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Abstract. Aspect Libraries have introduced new possibilities of application 

composition, facilitating the reuse of crosscutting functionalities. However, if 

on the one hand this facilitates the independent development of reusable 

aspects, on the other hand it can bring additional complexity to software 

reuse, especially, in exception-aware systems. In this work, we present a set of 

potential fault scenarios associated with aspect libraries reuse. We show that 

the reuse of aspect libraries is indeed fault prone in exceptional conditions 

and present a principled reuse approach supported by a static analysis tool 

that leads to significant improvements. 

1. Introduction 

Although prebuilt aspect libraries are a relatively new reuse artifact, several useful 

collections have already become available, including: the Spring AOP aspect library [33], 
the Glassbox Inspector [15], the JBoss Cache [19], and GOF patterns aspect library [18]. 
Such libraries typically involve collaboration among aspects, classes, and interfaces, and 

enable the developer to extend the functionalities of existing applications avoiding 
significant coupling and large re-investments [3]. They implement crosscutting 

functionalities (e.g., performance monitoring, security, and transaction management) that 
would be spread in many application modules otherwise. According to Bodkin [3] “reuse 

will prove to be the most important benefit from adopting Aspect Oriented 

Programming.” 

 While aspect libraries introduce new possibilities for application composition, in 

some circumstances they may threaten the client application’s robustness and design 
consistency. In this paper we focus on the robustness and consistency issues pertaining to 

exceptional flow of programs using such aspect libraries; the additional behavior injected 
by aspect libraries may also bring new exceptions. Exceptions are abnormal computation 
states that arise as a consequence of, for instance, faults in the application itself (e.g., 

access of null references), a noisy user input or faults in underlying middleware or 
hardware. Aspect libraries developers may do their best to ensure that library functions 

do not create faults that impact client applications. However, unexpected behavior in 



 

 

 

 

aspect library code (e.g., unanticipated null values, undocumented runtime exceptions 

thrown by libraries) is often present [9]. In order to know which exceptions may flow 
from aspect libraries, programmers must rely on library documentation – which, very 

often, is neither complete nor precise [6, 29, 34]. As a consequence, the developer may 
only notice the existence of unexpected exceptions thrown by an aspect library, by 
observing the failures caused by them on the application (e.g., uncaught exceptions [26]: 

exceptions that are not caught on the application code and lead to a software crash; or 
unintended handler actions [26, 28]: exceptions that are mistakenly handled by an 

existing handler in the base code).  

 One may argue that the problems associated with aspect libraries reuse also occur 
when OO libraries are reused: we do not know the exceptions that may flow from OO 

libraries as well and, consequently, cannot prepare the code to deal with them. Indeed, 
this is a real problem in OO libraries reuse, and some static analysis tools, e.g., as 

proposed in [14, 28], could be used to deal with it. However, some characteristics of 
aspect compositions strengthens this problem, such as: (i) the invasive modification of 

the base code [1], (ii) some developers and approaches advocating an oblivious 
development process [12], (iii) the load-time weaving [11] available in some Aspect 
Oriented (AO) languages, (iv) and the quantification property [12] (as detailed in 

Section 2.3). 

While the invasiveness of aspect library compositions often allows the reuse of 
crosscutting implementations, they might render less useful if they introduce new 

exceptions that may lead to potential faults. Currently, there is no approach or 
supporting tool to help application developers to: (i) discover which exceptions may flow 

from an aspect library, (ii) prepare the code to deal with them; or (iii) check whether 
such exceptions were adequately handled. Such approach would reduce or altogether 

avoid the threats posed by aspect libraries to the application’s robustness in exceptional 
scenarios.  

In a previous study [9] we assessed the error proneness of AOP mechanisms on 

exception flows of programs. In the present work we focus on the exceptions that may 
flow from library aspects, the consequences that they may bear, and how to deal with 
them. Thus, the main questions we seek to address are the following: 

• What are the potential consequences of reusing aspect libraries that may throw 

exceptions?  

•  How can one reduce the number of potential faults associated with them?  

We believe the answers to these questions are of interest to a broad audience, due 

to the increasing number of AO developers. The contributions of this work are as 
follows:  

•  We explore the potential faults associated with aspect libraries reuse – showing a 

concrete example.  

