”

12. type=”same_exception”/>

13. </exception>

14. </contract>

 Listing.2. Exception Handling Contracts.

The first contract (id=1) defines that the ErrorIsolation aspect should handle
any instance of SoftException signaled by any advice defined on the

ServletRequestMonitor class. The second contract (id=2) states that the
HibernateExceptionHandling aspect is responsible for handling the SoftException

signaled by any advice defined on the HibernateSessionManagerHW aspect.

Moreover, both contracts state that such exceptions should be caught by a catch clause

whose argument is of the same type as the exception being caught (lines 5 and 12).

These handlers implement two different exception handling policies (see Section
4): one based on Error-isolation, and other based on App-specific error handling. The

developer does not want exceptions that escape from the monitoring aspect library to
affect the application normal control flow. On the other hand, if an exception occurs
during data persistence (that relies on the transaction concern), the developer wants to

notify that the requested transaction could not be performed. The exception thrown by
the Hibernate aspect library should flow until the GUI layer, and each servlet should then

handle the SoftException and present a proper error message to the user.

5.3 Implement Exception Handling Code

 In this step, the exception handler aspects specified on the contracts defined above

should be implemented. Listing 3(a) illustrates the partial code of the ErrorIsolation

aspect.

public aspect ErrorIsolation {
 …

 public pointcut scope() :

 within(ServletRequestMonitor);

 void around():adviceexecution() &&

 scope()){
 try {

 proceed();

 } catch (SoftException e) {

 log(e);

 }

 }

} (a)

public aspect HybernateExceptionHandler{

 public pointcut scope():

 within(hw.gui.* && HttpServlet+) &&

 (execution(* HttpServlet.do*(..)) ||

 execution(* HttpServlet.service(..)));

 void around():scope()){

 try {

proceed();

 } catch (SoftException e) {

presentUserMessage(e);

 }

 } (b)

Listing 3. Code snippet for the ErrorIsolation aspect.

In order to isolate the exception that flows from the monitoring aspect library, the
exception handling aspect (ErrorIsolation in Figure 4) needs to directly intercept the

aspect library bytecode5. Doing so, the ErrorIsolation aspect prevents the monitoring

exception from affecting the flow of execution of the application. Similarly, the
HibernateExceptionHandler aspect is implemented to handle the exceptions thrown

by Hibernate aspect library. This aspect intercepts the base code, more specifically the

doGet(..) and doPost(..) methods, using an around advice. This aspect handles

instances of SoftException and presents a specific error message to the user. Listing

3(b) illustrates the partial code of HibernateExceptionHandler aspect.

5.4 Calculate Exception Paths

In order to assure that the exception handling solutions are correctly implemented, we

use the SAFE tool to calculate the exception paths for the exceptions signaled by the
monitoring and the transaction management crosscutting functionalities. Listing 4
illustrates one of the exception paths calculated by the SAFE tool for these exceptions6:

Besides calculating the exception paths, the SAFE tool also checks whether they obey
the exception handling contracts defined at the previous step. The automatic checking of

exception handling contracts is useful when many exception paths should be analyzed.
During the exception handling contract verification on the exception paths, we can

observe that the SoftException is not handled by the element specified in the contract
(see Listing 3(b)).

Exception: org.aspectj.lang.SoftException

Exception Path:

 (Signaler)<HibernateSessionManagerHW: Object ajc$around$ID(…)>

 (Intermediate)<ComplaintDAOImpl: search (…)>

 (Handler)<HealthWatcherFacade: searchComplaint (…)>

 (Action)org.aspectj.lang.SoftException captured by java.lang.Exception

Contracts: Hibernate Contract (id:2) broken

Listing 4. List of Exception Handling Contracts.

