AIRDoc — An Approach to Improve
Requirements Documents

Ricardo Ramos, Jaelson Castro, Jodo Araujo’, Ana Moreira?,
Fernanda Alencar', Emanuel Santo$ and Rosangela Penteado

! Centro de Informética - Universidade Federal da&abuco (UFPE)
Recife, Pernambuco, Brasil

2 Departamento de Informatica, FCT, Universidadeade Lisboa (UNL)
Lisboa, Portugal

3 Departamento de Computagao - Universidade Feder@kd Carlos (UFSCar)
Séo Carlos, S&o Paulo, Brasil
{rar2, jbc, ebs}@in.ufpe.br, {ja, am}{@i.fct.unl.pt,
f nra@uf pe. br, rosangel @lc. uf scar. br

Abstract. Requirements models and specifications tend fgdopied by many
problems such as requirements that have been alpa&ddand that are no
longer meaningful, descriptions that are unneceafsdong and convoluted,
and information that is duplicated. These problemader the overall
understandability and reusability of software madéhroughout the whole
development process. In this paper we proposepgnoach called AIRDoc
that supports the identification of potential prebis that may be present in
requirements models. AIRDoc is based on the eldgiooraf goals and the
definition of questions and hypotheses that wiladdressed by requirements
metrics. In order to improve the quality of requivents models we advocate
the use of refactorings and requirements pattesase study demonstrates
how the AIRDoc has been successfully applied igelaequirements model
conducted by SERPRO, a Brazilian Government soéwampany.

1. Introduction

Recently, some attention has been dedicated towdsdtypical problems that seem to
plague requirements models and specifications, sischrequirements that have been
abandoned and that are no longer meaningful, igéiscrs that are unnecessarily long
and convoluted, and information that is duplicdted?]. These shortcomings hinder the
overall understandability and reusability of requients models throughout the
development process [3]. However, these problems lba minimized by the
identification of symptoms and the removal of theauses. Moreover, if this diagnosis
is performed in the early stages of the softwareligment process some reduction in
the costs associated with software evolution magtitained [4].

Unfortunately, the early identification of the syioms during the initial
development stages is unusual. Some catalogs bfgong that occur in requirements
are described in [2] and works about inspection raading techniques in requirements
documents are proposed in [5] and [6]. Regrettatlhlgse approaches do not provide
well defined guidelines on how to identify the putal problems in requirements
documents and models. We claim that metrics coeldded to help identify some of the

problems that occur in these artifacts. But thedomion is a difficult endeavor.
Collecting, interpreting and analyzing metrics Ipagved to be a major challenge [3].
Moreover there is a high cost of their adoption.

In this paper we claim that some of the potentrabpems with the requirements
models could be removed using appropriate requinésneefactoring [7, 10] or
requirements patterns. In general, refactorings gatterns can be classified according
to the quality attributes they affect [11]. NotatHior some requirements models, such
as use cases diagrams [9], it is already possitdpdcify their external quality attributes
(such as correctness, reusability, efficiency, eafsese, among others). Hence, we
advocate that the requirements engineer can impghevguality of requirements models
by applying the relevant requirements refactorimgpatterns at the right places.

We adopt the Goal Question Metrics (GQM) [12] apgioto evaluate requirements
models. Thus, we provide an approach called AIRO®pproach to Improve
Requirements Documents) which provides improvedosrtipto the software quality
assurance team to elaborate goals and define gogsind hypotheses that will be
measured by metrics. Our approach contributes to:

 The diagnoses of requirements problems (a @atadovell known troubles is

provided);

* Provide solutions to requirements problems (byamse of

refactorings and patterns);

* The adoption of requirements metrics;

requirements

This paper is structured as follows. Section 2 gamess our approach and its steps.
Section 3 describes the application of our apprdacihe improvement of a large
requirements model conducted by SERPRO, a Brazil@wwernment software
company; Section 4 discusses related works. Fingfgtion 5 draws some conclusions
and points out directions for future work.

2. The AIRDoc Approach

AIRDoc is based on GOQM [12] and in experimentatiechniques [13] and complies
with the IEEE Standard for a Software Quality Metblogy [14]. It consists of six

steps: (1) Plan elaboration, (2) GQM definition) BQM interpretation, (4) data
collection, (5) plan of requirements model improesity and (6) requirements model
improvement. Figure 1 illustrates these steps hen telationships.

\ Goal | €—----1-—p Goal attainment |
> | Question l~1---> Answer \
= \ Metric - Measurement |
| GQM Definition GQM Interpretation
a | A
n v I
‘ Collected Data ‘

Data collection 4

| A

\4 |

Improvement Plan > Refactoring / Pattern
Plan Plan of requirements model Requirements model
Elaboration improvement improvement

Figure 1. AIRDoc’s main steps

AIRDoc’s main objective is to detect potential pievhs in requirements models and
specifications as well as to solve those usingctefangs or requirements patterns.
Figure 2 depicts an activity diagram with AIRDoo®in steps.