•  We propose an approach for principled aspect reuse that takes into account 

exceptional situations neglected by existing approaches. The approach is based 
on an exception analysis tool called SAFE [8] developed to support this 

approach. This tool aims at finding the exceptions that may flow from aspect 



 

 

 

 

libraries (exception interfaces [26]) and how such exceptions flow on the base 

code (exception paths).  

The remainder of this paper is organized as follows. Section 2 presents some 
background on exception handling, and discusses the characteristics of aspects 

compositions and the challenges they can bring when reusing aspects in the presence of 
exceptions. Section 3 presents the reuse approach and how the static analysis tool can be 
used to support some steps in the approach. Section 4 summarizes our experience when 

applying this approach to reuse two different aspect libraries. Section 5 provides further 
discussion of lessons learned. Finally, Section 6 presents our conclusions and directions 

for future work. Due to space limitation, throughout this article we assume that the 
reader is familiar with AOSD terminology (e.g., aspect, join point, pointcut, and advice) 

and AspectJ language constructs [11, 20]. 

2. Background 

2.1 Exception Handling  

Exception handling [16] is a technique for structuring the error recovery code of a 

system. It promotes (i) the explicit separation between normal and abnormal code; and 
(ii) the explicit declaration of modules’ exception interfaces. In modern languages such 

as Java and AspectJ the error recovery measures are encapsulated into handlers (try-

catch blocks), and exceptions are represented as objects that are raised when an 

exceptional condition is detected. Raising an exception results in the interruption of the 

normal activity of the program; followed by the search for an appropriate exception 

handler to deal with the signaled exception. After the execution of an exception handler, 

control returns to the code that immediately follows the handler code. 

The list of exceptions that may flow from a method and is associated with its 
signature is the method’s exception interface [26]. The exception interface should 

provide complete and precise information to the method user. The user can, therefore, 
prepare the code for the exceptions that can flow from it. However, some languages, 

such as Java and AspectJ, allow the developer to bypass this mechanism. In such 
languages exceptions can be of two kinds: checked exception – that needs to be declared 

on the method’s signature that throws it – and unchecked exception – that does not need 
to be declared on the signaler method’s signature. As a consequence, the client of a 

method cannot know which unchecked exceptions may be thrown by it, unless s/he 
recursively inspects each method called from it. For convenience, in this paper we split 
this concept of exception interface into two categories:  

• the explicit exception interface that is part of the module (method or method 

like construct) signature and explicitly declares the exceptions; and  

• the complete (de facto) exception interface which captures all the exceptions 

signaled by a module, including the implicit ones not specified in the module 
signature. For the rest of the paper, unless it is explicitly mentioned otherwise, 

exception interface refers to the complete (de facto) exception interface.  

In AspectJ programs the explicit exception interfaces of advices (i.e. method like 
constructs that encapsulates the crosscutting behavior of an aspect) must be based on the 



 

 

 

 

explicit exception interfaces of the advised methods. They should follow a rule similar to 

the “Exception Conformance Rule” [26] applied during inheritance, when methods are 
overridden. As a result an advice can only throw a checked exception if it is thrown by 

“every” advised method. To overcome this limitation, most of the advices throw 
unchecked exceptions (e.g., SoftExceptions in AspectJ) which do not need to be 
specified by every advised method. In other AO languages such as Spring AOP [33] and 

JBoss [19] aspect advices are represented as regular Java methods which can throw any 
exception (checked or unchecked). 

2.2 Exception Occurrences in AO Libraries 

The additional expense that is required to account for the effects of exception 
occurrences on aspect libraries may not be justified unless exceptions occur frequently in 

practice. A recent study [6] shows that the amount of code dedicated to exception 
occurrences (LOC EH) - code dedicate to exception raising and handling - in OO libraries 

is approximately 7% of the total number of LOC. We conducted a similar study to 
determine the frequency with which aspect libraries use exception-related constructs. In 

this study, we examined the assets of aspect libraries from different sources, and obtained 
the information summarized in Table 1. In the observed subjects from 2,09% to 8,82% of 
the total lines of code were dedicated to exception raising and handling concerns. We 

can observe that exceptions also occur frequently in aspect libraries. 
 

Aspect Libraries LOC LOC EH % LOC EH # try # catch # throw

GlassBox Inspector (monitor) 3621 90 2,49% 16 16 14

Spring AOP 98976 8731 8,82% 975 1105 1847

JBoss Cache 41582 870 2,09% 363 363 494  

                      Table 1.Characterisics of EH code on aspect libraries. 