5.5 Manually Inspect the Exception Handling Code

During code inspection, we observed that the instance of SoftException that can be
signaled by HibernateExceptionHandler is mistakenly handled by a “catch all” clause

defined on the system Facade (see HealthWatcherFachade class in Figure 4) before it
can reach the join point intercepted by the handler aspect

(HybernateExceptionHandler) presented in Listing 3(b). This kind of problem could
hardly be anticipated during the development of HybernateExceptionHandler because
the exception handling aspect will intercept the correct join point (where the exception

should be caught) and no warning will tell the user that no exception will reach this
point. In this case study such problem could be detected with an appropriate tool

support: the SAFE tool. One way of solving this broken exception handling contract is to
replace the “catch all” clause defined in the Facade element by specific catch clauses

(one per exception handled at this point). Doing so, the instance of SoftException will

5 AspectJ allows the weaving of aspects into bytecode (that may contain woven aspects) by inpath compile

option.
6 We omit package names, return types and advice IDs for simplicity.

flow until it reaches the join points intercepted by the exception handling aspect (in the

GUI layer).

6. Discussions and Lessons Learned

This section provides further discussion of issues and lessons we have learned while
applying our approach to reuse scenarios of aspect libraries.

Static analysis x Testing Exceptional Conditions. Our approach relies on static analysis

in order to discover which exceptions may flow from aspect libraries. To discover such
exceptions, we could alternatively write integration tests to verify whether aspect

libraries affect the application code as expected under exceptional conditions. However,
the test of exceptional conditions is inherently difficult, due to the huge number of
possible exceptional conditions to simulate in a system and the difficulty associated to

simulate most of such scenarios [5].

Aspect Libraries Development. This paper focused on the reuse of aspect libraries, but
we could observe that some approach’s steps could be useful when the developer

implements her/his own aspect library. Using a similar approach, the aspect library
developer could: (i) isolate the client code from exceptions that may flow from library

code (Error-isolation strategy in Section 3.2); (ii) or explicitly document the library
advices that will affect the base code and the exceptions that may flow from them. As a

crosscutting interface (XPI) [40] is a way of documenting the points of a system that can
be affected by aspects, such explicit documentation could work by reverse. The

Exceptional Interface (EXI) of the aspect library could contain which exceptions
(checked or unchecked) can be signaled by every library aspect that will affect points in
the base code. The SAFE tool can be used to automatically generate the EXI of aspect

libraries – which could be directly used by the developer or used though an IDE [35]. As
we discussed in this paper, such documentation would be very useful when developing

robust systems.

Load-time weaving. As mentioned before, some aspect libraries can be reused in load-
time. However, in order to assure that the aspect library reused at load-time will not

impair system robustness, it is fundamental to prepare their code beforehand for the
exceptions that may flow from aspect libraries in runtime. This can be accomplished by

adopting the approach proposed here (possibly only during the first time an aspect library
is reused).

Static Analysis based on Java bytecode. The SAFE tool is based on the static analysis of

Java bytecode. The advantage of working with the Java bytecode, instead of the AspectJ
source code, is that we can incorporate in our analysis the exceptions that flow from
aspect libraries and OO libraries. However, sometimes the developer should deal with the

SAFE tool output that may contain automatically generated advice methods signatures
(e.g., void ajc$after$MonitorContextLoaderManagement$1$6e34821 (...)) [39]. We are

currently devising a strategy to map the advice representation on the bytecode to its
representation on the source code. This will make the tool output more user-friendly.

7. Related Work

So far, initial work has been developed which investigate the problems related to library
aspects reuse [25, 41, 42]. These works focused on the context of incremental software

development, and how an aspect may affect subsequent integrated elements, although it
was implemented without being aware of them. These works discuss the unpredictable

effects and errors that can arise from such scenarios. Although they discuss anticipated
aspect composition problems, they do not tackle the problems that may arise when

exceptions flow from re-used aspects. In our work we investigated the collateral effects
of reusing aspects in the presence of exceptions. Moreover, we also proposed an

approach to help developers to deal with them. Although some problems related to
aspect libraries reuse are similar to the ones associated with OO libraries reuse, we have
shown that some characteristics of AO compositions aggravated the problems.