_ GQM , GQM.
[Plan Elaboration]%[Definition H Data collection H Interpretation
Cowee }
atalogof Req. Data bas -
Patterns & ~<e < ne Are there

Refactorings N problems?

® Requirements model _ Plan of
improvement Requirements model

improvement

7

Figure 2. Activities diagram of the AIRDoc

Step - 1. Plan Elaboration

This step is performed to fulfill all the necessesguirements to make the evaluation a
success, including training of the quality teamnagement involvement and project
planning. This step can be divided into four sudpst

1.1. Establish Software Quality Assurance Team.The quality team should be
knowledgeable on the subject, objective and siheg are in charge of planning the
whole project (including definitions), they alsdkeacare of data collection and prepare
everything that is necessary for data interpretatidlso, the team should consider
factors, such as time and costs. In this sub-st&gh quality team member is assigned at
least a role. Bellow, we show a summary of theoastirequired for this step. Table 1
shows a template that can be used in this stegiolmrmentation purposes.

Actions required to establish a software qualitglaance team
1. Define the project team roles.
2. Define the responsibilities of each role.
3. Assign roles to members of team.

Table 1. Template to define the quality team

Quality Control and Quality Assurance
Responsibilities

<Project team role><Specific project quality-related responsibilities>Resource fulfilling the role>

Project Team Role Assigned Resource / Members

1.2. Select Tools or Other ResourcesThe quality team member responsible for
reviewing and selecting tools should indicate whichls can be used in the quality
evaluation. The team may require some trainingetoagquainted with the chosen tools.
As in the first step, the choice of the tool isdmhen the time available to learn to work
with the tool as well as with estimated costs ofletlto overall quality evaluation

process. Table 2 shows a template that could be wséhis step for documentation

purposes.

Actions required to select tools and other resosirce
1. Select the tools and others resources.
2. Justify the tool and resources (purpose).
3. Detail their costs, including the time needeteton it.

Table 2. Template for tools and/or others resources

Tool / Resource Name| Tool/Resource Purpose/Use | Costs Details (time and/or monetary)

<Tools/ resources <Purpose or use of each
needed> tool/resource>

< Cost details of the of each tool/resource>

1.3. Establish Software Quality Requirements.This sub-step selects the scope of
the requirements model, the quality attributes thiedrequirement that will be evaluated
and improved. These selections are performed veipact to business goals, such as
cost, time, risk and quality. After selecting atahie area, the team should consider all
the details, such problems that might occur, alleeal influences, stakeholders,
processes and products involved, and the previoosvledge on measurement of the
persons who are going to participate in this prtojec

Actions required to establish the software quakiguirements

1. Define the quality evaluation scope. The quakiym selects the requirements
model, or part of it, to be evaluated. In some sadee requirements model may
be obsolete in relation to the implemented systanthese situations it may be
necessary first to update the model (requiremagdsline).

2. Select one or more goals of a given list (eghl& 3), or use specific goals
established by the quality team.

3. Describe each goal (eg., fill Table 4). Thisomfation will be used in the
project plan phase.

Table 3. Goals suggested by the AIRDoc (patrtially)
Goal Motivation for Choosing the Goal
Reusability Reduces time spent on rework. Increases the priodydf the software development.
Maintainability | Reduces time spent to correct a specific probleto add a new requirement.
Requirements Model with low understandability imeprone and hard to maintain. The easier ja
requirements model is to understand, the simplertd learn it.

Understandability

Table 4. Template to quality requirements
Goal Requirements Model Requirement in focus Quality attribute
<Goal> | <Requirements Model name» <Requirement that will be evaluated> <Quality attribute that will be evaluated >

1.4.Project Plan - The project plan is the output of the first stéphe AIRDoc. It is
created by the software quality assurance teamdbasenputs from the project team,
and links all information collected in the threeyibus sub-steps. A project plan should
include the following items:

* Measurement program, in short, condensed verSiabl¢s 1 and 4).

e Schedule (with complete description of tasks #tatuld be performed), list of
resources to be used with a schedule, list of t®sbat should be obtained and,
finally, expected costs and benefits.

* Management process, which contains priorities, crijgons of reporting
procedures and risk control activities. Createstadf risks and add details on how
to solve them? Relate the costs with each riskluaeb

e Training and promotion. Use a table (such as T&)l¢o show the training
needed.

After the elaboration of the plan of measuremednis necessary to define formally
the goal, question and metrics, and to instantfaemetrics. These tasks are performed
in the next step.