Furthermore, the addition of exception-related constructs in several main stream 

programming languages (e.g., Java, C++, C#) attests the importance of exception 
handling mechanism in the development of current systems [13,7, 30]. 

2.3 Characteristics of AO Compositions and their Consequences to Aspect Reuse  

As mentioned before some characteristics of aspect compositions bring new challenges 

to aspect-oriented development and reuse in the presence of exceptions. Firstly, aspects 
perform invasive modification of programs [1] which allow a developer to externally 

modify the behavior of a method.  This way of composition works by reverse, also 
known as the inversion of control: the aspect declares which classes it should affect 

rather than vice-versa. This means that adding and removing aspects from a system does 
not require editing the affected class definitions.  

Consequently, when (re-)using aspects we cannot easily protect the advised code 

from the exceptions that may flow from them. Figure 1 illustrates a before advice that 

intercepts an application method and throws an exception. This exception will flow 

through the base code and interrupt the normal control flow of the advised code. On the 
other hand, in OO system development we can simply add a try-catch block 

surrounding the reused piece of code to avoid exceptions from flowing from it and 

affecting the normal application control flow. 
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Figure 1. Consequences of invasiveness modifications. 

Moreover, some AO development approaches rely on the obliviousness property 

[12]. According to it the developer of the base code does not need to know that the code 
will be affected by aspects. As a consequence, the application developer does not prepare 

the code to deal with exceptions that may escape from aspects. Third, some AO 
languages enable load-time weaving. The class loader reads a configuration file that 
specifies the aspects to be woven when applications are loaded. Thus, the developer only 

needs to deploy the aspect bytecode together with the application to be advised. This is 
the scenario that occurs most often when aspect libraries are reused. Not having access 

to the source code of imported aspects also has its drawbacks: the impact of aspects on 
the exceptional flow of applications is only discovered at runtime.  
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  Figure 2. Consequences of quantification property in the presence of exceptions. 

          Last but not least, AO development is often based on the quantification property 
which refers to the desire of programmers to write programming statements with the 

following form: “In programs P, whenever condition C arises, perform action A”. As a 
result aspects have the ability to affect semantically unrelated points in the code. 

Therefore, when a new exception is introduced by an aspect within an application, new 
handlers should be defined in different places within the base code (one for each path of 

the call graph that may reach the affected method – see Figure 2). 



 

 

 

 

Since the exception handling policy1 [27] of an application is almost always based 

on its architecture, adding exceptions on unrelated points in the code may potentially 
break the existing exception handling policy. The combination of these characteristics, 

therefore, results in fault-prone exception handling scenarios in AO systems.  

3. The Proposed Approach 

In this section, we present an approach and a supporting tool to help developers when 
developing an exception-aware aspect-oriented application. Section 3.1 briefly describes 

the SAFE tool (Static Analysis for the Flow of Exceptions) developed in this work to 
statically discover the exception paths [8, 9] (i.e., the path in a program call graph that 

links the signaler and the handler of an exception) of each exception thrown within an 
AO program. Section 3.2 presents each step of the proposed approach which covers 
both the development of application aspects and the reuse of aspect libraries in the 

presence of exceptions – the steps that should be performed to preserve the system 
exception handling policy after AO weaving.  

3.1. The SAFE Tool 

The discovery of exceptions that may flow from aspect libraries can be very complex if 
not infeasible to do manually, especially because of the use of Runtime exceptions in Java 

and AspectJ. The exceptions that escape from an aspect advice may come from different 
sources: (i) they can be explicitly thrown by a throw statement; (ii) they can also be 

implicitly thrown from specific operations such as division by zero 
(ArithmeticException), and when the developer accesses a null reference 

(NullPointerException); (iii) there are also exceptions that can be thrown by JVM 
environment when an abnormal situation occurs (OutOfMemoryException); (iv) the 
aspect-oriented frameworks (AspectJ, JBossAOP, SpringAOP) can also throw specific 

exceptions, that come from the additional code included by their respective weavers; and 
finally (v) calls to APIs/library methods may also implicitly throw exceptions. 

The SAFE tool [8] statically analyses the woven bytecode in order to discover: (i) 

the exception interfaces of each advice; and (ii) the exception paths of each exception 
that escapes from an aspect library. To mine such information, the SAFE tool performs 

an exception-flow analysis similar to the one presented in [13] for OO systems2. The 
exception-flow analysis is a dataflow analysis, resembling the analysis based on def-use 

pairs [38] but instead of running on the control flow graphs, it runs on the program call 
graph. The graph used by the exception-flow analysis tool is an extension of the program 

call graph (PCG) with additional information in each node (program method). Such 
information comprises the statements where exceptions may be thrown and handled (by 
an enclosing try-catch block) [8]. 