8. Concluding Remarks and Future Works

This work presented an approach that aims at guiding the developer during the stage of
aspect libraries reuse. It supports reasoning about the exceptions that can flow from
aspects; and it provides brief and clear guidelines of how such exceptions should be

handled. The contributions of this work, however, are not limited to developers of robust
aspect-oriented applications who need to make more informed decisions when reusing

aspect libraries in the presence of exceptions. But the approach is also useful to help
developers when building their own reusable aspect libraries. It provides a way to

identify potential problems that may happen on different reuse scenarios. Furthermore,
the present work also allows for designers of AO languages to consider pushing the

boundaries of existing mechanisms to make AOP more robust and resilient to exceptional
conditions. There are several ways our work can be continued: (i) apply this approach to

other reuse scenarios, in order to perform more extensive validation; (ii) investigate the
usefulness of this approach in software evolution scenarios; and finally (iii) adapt the

approach to aspect library development.

8. References

[1] Aldrich, J.: Open Modules: Modular Reasoning about Advice. In: Proc. of ECOOP’05.
[2] Alexander, R.T.; Bieman, J.M.; Andrews, A.A. Towards the Systematic Testing of Aspect-Oriented

Programs. Technical Report CS-04-105. Dept. of Computer Science, Colorado State University Fort
Collins/Colorado - USA, March 2004.

[3] Bodkin, R., Next steps with aspects, AOP@Work: http://www.ibm.com/developerworks/java/library/j-
aopwork16/index.html 11/ (Mar 2006).

[4] Bodkin, R., Performance monitoring with AspectJ, Online:
http://www.ibm.com/developerworks/java/library/j-aopwork10/ and ../j-aopwork12 (Sep 2005). [5]

[5] Bruntink, M.; Deursen, A.V.; Tourwe, T. Discovering faults in idiom-based exception handling. In:
Proceedings of the International Conference on Software Engineering, 2006, p.242-251. [36]

[6] Cabral, B., Marques, P.: Exception Handling: A Field Study in Java and .NET. In: Proc. of ECOOP’07.
[7] Castor Filho, F., Garcia, A., Rubira, C.: Extracting Error Handling to Aspects: A Cookbook. In: Proc. of

ICSM’07.
[8] Coelho, R, Analyzing the Exception Flows of Aspect-Oriented Programs, PhD Thesis, PUC-Rio, July

2008.
[9] Coelho, R, Awais, R., Garcia, A., Ferrari, F. Cacho, N., Kulesza, U., Staa, A., Lucena, C., Assessing

the Impact of Aspects on Exception Flows: An Exploratory Study, In: Proc. of ECOOP´2008. (to
appear)

[10] Coelho, R. et al, Assessing the Impact of Aspects on Exception Flows: An Empirical Study. Website:
http://www.inf.puc-rio.br/~roberta/aop_exceptions

[11] Colyer, A., et al. Eclipse Aspectj: Aspect-Oriented Programming with Aspectj and the Eclipse Aspectj
Development Tools. 2004: Addison-Wesley.

[12] Filman, R., Friedman, D., Aspect-oriented programming is Quantification and Obliviousness. In
Aspect-Oriented Software Development. Addison-Wesley, 2005.

[13] Fu, C., A. Milanova, et al. Robustness testing of Java Server Applications. IEEE Transactions on
Software Engineering.

[14] Fu, C.; Ryder, B. G.: Exception-Chain Analysis: Revealing Exception Handling Architecture in Java
Server Applications. In: Proc. of ICSE’07.

[15] Glassbox Inspector. https://glassbox-inspector.dev.java.net/
[16] Goodenough JB. Exception handling: Issues and a proposed notation. Communic. of the ACM 1975.
[17] Greenwood, P.; et al.: On the Impact of Aspectual Decompositions on Design Stability: An Empirical

Study. In: Proc. of ECOOP’07. pp. 176–200
[18] Hannemann, J.; Kiczales, G.: Design Pattern Implementation in Java and AspectJ. In: Proc. of

OOPSLA’02, 2002
[19] JBoss Cache: http://labs.jboss.com/jbosscache/
[20] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W., “Getting Started with