Step - 2. GQM Definition

The main task of this step is a rigorous definitcdrmeasurement, including describing
questions and hypotheses, reviewing, checking apduging measurement and analysis
plans. The definition step can be divided into B-steps:

2.1. Measurement Goals Definition. During this sub-step, on the basis of
improvement goals, measurement goals should beaftyndefined as well as be
properly structured. This sub-step consists inililegal able 4.

Actions required for measurement goals definition.
1. Describe the selected part or the requirementslemscope that will be
evaluated.
2. Describe the requirements that will be evaluated
3. Describe the quality attribute focused by thesueement.
4. Create a document with the information collectethis sub-step.

2.2. Questions Elaboration. The aim of this sub-step is to obtain operational
definitions, i.e. a question is a goal refined per@tional level. It must be emphasized
that this level should not be too detailed or tbsteact, but intermediate to provide an
optimal interpretation. An interesting questiorividat problems might occur as a result
of mistake during this sub-step?”. First, it is wnfant to define questions precisely,
because otherwise they will not represent measuregoals [12].

AIRDoc contains a quality model [15] (Figure 3)dssist in the preparation of the
questions; it is based on quality attributes thiditlve evaluated by the software quality
assurance team. The quality attributes of int€Rstisability and Maintainability in this
example) are decomposed into quality factors (sash Understandability and
Flexibility) and these in internal attributes oétrequirements model (eg., Separation of
Requirements, Size and Coupling). The status darmad attributes (their value) is
obtained by the use of a set of metrics. It is irtgo@ to note that the quality model
(Figure 3) is not a hard rule to be followed byealhluations. It serves as a model and
should be adapted for each performed evaluatiarre Fore details about this quality
model see [15].

EE> Reusability Maintainability .
F | Understandabilit | | Flexibility | x
II\I Factor: A
| liitzire] Separation of Requirement - : Y
N Abwes | 9 C_size__] [Couplinc_] !
|

Q S
N oo [mie] [Cwmw] [M2 | [m2c | |[wm3e |

Metrics M2k N3

Figure 3. Reusability and Maintainability quality model [15]

Goal — Assess in @Requirements Modelthe <equirement_in_focusto predictMaintainability quality.
1. How easy is it to understand theequirement_in_focus?
1.1.How is the model structured?
1.1.1.How many modules specifyrequirement_in_focus?
1.1.2.How many elements (or parts) specify the modulese <equirement_in_focus?

Figure 4. Goal and (partial) questions related to m aintainability of models [15]

The questions provide insights for the Goal to bkieved. Figure 4 presents an
abstract goal that can be instantiated for evalgat requirements model and the
possible questions that may be useful to evallseRieusability of the model (Figure
3). The instantiation of the Goal and questionsraegle by replacing the text that is
between '<' and *>', with the definitions alreagygided and documented in Table 4. It
is important to note that the quality model and tjuestions must be adapted to the
domain of the evaluation that is being made. Thaityjuteam might decide to include
new questions, delete irrelevant questions orfioege question in two or more parts.

Actions required to define a set of questions
1. Define a set of questions based on the qualitgehand the questions provides
by AIRDoc (Figure 4). Alternatively, you may defimeset of questions which,
when answered, provide the insights necessarydin@e the goals.
2. Generate the Goal/Questions relationship doctinidns output might be in
tabular format.

2.3. Metrics Definition — After defining the goal and a set of questions, can
describe the metrics to be used. The metrics aiansivering the questions that have
been established. AIRDoc proposes a metrics temphat can be adapted for some
types of requirements models. But the metrics shdel carefully chosen and should
ensure that their results are consistent.

In Table 5 shows two types of metrics that the lmamsed to answer some questions.
However, the software quality team has the finatdyohat it they must decide which
quality metrics should be added to the set of etaln metrics. More details about the

template of metrics in [16].
Table 5. Template (partial) of metrics [16]

M1 | Separation of Requirements Metrics

Concern Diffusion over Components (CDi€)a requirement metric that counts the numberrishary components
(main decomposition structure — Artifact); the mpurpose is to contribute to the specification epecificrequirement
in focus

Howmany | <Artifacts> | are related to (contribute) to the specificatibthe | <requirement in focus>

M2 | Size Metrics

Vocabulary Size (VS)VS measure the requirements vocabulary size. TWmgic counts the number of majn
decomposition structure (artifact) that exist ia taquirements model.

Total number | of <Artifacts> | in the[selected part, full requirements modéd|

Actions required for determine a set of metrics
1. Define a set of metrics, based on the tempiaieable 5. Alternatively, define a
set of metrics which can be collected and analyzedhelp to answer each
guestion (based on internal attributes).
2. Generate a document with the relationship beatwdéetrics/Data required and
Questions (internal attributes)/Metrics. This owtpught be in tabular format.