                                                
1 The exception handling policy comprises a set of design rules which define the system elements responsible for 

signaling, handling and re-throwing the exceptions; and the system dependability relies on obedience to such rules. 
2 Current exception flow analysis tools [13, 25] do not support AOP constructs. Even the tools which operate on 

Java bytecode level [13] cannot be used in a straightforward fashion. They cannot interpret the effects on bytecode 

after the weaving process of AspectJ.  



 

 

 

 

After constructing the extended PCG the exception-flow analysis algorithm 

identifies every statement that may throw an exception, and for each of them, it traverses 
the program call graph backwards looking for the handlers defined for it.  If no handler is 

found, the algorithm reaches the program entrance point and the exception is classified as 
an uncaught exception. During the propagation process, each method (a node in the call 
graph) in which the exception propagates is recorded as part of the exception path - it is 

one of the exceptions that compose the exception interface of the method. Our tool is 
based on Soot framework [32] for static analysis of bytecode. It uses Spark, one of the 

call graph builders provided by Soot. Spark is a field-sensitive, flow-insensitive and 
context-insensitive points-to analysis [32], used by other static analysis tools [13]. The 

SAFE tool considers all checked and unchecked exceptions, explicitly thrown by the 
application or implicitly thrown (e.g. via library method) by aspects in the library aspect.  

3.2. Steps of the Proposed Approach 

When implementing application aspects or re-using library aspects (i.e., aspects 
developed by third party developers), the developer should account for the exceptional 

conditions that may arise from them. Otherwise, exceptions may cross aspects 
boundaries and impair the system’s integrity and robustness due to uncaught exceptions 
and unintended handler actions. Much of the effort in our approach involves working 

out how to effectively integrate aspects into the base code without the risk of introducing 
the faults in the exception handling code – which may represent causes of potential 

system crashes.  

The verification approach presented here complements the available AO testing 
approaches that focus on the system’s normal control flow [22, 36, 21, 2, 37, 23]. These 

approaches perform unit and integration tests and look for faults in the AO code (e.g., 
too general or too specific pointcuts, conflicting aspect interactions). These approaches 

neglect the exception handling code, firstly due to the difficulty of simulating exception 
occurrences during tests and, secondly, because the large number of possible exceptions 

can lead to a test case explosion problem. 

The approach based on the SAFE tool, that we have developed, comprises of the 
steps described below, which are also illustrated in Figure 3. 
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Figure 3. The proposed approach. 



 

 

 

 

1. Discover the Exception Interfaces of Aspects. In this step the SAFE tool is used to 

discover the exception interfaces of each aspect advice defined on application aspects or 
library aspects that crosscut the base code - as detailed in Section 2.1, the exception 

interface of a method-like construct such as an advice comprises the list of exceptions 

that can be thrown from it. Since the SAFE tool works on the woven bytecode, at this 
step the aspect library needs to be combined (i.e., woven) with the base code. In case the  

elements to be affected by the aspect were not already implemented, a set of stubs may 

be defined and combined with the aspect to enable the analysis3.  

2. Specify the Exception Handling Contracts. Once the exception interfaces of aspect 
advices have been discovered, the developer should specify which elements are 

responsible for handling them. In our approach, this information is represented as a set of 
exception handling contracts. The exception handling contracts specify the Signaler-

Handler relation per exception thrown by aspects and are specified by the SAFE tool in 
XML format as illustrated below:  

<exception type=””> 

   <signaler signature=”” /> 

   <handler signature=”” type=””/> 

</exception> 

In case the application has already defined an exception policy, the exception handling 

contracts defined for aspect-signaled exceptions should be defined in accordance to it. 
The advantage of representing the exception handling contracts in a semi-structured way 

is that they can be used afterwards to partially automate the contract checking step. 

3. Implement the Exception Handling Code. In this step, the developer should 

implement exception handling solutions according to the specified contracts. Examples 
of exception handling solutions to be implemented in this step are: 

•   Error isolation: This strategy avoids the exception signaled by an aspect from 

flowing to the client application. The handler can be defined in an exception 
handling aspect (i.e., an aspect defined to handle exceptions [7] that directly 

intercepts library aspects or application aspects). Or in the case the developer 
has access to the aspect source code, handlers can be defined within every 
advice that signals the exception.  