AspectJ”, Communication of the ACM, 44(10), 2001, pp. 59-65.
[21] Lemos, O.; Ferrari, F.; Lopes, C.; Masiero, P. Testing aspect-oriented programming Pointcut

Descriptors. In: Workshop on Testing Aspect-Oriented Programs, 2006, p.33-38.
[22] Lopes, C.; Ngo, T. Unit-Testing Aspectual Behavior. In: Proceedings of the Workshop on Testing

Aspect-Oriented Programs 2005 (WTAOP 2005), 2005.
[23] Massiote, E.P.; Badri, L.; Badri, M. Towards a Tool Supporting Integration Testing of Aspect-Oriented

Programs. Journal of Object Technology, 6(1), 2007, p.67-89.
[24] Massoni, T.; Alves, V.; Soares, S.; Borba, P. PDC: Persistent Data Collections pattern. In:

SugarLoafPLoP 2001, p.311–326.
[25] McEachen, N., Alexander, R., Distributing Classes with Woven Concerns – An Exploration of

Potential Fault Scenarios. In Proc. of AOSD’ 05, pp.192-200.
[26] Miller, R.; Anand, T.: Issues with Exception Handling in Object-Oriented Systems. In: ECOOP’97.
[27] Robillard M. P., Murphy, G., Designing robust java programs with exceptions. In Proc. of FSE 2000.
[28] Robillard, M.; Murphy, G.: Static Analysis to Support the Evolution of Exception Structure in Object-

Oriented Systems. In: ACM Trans. Softw. Eng. Methodol (2003).
[29] Sacramento, P.; Cabral, B.; Marques, P. Unchecked Exceptions: Can the Programmer be Trusted to

Document Exceptions? In: Proceedings of IVNET'06, 2006.
[30] Sinha, S. and Harrold M., Analysis of Programs with Exception-Handling Constructs, In: ICSM’98.
[31] Soares, S.; Borba, P.; Laureano, E.: Distribution and Persistence as Aspects. In: Software: Practice and

Experience, Wiley, vol. 36 (7), (2006) 711-759.
[32] Soot: A Java Optimization Framework. http://www. sable.mcgill.ca/ soot, accessed 19/12/2007.
[33] Spring AOP aspect library:http://www.springframework.org/
[34] Thomas, D. The Deplorable State of Class Libraries. Journal of Object Technology, 1(1), 2002, 21-27.
[35] Saurabh Sinha, Alessandro Orso, Mary Jean Harrold: Automated Support for Development, Maintenance, and

Testing in the Presence of Implicit Control Flow. ICSE 2004: 336-345.
[36] Xie, T.; Zhao, J. A framework and tool supports for generating test inputs of AspectJ programs. In:

Proceedings of the In Proc. 5th International Conference on Aspect-Oriented Software Development,
2006, p.190–201.

[37] Xu, W.; Xu, D. State-Based Testing of Integration Aspects. In: Proceedings of the Second Workshop
on Testing of Aspect-Oriented Programs (WTAOP’06). In conjunction with ISSTA’06,2006, p.7-14.

[38] Zhao, J. Data-flow-based unit testing of aspectoriented programs. In COMPSAC'2003.
[39] Hilsdale, E.; Hugunin, J. Advice weaving in AspectJ. In: Proceedings of the In 3rd International.

Conference on Aspect-oriented Software Development (AOSD 2004), Lancaster, UK, 2004, p.26–35.
[40] Sullivan, K., Kevin Sullivan , William G. Griswold , Yuanyuan Song , Yuanfang Cai , Macneil Shonle , Nishit

Tewari , Hridesh Rajan, Information hiding interfaces for aspect-oriented design, In FSE 2005.
[41] Lopez-Herrejon; Batory, D.; Lengauer, C. A disciplined approach to aspect composition. In: ACM/SIGPLAN

Workshop Partial Evaluation and Semantics-Based Program Manipulation, 2006, p.68 – 77

[42] Apel, S., Leich, T.; Saake, G. Aspectual Mixin Layers: Aspects and Features in Concert. In: ICSE 2006, p122-

131.