2.4. HypothesisElaboration — the hypothesis are the expected answers, apditbe
going to be examined during the interpretation .stép make the hypotheses, the
software quality assurance team needs to propase salues that indicate how good
or how bad the value of measured value is metfibe hypotheses can also be based
on results of previous applications of the metrics.

Moreover, since we are interpreting results in termf hypotheses, many
misinterpretations are likely to occur. Hence, gioes and hypotheses should be
continuously reviewed and, if necessary, refornaaat

AIRDoc has a template with 3 hypotheses one foh esst of metrics. Due to the
restriction of space only the hypotheses for sdéjmeraof requirements are showed.
Table 6 shows the argument, functions, the analgéishe value obtained by the

functions, as well as the possible hypotheses.
Table 6. Hypotheses for separation of requirements
H1 Hypotheses for Separation of Requirements
Argument | The more split a requirement is, the lesterstandable and flexible it becomes.
Function | This function is obtained by metrics CDC / VS. CidGhe number of modules in which the requirement
H1 in focus is separated and VS is the total numbénefequirements model modules.
The result of this function is between 1 and 0. Tiearer to 1, the less understandable and flexitge
requirements model is. The nearer to 0 the bettéerstandable and flexible the requirements madel i
Hypothesis| The <requirement_in_focus> é&asyto understand and to extend, because the funktiohas its valug
Hla lower than <base number defined by the quality team>
Hypothesis| The <requirement_in_focus> ferd to understand and to extend, because the funttiohas its valug
Hlb higherthan <base number defined by the software quadiyrance team>
The quality team need to calibrate the acceptableeg and generate a base number to be uge in
hypothesis Hla and Hib.

Analysis

Note

The number of hypotheses can be raise since tmgeudepends on some factors
like: i) the metrics developed in the previous step, ii) the quality attribute selected,
among others.

Actions required to elaborate a set of hypotheses.
Use the hypotheses templates available in the AtRohelp to instantiate the
hypotheses.

1. Create an argument, based on an agreement asoéingre quality assurance
team that indicates when good or bad result falaevis obtained by a metric or
a function.

2. Elaborate function(s) to be used in the hypabe§his action may be optional,
because the software quality assurance team mdyzanthe metrics values
directly, i.e. without the assistance of a function

3. Elaborate at least one hypothesis for each igmesthe hypotheses are the
expected answers to the questions.

Step - 3. Data Collection

When all the definition activities are complete@ #hictual measurement can start. The
success of every project depends on accurate nesastmmetimes the measurements
can be obtained without human intervention. Buthe case of process and resource
measurements that is usually not possible [12, 17].

All the results of a data collection phase aredilin forms stored in a measurement
database. The whole procedure of data collectiarbeadivided in two sub-steps:

3.1. Hold Trial Period - In order to avoid mistakes and to test and a#didhe data
collection procedures, tools and forms, a trial saeement period should be held before
the actual data collection period. See Table 1Adgded as output of sub-step 3 step 2
in the case study) needs to be understood/validatis sub-step.

Actions required for hold trial period.
1. The software quality assurance team member mefde for applying the
metrics needs to test/validate each metric degtribea table (see Table 14 -
metrics / data required).

2. The software quality assurance team member megigge for applying the
metrics needs to check if all values obtained aesistent with the value
established by the quality team.

3. Update Table (metrics / data required), if nsags In order to better
understand the metrics, a new column with notekessons learned in this sub-
step might be added to the table (see Table 14riané data required).

3.2. Metrics Base- Data collection forms should be filled in andecked for
correctness. If any mistakes occur they shouldneddiately corrected. A metrics
baseline is the first part of Measurement Suppasgtesn (MSS) which plays an
important role in a measurement program.

Actions required to maintain a measurement suppystem.

1. Collect and store the measurement data.
2. Create a metrics baseline with the data collected.
3. Process measurement data. This action is ref®rier combining, sorting
and dividing data to provide the required metricegcessary.
4. Create a suitable form for data presentatiée, tibles and charts.
5. Create a baseline to be used in future evaluatio
Step - 4. GQM Interpretation

Interpretation is the essential phase of the AIRRpproach. During this phase, the
collected data are used for answering the statesktiqums with the purpose of
identifying whether the goals are being achievedas as to anticipatproblemsin the
models. In other words, results of the measuremamatsliscussed and conclusions are
made in terms of measurement results. The folloveinl-steps should be performed
during this step:

4.1. Feedback Session- The software quality assurance team membersldgho
prepare feedback material, such as: analysis sh@etentation slides, handouts and, if
necessary, some additional material. Feedback mlattrould be very useful to the
project team members during feedback sessionsn@uhiese sessions, project team
members should analyze and interpret collected , ddtawing the necessary
conclusions.

Actions required to create a feedback session.
1. Prepare feedback material, such as: analysietsh@resentation slides,
handouts and, if necessary, some additional materia
2. Analyze and interpret the collected data basedpsoposed hypotheses.
3. All analysis performed should be stored in thsdbine.