•   App-specific error handling: the developer can also define catch clauses inside 

application elements that will be responsible for handling the exceptions thrown 
by aspects (handling on the base code), or define an exception handling aspect 

that intercepts specific join points in the application code (handling on aspects). 

4. Calculate the Exception Paths. In this step, the SAFE tool analyses the bytecode of 

the advised application, and calculates the exception path of each exception that may be 
thrown by aspects. Notice that if there is no handler for a specific exception, the 

exception path starts from the signaler and finishes at the program entrance point. After 
the exception paths are calculated, if the exception handling contracts were defined on 

                                                
3 Some approaches as the one proposed by Xie et al [36] automatically generate a set of stubs to be intercepted by 

aspects. 



 

 

 

 

the structured way, the SAFE tool analyzes every exception path in order to discover 

whether the handling contracts, defined in Step 2, were obeyed by them.  

5. Manually Inspect the Exception Handling Code. In this step the developer should 
inspect the exception handling code related to the broken exception handling contracts. 
By doing so, the developer will diagnose the cause of errors on the exception handling 

code. Moreover, the developer may gain a fine-grained view of how exceptions are 
handled (e.g., logging, presenting an error message to the user, or swallowing). After 

discovering the cause of the exception handling error the implementation steps 3, 4, and 
5 should be repeated until every exception is adequately handled on the advised 

application. 

In the following section, we show how our approach can be used to assure the 
quality of the exception handling code in real implementation scenarios involving 

application and library aspects.  

5. Worked Example  

The Health Watcher (HW) [31, 17] system is a web application that allows citizens to 
register complaints regarding issues in health care institutions. HW adopts the Layer 

architectural pattern which enables the separation of the persistence, business, and 
graphical user interface concerns. Several design patterns were also used in HW to refine 

each layer, such as: the Facade and the Persistent Data Collections (PDC) patterns [24]. 
To illustrate our approach, we selected two real change scenarios to be applied to the 

HW system. In this case study, we need: (i) to monitor the performance of http requests; 
and (ii) to add the transaction management support to the persistence operations.  

A common strategy for monitoring an application is to include instrumentation 
code around system operations. However, this approach requires scattering duplicate 

code in many places in the code, which can be tedious, error-prone, and quite difficult to 
maintain. In our case study, we reused the Glassbox Inspector [4, 15], an aspect 

monitoring library, in order to implement the monitoring concern in the HW system. In 
our case study, the transaction management concern was also implemented using an 

aspect library. This concern also represents a typical crosscutting concern. To implement 
it, we reused the transaction management aspect library built on top of Hibernate [11] – 

an open source object relational mapping tool for a Java. As we can see, both aspect 
libraries used in this case study were developed by third party developers. 

Figure 4 depicts some of the elements that compose the HW system after 
composing it with the aspect libraries described before (i.e., the Monitoring Aspect 

Library, and the Hibernate Aspect Library). The HW elements presented in Figure 4 will 
be detailed on the next subsections which describe the approach’s steps. Each step aims 

at assuring that the aspects integrated with the base code will not threaten the application 
robustness in the presence of exceptions. 



 

 

 

 

5.1 Discover the Exception Interfaces of Aspects 

The first step of our approach is to discover the exception interfaces of every aspect 

advice that affect the base code in each change scenario. In our case study, the aspects 
that intercept the base code are: (i) the ServletRequestMonitor – a library aspect that 

directly intercepts every application request operation (see Figure 4); and (ii) 
HibernateSessionManagerHW – an application aspect that extends the 

HibernateSessionManager abstract library aspect in order to specify the join points in 
the base code that needs to be intercepted to demarcate a system transaction (see Figure 

4).   

The SAFE tool recursively analyzes every aspect advice (analyzing every method 
called from them and every advice that may intercept them) and calculates their 
exception interfaces4. Listings 1 and 2 illustrate, respectively, the partial code of the 

ServletRequestMonitor and HibernateSessionManagerHW aspects and the 
exception interfaces of some advices defined on them. 

                                                
4 The SAFE tool runs on the woven bytecode. When building the woven bytecode, AspectJ converts every aspect 

into a standard Java class (called aspect class), and each piece of advice into a public non-static method in the 

aspect class whose signature is automatically generated [39].  (as illustrated by the Advice Method Signature in 

Listing 2). 
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Figure 4. The Health Watcher system composed with Aspect Libraries. 