4.2. Measurement Results- After a feedback session, the quality team \wride
meeting report containing all relevant observati@wmclusions and action points that
were raised during the session. If the analyzed sladws some possiljpeoblems in the
requirements modelshe meeting report should pinpoint (localize)st®ymptoms

A table containing the time and the cost spenhenimplementation of activities
might be generated at the end of this step. Thisrmation will be useful to evaluate the
overall AIRDoc approach.

Actions required to store the measurement results.

1. Write a meeting report containing all relevahservations, conclusions and
action points that were formulated during the femt#tsession.

2. If the analyzed results were negative data,teraaable to point where the
worst results were found and what types of probhare identified.
3. If the analyzed results were positive, the eatadn is finished.

Step - 5. Plan of Requirements Model Improvement

In this step all problems/symptoms detected areudsed and some plans for
improvement are proposed. The following sub-stepukh be performed during this
step:

5.1. Patterns and Refactorings Analysis— In order to be able to select the
appropriate requirements Refactorings or Pattetnss inecessary to analyze the
problems identified and discover what type of peold exists as well as to chose the
patterns or refactorings that might be used. Thelag of refactorings and patterns,
showed partially in Table 7, has a column thatldstaes the relationship between the
problems and the quality attribute that was adexks&ach problem listed in this
catalog has a description that helps to typifyirt.Table 8, theLarge Requirements

problemis described.
Table 7. (Partial) Catalog of problems and possibl e solutions

Problems/Symptoms Refactoring
Extract Requirement
Large Requirements Move Requirement
Extract Early Requirement

Table 8. Description of the large requirement probl em [20]

Problem Nametarge Requirements
Large requirements occur when (i) a requiremeiryiag to handle several concerns at the same fime
or (ii) there are many alternative flows and st 23].

Solutions Possiblevith Refactoring
Use the Extract Requirement refactoring [20] toraott information related to a given concern and
insert it into a new requirement. This operationldde repeated for each major concern addressed by
this large requirement. If the flows or other comgots of a requirement could be moved to another
requirement, it could be used the Move Activityabring [20].
After extracting or relocating requirements, we stimes need to rename them to better express the
intention of the newly created one or of the onat ttvas modified. In this case, the Rename
Requirement refactoring [20] could be used to piewnore appropriated names.
This refactoring opportunity is particularly impant when there is a limit for the size of each
requirement, set by the organization’s Softwareli@uaAssurance Team.

Table 9. (Partial) Extract Requirement Refactoring [20]
Name Extract Requirement
A set of inter-related information is used in s@verlaces or could be better modularized in a s#pa
Context | requirement. Alternatively a requirement is togor contains information related to a feature tha
scattered across several requirements or is tamgladther concerns.
Solution | Extract the information to a new requirement anch@d according to the context.
This refactoring should be applied when there argd requirements that can be split into two orarjor
Motivation | new requirements. These large requirements includgeat deal of information that is difficult {
understand. Furthermore it is not easy to locaeteded information quickly [23, 24].
The following activities should be performed:
1. Create a new requirement and name it.
2. Select the information you want to extract.
Mechanics | 3. Add the selected information to the new requineine
4. Remove the information from the original requiesth
5. Make sure the original requirement is acceptalitieout the removed information.
6. Update the references in dependent requirements.

=

o

The currently catalog has the following refactosingxtract requirementrename
requirement move activity, inline requirement and extract alternative flows [20],
Extract Early Aspectg21]. Each refactoring contains the context thaggests the
application of the refactoring, the type of solatiprovided, a motivation for the
transformations, its mechanics (i.e., a set of @efined activities) and an example of
with the refactored description. For example, tabl& 9 shows thExtract Refactoring
Due to restriction of space the example of thiagtring is not showed.

The Patterns currently described in the Catalog &hetangled Requirement,
Gathered Requirement, Unique Requirem@R], Uncoupled Requirement, Small
Requiremenf10], Simple Requirememind Useful Requirement® he patterns follow the
style of [25], like the patterns described in dadevel [26] with the inclusion of many
sections: i) pattern name, ii) problem, iii) corttex) forces, v) solution, vi) example,
vii) resulting context, viii) rationale, ix) reladgpatterns and x) know uses.

Step - 6. Requirements Model Improvement

After all cost analysis and the selection of appeip means to solve the problems, all
the refactorings and/or patterns selected in trevipus phase are applied in the
requirements model. The following steps should érégomed during this phase:

6.1. Apply the solutions selected - this task is (mdguaerformed by the software
quality assurance team quality. The team shoulcabeful when applying the solution,
to obtain the benefits of the approaches. For elanipllowing the steps all the
mechanisms described in a Refactoring, analyzheffunctionally remains the same
and update the references.

6.2. Store the results - all results of the solutioppli?d need be stored in the
baseline; this action will help the improvementfature evaluation with the AIRDoc.
Solutions that needed to be modified, by some &peatiaracteristic, could be reused in
later projects.

6.3. Compare the models (before and the after thengs@lRDoc) - after making the
improvements it is important to collect the metraggin and to compare the level of
improvement gained. This data needs to be storedeimte a base line of the bad and
good solutions to some context.

3. Case Study: Applying the AIRDoc in a Real and lgge Requirements
Document

The Brazilian Federal Revenue Service (Receita lakdeRF) is subordinated to the
Finance Ministry and responsible for the collectiadministration and auditing of a
plethora of federal taxes. To process the huge atmfudata (billions of registers of all
sorts) that originates from its fiscal activititlse RF holds a partnership with SERPRO,
a Finance Ministry subsidiary software company, tlee development of automated
solutions in support of tax analysis.

SERPRO is a large company with development univadly spread throughout 10
capital cities of Brazil. The company employs mtiven 2.500 software engineers and
has a history of successful and awarded solutidrigHuilt along 40 years as a partner
of the Brazilian RF. These solutions offer full-aomated support for a multitude of
aspects comprising fiscal actions at individual ibess segments of the Federal

Revenue Service. The growing numbers of data arghssing complexity of Brazil's
tax system, however, have fostered the need famtegrated vision of fiscal actions in

the highest administration levels of the BrazilRif.

To validate our approach we asked SERPRO to proaitkrge real requirements
document. For this case study, the chosen arigattte "adjustment tax" requirements

model. Basically it describes the correction of éneount of

taxes paid by citizens. The

requirement document consists of a use case naju®kn partially in the Figure 5. Due
to space limitations, only some descriptions of gases are shown in this paper.
Following are showed how the AIRDoc’s approach ddwé used to improve the quality

of the “Adjustment tax” requirements model.

Update life cycle o Documents

Qdocuments released by

- - oredecsso
Provide perioc

of credit verification
<<i ncl ude>> 7

eat the releases a

Tlme
Update of informatiol Update depend

of communlcatlons of system Al

hanging 7

documents deadlin <<4mcluda>

Communication
emission System gysfein Al

N

Analyze periocof
evaluation of credit

\

<<ir nehrde>

-

System A

——— g<ulcluda>
fChecla tl?e Kaluw -
/ln ‘ormed by the user
Y X

Send messac

to the use System A’

T

<<include>> — — Zfreat spreadshe
control Consult spreadshe
control

\ <<|ncﬁ\d(=>>_ <<Incu
é? < X >
Recognizgrédﬁ veracity Timerxsmn the use of credi

i electronically recognized
<<incjade>> <<Maude>> y< <\|n3u .
i N

Validate share paymer Validate shart
estimate

Systen A6 Display spreadshe

contro
<<i Fud9>

D

,‘\ Validate share ¢
taxes paid out of
<<incl u(\l@> the country

Systen A5

N
Continue to use th ~
credit released

<<i de>> i
mi‘}’ Systen Al

Continue to use th
credit of a documel
after return

sysfen A3

Validate sharec — ——> %

payments on estimates Systera2
and variable financ

evaluation of the balance
ocuments on the network

Verify deadline in documen Veri
\Loader with analysis suspend

T .
uspensions of docume//7. Ry <<iltiyde>> / %
Verification of hangln(|th negative balanoe <<includg> ; Svsfem Al

Trect cancellatigr

Notify the result of t
credit of the document

isplay screen ¢
user analysis T

™S

Maintain the system
parameters and messa%
er

\A \
Contro t;e use ¢ W \
credit of a dogument O
<<ifQhud —)
é Receive identifier o

communicatio

SystemA?

Start the treatment «
documents releas

end .
<<includeb>

~<<an| ude>>

~—

Execute fina
verification

uﬁludeg

Timer
\«mmm»

Select documer

s>

ify permission to adjus
the period of evaluation

£—>

Provide information fc

printed printed communication

Figure 5. Partial use cases model of the Adjustment Taxes

Step - 1. Plan Elaboration

The tables 10, 11 and 12 show, (partially and imdemsed

first AIRDoc step.
Table 10. The quality team (partially)

system

version), the artifacts of the

Project Team Quality Control and Quality Assurance Assigned Resource /

Role Responsibilities Members

Requirement | Development and management of the requirements .
. : Helena Cristina Bastos
Engineer document that are being evaluated

. Revise the metric applications and others data Castro / Alencar / Araujo /

Reviser/Reader| X
generated Moreira / Penteado

Table 11. Tools and/or others resources (partially)

Tool / Resource Name

Tool/Resource Purpose/Use

Costs Details (time and/or monetary)

Generate all the documentation

of A role needs to be allocated to this

Text editor X
the evaluation. resource.
.. |Generate graphics and reports a| A role needs to be allocated to this
Spreadsheets editor X o
the metrics applications resource.