 

 

 

 

 

 

public aspect ServletRequestMonitor { 
 

//Intercepts every servlet request operation 

public pointcut servletRequestExec(): 
   within(HttpServlet+) &&  
   (execution(* HttpServlet.do*(..)) ||  
   execution(*HttpServlet.service(..)))…; 
 

   after() returning:monitorEndAllCases()     
   {        … 
      Response response =   

       responseFactory.getLastResponse(); 

      if (response != null) { 
       response.complete(); 

      } else { 
        logError("Monitoring problem:  

            mismatched monitor calls"); 
     } 

  } 

… 

}               (a) 

 

public aspect HibernateSessionManagerHW 
    extends HibernateSessionManager { 

 

 //Intercepts every DAO operation 
 Object around() : operationDAO() { 
   … 

   Transaction tx = null; 

   try { 
     tx = session.beginTransaction(); 

     ret = proceed(); 
     tx.commit(); 

   } catch(HibernateException ex) { 
      if (tx != null) tx.rollback(); 

      throw getHibernateExceptionManager() 

             .createDomainException(ex); 

    } finally { 
 session.close(); 
    } 

    return ret; 
  } 

 … 

}              (c) 

 

Aspect: ServletRequestMonitor 

Advice Type: after returning 

Sequence: 01  

Advice Method signature: 

glassbox.monitor.ui.ServletRequestMonitor: 

void ajc$afterreturning$glassbox_monitor 

_ui_ServletRequestMonitor$1$a7406ba1(…) 

Exception Interface:  

org.aspectj.lang.SoftException  

(b) 

Aspect: HibernateSessionManagerHW 

Advice Type: around 

Sequence: 01  

Advice Method signature: 

hibernate.HibernateSessionManagerHW: Object 

ajc$around$hibernate_HibernateSessionManager 

HW$1$a506ba1(…) 

Exception Interface:  

org.aspectj.lang.SoftException  

             (d) 

     Listing 1. The code snippets of library aspects and their exception interfaces. 

Each exception that composes the exception interface of each advice presented in 

Listing 1, originates from internal library aspects (TraceAspect and 

HibernateExceptionManager aspects in Figure 4) that intercept the advices under 

analysis. From the listings above, we can observe that trying to manually discover the 
exception interfaces can easily become an infeasible or error-prone task. 

5.2 Specify the Exception Handling Contracts 

After discovering the exception interfaces of every aspect advice or intertype declaration 
that affect the base code, we need to define the elements that should be responsible for 

handling them. In our approach, such information is represented in terms of a set of 
exception handling contracts. Listing 2 illustrates the exception handling contracts 
defined (i) to the instance of SoftException thrown by the after returning advice 

presented above, and (ii) to one advice of the HibernateSessionManagerHW aspect 

that may also throw an instance of SoftException. The <signaler> and <handler> 

elements contain an expression (similar to a pointcut expression) that will match the 
methods signature responsible, respectively, for signaling and handling the exceptions.  

 

1. <contract id=1 description=”Glassbox Contract”> 

2.   <exception type=”org.aspectj.lang.SoftException”> 

3.     <signaler signature=”glassbox.monitor.ui.ServletRequestMonitor.*”/> 

4.     <handler signature=”hw.handling.ErrorIsolation” 



 

 

 

 

5.          type=”same_exception”/> 

6.   </exception> 

7. </contract> 

 

8. <contract id=2 description=”Hibernate Contract”> 

9.  <exception type=” org.aspectj.lang.SoftException”> 

10.   <signaler signature=”HibernateSessionManagerHW.*” /> 

11.   <handler signature=”hw.handling.HibernateExceptionHandling.*” 

12.       type=”same_exception”/> 

13. </exception> 

14. </contract> 

                             Listing.2. Exception Handling Contracts. 
 

The first contract (id=1) defines that the ErrorIsolation aspect should handle 
any instance of SoftException signaled by any advice defined on the 

ServletRequestMonitor class. The second contract (id=2) states that the 
HibernateExceptionHandling aspect is responsible for handling the SoftException 

signaled by any advice defined on the HibernateSessionManagerHW aspect. 

Moreover, both contracts state that such exceptions should be caught by a catch clause 

whose argument is of the same type as the exception being caught (lines 5 and 12). 