Table 12. Template to quality requirements
Requirements

Goal Model Requirement in focus Quality attribute
Display - use cases: Maintainability — we want to know
Improve the i)Display spreadsheet | how easy it is to maintain or/and {o

Adjustment Taxe

(2}
[2)

control, and ii)Display add new features to the “Display
screen of user analysis requirements”.

Maintainability

Step - 2. GQM Definition
Description of requirement model functionality

The requirements model called “Adjustment Taxesk&sacorrections to the amount of
taxes paid by citizens. At a given date, citizezisdsto RF, by Internet, a document (the
so called “Declaragéo de Ajuste Anual de IRPF”) ghamong other information it is
declared the amount of taxes collected. The systemeks this information and sends
out messages notifying the citizen if values infedware correct.

Description of the requirements that will be evaluged

The system was developed in modules by severallajes distributed in different
parts of country. We are concerned in evaluateipdove the modules that deal with
concern of display, which is described by the usses “Display spreadsheet control”
and “Display screen of user analysis”, Figure 5.

The requirement of display is related with to shtlwe screens with some
information. This information may be a result o§@urce or a simple menu where the
user could be to access another options of thersyst

Description of the quality attributes and justify

In order to decide which quality attributes could bvaluated and improved, we
considered the goals of the company as well as d@aypeoncerns mentioned by the
requirements engineer in charge of the requiremerddels. We also discussed the
nature of the system being developed, which denthtite definition of modules to be
developed by several teams which were geographichditributed in Brazil. Given
these constraints, it became clear that it was itapb to have high standards of
understandability and maintainability of requiretsemodels by all teams involved.

In this paper we focus on maintainability sincéstls an important concern
related to the time spent to correct or modify\aegirequirement. Another characteristic
that was considered is the fact of the compangisfied at CMMI level 2 and desires
in the near future to achieve CMMI level 3, thugueing a good discipline of the
requirements management.

We chose to use the quality model described in f%] shown in Figure 3. This
quality model captures the relationships betweenntfaintainability attribute together
with its factors, internal attributes and metrics.

Definition of the goal of the evaluation

“Assess in the Adjustment Taxes requirements mitaeDisplay Requirementwith a
view to predict itgnaintainability ”.

Questions Elaboration
Table 13 shows the set of question related to itrengquality model [15].
Table 13. (Partial) question from the case study

Q1 How easy is it to understand the display requirdf@nderstandability)
Q1.1 How is the document compose($?ze)

Q1.1.1 | How many steps are required to specifyifglay requirement?
Q1.1.2 | How many steps are there in the overgliirements document
Q1.1.3 | How many use cases are required (comjibo specify the display requirement?

Metrics Definition

For each question related to some internal ateilauset of metrics is defined. Thus

questionsQ1.1.1,Q1.1.2and Q1.1.3 are directly related (answered) byios®eM6, M7
and M8 respectively (see Table 14).
Table 14. Relationship of metrics and data required

Metrics Data required
01.1.1 M6 - How many steps are required to speciffCount the total numbers of steps that
"7 | the display requirement? describe the display requirement.
01.1.2 M7 - How many steps are there in the overalCount the total number of steps that exist in
""" | requirements documeht overall requirements document.
. Count the number of use cases where there
M8 - How many use cases are required to :
Q1.1.3 . : X is, at least, onstep that contributes to the
specify the display requirement? e . .
specification of display requirements

Hypothesis Elaboration

Table 15 shows the hypothesis that answering tlestoun Q1 using a function that
make a relationship between the metrics shownarntble 14.
Table 15. Function and hypotheses for size for our case study
Q1 How easy is it to understand the display requirdgf@snderstandability)
Hla The display requirement sasyto understand, because the value of the H1 imds
lower than 0,04
Hlb The display requirement lsard to understand and / or to extend, because the wlthe
H1 function isgreaterthan 0,04
Function | (M6/M8)/M7 - this function shows the relationship between terage size of use cases
H1 steps used to describe the display requiremensiaedof all use cases of the requirements
model. Thus we expected examine how homogenedhs &ze of the use cases.
Note If the value of function H1 is between 0,04 and1Gten the size of the use cases used to
describe the display requirement is acceptable.
Step - 3. Data Collection
Table 16. M6, M7 and M8 metrics values

Metrics Value
M6 - How many steps are required to specify theldisrequirement? 798
M7 - How many steps are there in the overall reso@gnts document 1533
M8 - How many use cases are required to specifdispday requirement? 2

Step - 4. GQM Interpretation
Table 17. Analysis of the hypothesis Hla and H1b fr om our case study
Function H1 | (M6/M8)/M7 - (798/2)/1533 9,26
Conclusion | The hypothesis Hla was refuted, because the vélthe dunction H1 i€,26 (>0,04)
Hence hypothesid1b was supported.