These handlers implement two different exception handling policies (see Section 
4): one based on Error-isolation, and other based on App-specific error handling. The 

developer does not want exceptions that escape from the monitoring aspect library to 
affect the application normal control flow. On the other hand, if an exception occurs 
during data persistence (that relies on the transaction concern), the developer wants to 

notify that the requested transaction could not be performed. The exception thrown by 
the Hibernate aspect library should flow until the GUI layer, and each servlet should then 

handle the SoftException and present a proper error message to the user.  

5.3 Implement Exception Handling Code 

 In this step, the exception handler aspects specified on the contracts defined above 

should be implemented. Listing 3(a) illustrates the partial code of the ErrorIsolation 

aspect. 
 

 

public aspect ErrorIsolation { 
  … 

 public pointcut scope() :  

     within(ServletRequestMonitor); 

   

 void around():adviceexecution() &&  

      scope()){ 
    try { 

       proceed(); 

    } catch (SoftException e) { 

      log(e); 

    } 

  } 

}                                      (a) 

 

public aspect HybernateExceptionHandler{ 
 

  public pointcut scope():  

    within(hw.gui.* && HttpServlet+) && 

    (execution(* HttpServlet.do*(..)) ||  

  execution(* HttpServlet.service(..))); 

   
   void around():scope()){ 

     try { 

proceed(); 

     } catch (SoftException e) { 

presentUserMessage(e); 

     } 

  }                (b) 

Listing 3. Code snippet for the ErrorIsolation aspect. 
 

In order to isolate the exception that flows from the monitoring aspect library, the 
exception handling aspect (ErrorIsolation in Figure 4) needs to directly intercept the 



 

 

 

 

aspect library bytecode5. Doing so, the ErrorIsolation aspect prevents the monitoring 

exception from affecting the flow of execution of the application. Similarly, the 
HibernateExceptionHandler aspect is implemented to handle the exceptions thrown 

by Hibernate aspect library. This aspect intercepts the base code, more specifically the 

doGet(..) and doPost(..) methods, using an around advice. This aspect handles 

instances of SoftException and presents a specific error message to the user. Listing 

3(b) illustrates the partial code of HibernateExceptionHandler aspect. 

5.4 Calculate Exception Paths 

In order to assure that the exception handling solutions are correctly implemented, we 

use the SAFE tool to calculate the exception paths for the exceptions signaled by the 
monitoring and the transaction management crosscutting functionalities. Listing 4 
illustrates one of the exception paths calculated by the SAFE tool for these exceptions6: 

Besides calculating the exception paths, the SAFE tool also checks whether they obey 
the exception handling contracts defined at the previous step. The automatic checking of 

exception handling contracts is useful when many exception paths should be analyzed. 
During the exception handling contract verification on the exception paths, we can 

observe that the SoftException is not handled by the element specified in the contract 
(see Listing 3(b)). 
 

Exception: org.aspectj.lang.SoftException 

Exception Path:  

 (Signaler)<HibernateSessionManagerHW: Object ajc$around$ID(…)> 

 (Intermediate)<ComplaintDAOImpl: search (…)> 

 (Handler)<HealthWatcherFacade: searchComplaint (…)> 

 (Action)org.aspectj.lang.SoftException captured by java.lang.Exception 

Contracts: Hibernate Contract (id:2) broken                                                                             

Listing 4. List of Exception Handling Contracts. 

5.5 Manually Inspect the Exception Handling Code 

During code inspection, we observed that the instance of SoftException that can be 
signaled by HibernateExceptionHandler is mistakenly handled by a “catch all” clause 

defined on the system Facade (see HealthWatcherFachade class in Figure 4) before it 
can reach the join point intercepted by the handler aspect 

(HybernateExceptionHandler) presented in Listing 3(b). This kind of problem could 
hardly be anticipated during the development of HybernateExceptionHandler because 
the exception handling aspect will intercept the correct join point (where the exception 

should be caught) and no warning will tell the user that no exception will reach this 
point. In this case study such problem could be detected with an appropriate tool 

support: the SAFE tool. One way of solving this broken exception handling contract is to 
replace the “catch all” clause defined in the Facade element by specific catch clauses 

(one per exception handled at this point). Doing so, the instance of SoftException will 

                                                
5 AspectJ allows the weaving of aspects into bytecode (that may contain woven aspects) by inpath compile 

option. 
6 We omit package names, return types and advice IDs for simplicity. 



 

 

 

 

flow until it reaches the join points intercepted by the exception handling aspect (in the 

GUI layer). 

6. Discussions and Lessons Learned 

This section provides further discussion of issues and lessons we have learned while 
applying our approach to reuse scenarios of aspect libraries. 

Static analysis x Testing Exceptional Conditions. Our approach relies on static analysis 

in order to discover which exceptions may flow from aspect libraries. To discover such 
exceptions, we could alternatively write integration tests to verify whether aspect 

libraries affect the application code as expected under exceptional conditions.  However, 
the test of exceptional conditions is inherently difficult, due to the huge number of 
possible exceptional conditions to simulate in a system and the difficulty associated to 

simulate most of such scenarios [5]. 

Aspect Libraries Development. This paper focused on the reuse of aspect libraries, but 
we could observe that some approach’s steps could be useful when the developer 

implements her/his own aspect library. Using a similar approach, the aspect library 
developer could: (i) isolate the client code from exceptions that may flow from library 

code (Error-isolation strategy in Section 3.2); (ii) or explicitly document the library 
advices that will affect the base code and the exceptions that may flow from them. As a 

crosscutting interface (XPI) [40] is a way of documenting the points of a system that can 
be affected by aspects, such explicit documentation could work by reverse. The 

Exceptional Interface (EXI) of the aspect library could contain which exceptions 
(checked or unchecked) can be signaled by every library aspect that will affect points in 
the base code. The SAFE tool can be used to automatically generate the EXI of aspect 

libraries – which could be directly used by the developer or used though an IDE [35]. As 
we discussed in this paper, such documentation would be very useful when developing 

robust systems.  

Load-time weaving. As mentioned before, some aspect libraries can be reused in load-
time. However, in order to assure that the aspect library reused at load-time will not 

impair system robustness, it is fundamental to prepare their code beforehand for the 
exceptions that may flow from aspect libraries in runtime. This can be accomplished by 

adopting the approach proposed here (possibly only during the first time an aspect library 
is reused).  

Static Analysis based on Java bytecode. The SAFE tool is based on the static analysis of 

Java bytecode. The advantage of working with the Java bytecode, instead of the AspectJ 
source code, is that we can incorporate in our analysis the exceptions that flow from 
aspect libraries and OO libraries. However, sometimes the developer should deal with the 

SAFE tool output that may contain automatically generated advice methods signatures 
(e.g., void ajc$after$MonitorContextLoaderManagement$1$6e34821 (...)) [39]. We are 

currently devising a strategy to map the advice representation on the bytecode to its 
representation on the source code. This will make the tool output more user-friendly.  



 

 

 

 

7. Related Work 

So far, initial work has been developed which investigate the problems related to library 
aspects reuse [25, 41, 42]. These works focused on the context of incremental software 

development, and how an aspect may affect subsequent integrated elements, although it 
was implemented without being aware of them. These works discuss the unpredictable 

effects and errors that can arise from such scenarios. Although they discuss anticipated 
aspect composition problems, they do not tackle the problems that may arise when 

exceptions flow from re-used aspects. In our work we investigated the collateral effects 
of reusing aspects in the presence of exceptions.  Moreover, we also proposed an 

approach to help developers to deal with them. Although some problems related to 
aspect libraries reuse are similar to the ones associated with OO libraries reuse, we have 
shown that some characteristics of AO compositions aggravated the problems. 

8. Concluding Remarks and Future Works 

This work presented an approach that aims at guiding the developer during the stage of 
aspect libraries reuse. It supports reasoning about the exceptions that can flow from 
aspects; and it provides brief and clear guidelines of how such exceptions should be 

handled. The contributions of this work, however, are not limited to developers of robust 
aspect-oriented applications who need to make more informed decisions when reusing 

aspect libraries in the presence of exceptions. But the approach is also useful to help 
developers when building their own reusable aspect libraries. It provides a way to 

identify potential problems that may happen on different reuse scenarios. Furthermore, 
the present work also allows for designers of AO languages to consider pushing the 

boundaries of existing mechanisms to make AOP more robust and resilient to exceptional 
conditions. There are several ways our work can be continued: (i) apply this approach to 

other reuse scenarios, in order to perform more extensive validation; (ii) investigate the 
usefulness of this approach in software evolution scenarios; and finally (iii) adapt the 

approach to aspect library development. 
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