Answering the question:Q1.1. How easy is it to understand the requirementispldy? Display
requirementsre hard to understand (Hypothdsikb)

We have analyzed the entire set of hypothesis torcase study. The results for
hypothesis Hla, which is based on function H1, described in Table 17. After

analyzing all the hypotheses of the case studywvas inferred that theDisplay
requirementss not ease to understandMoreover, the analysis of the 2 use cases that
describe th®isplay requirementsdicates symptoms ¢drge requirement (Table 8).

Step - 5. Plan of Requirements Model Improvement

We choose the Extract requirement [20] solutiore ($able 9) to address thiarge
requirement problem. Then, we followed the proposed solutibime result is a revised
requirements model depicted in Figure 6.

Step - 6. Requirements Model Improvement

Insert; updat

compensation docum

Detail share “paymer ,_Detail share
out of the country” “estimate share

Detail share

Delete compensatic Analyze compensatic
document <<e¥end>>|<<extghd>Payment in PFN”
«%ﬁdg extpnd
Analyze %Btorical o > >
p /Qextena»

document
Detail share

Analyze delete << d
ment
<<ext < “Payment”

compensation docu
> grextend>> << >>
Analyze compensatic Disol d O <<4}end>> d
document without ISpiay spreadsfie — d>>]
verification period /‘7 contro Finish documetr <m_c|@(—2>©
Display screen ¢ Execute fina

compensation

<ex >> documer Fill demonstrativ

Analyze shar

) i
= n@ud9> user analysis -7 erification

<simtlude>
Cme

SRF Use Select docume

control

Timer

Figure 6. Partial use case model of the Adjustment

Taxes system (after the

suggested improvement)

Figure 6 shows the results of your case study,r afte use of theExtract
Requirementrefactoring [20]. TheDisplay requirements were divided in others
module, and <<extend>> links were used. AccordiagJacobson [28, 29] these
“<<extend>>" links cause less coupling than <<iggw> links. In this case study we
came to the conclusion that new model, now withDisplay requirementslivided in
others use case modules, is more understandabigrtbaoriginal requirements model
showed in Figure 5. The same metrics were usedtandata collected indicated that
the new model is more understandable (M6=767, M321and M8=15), although it
has increased the amount of use cases. The new ebfunction H1 ((M6/M8)/M7) is
0,03 between the acceptable range shown in nofalde 15. The improvement in the
understandability derives from the fact that thevnese cases used to describe the
display requirement are now smaller and more homegeés.

4. Related Work

Inspections, such as reading techniques can betaseléntify defects in software
artifacts. In this way, inspection methods helgniprove software quality, especially
when used early in software development [30]. Tdeai of using metrics in
requirements models as proposed by AIRDoc is tceehavool support that can be
implemented to store, apply and help to summaheedata results. Software metrics
provide a way to automate the extraction of rewsabftware components from existing
systems, reducing the amount of information thateets must analyze [31]. In this way
we expect to have a truthful picture of the requieats model. Using metrics together
with the QGM approach we can interpret the metnesults to propose possible
solutions.

Design patterns [26] and refactorings [15] are ables solutions applicable to
software artifacts. Patterns are well structurellitems that where used in another
artifacts and by others software engineer, in thetext of the solution of a pattern
exists a little description of “how” and “when” tse the pattern. Refactorings provide
solutions to specific problems without to changehs behavior. Both techniques are
usually applicable to design and code level. Inwark we make a novel contribution
as we use these techniques at the problem leveice;léAIRDoc proposes a set of
patterns and refactorings to apply at the requirgrievel. In doing so it also suggests
some direct mappings between the problems fourtd tivé solutions proposed.

5. Conclusions

The goal of the AIRDoc is to evaluate and improgguirements models. Our current
focus is related to reusability and maintainahilBut the AIRDoc might be used to
evaluate other quality attributes. Table 18 sumnearthe context where the AIRDoc is

applicable and what could be possible resultssafise.
Table 18 — When to use the AIRDoc
When to use?

Negative Forces Positive Forces
The requirements mode

describe some kind of

S

a. During theinitial phases of the softwal h Techniques such as requireme

development: If the requirements models

—

nis

errors in the requirements models.

This is necessary becau

sgositively to the quality of other:

reasonably complete and the requiren contract (between the clientrefactoring and patterns could be
’ . J and the software developerg)used. Moreover, if adequately

engireer (or the software quality assuré th d techniqubsioolied th t

team) decides to evaluate and improve S0 t € proposteh ec nlqltj_-app e tey ((:jar|1 preste_rve €
: . must preserve the semanticsequirements model semantics.

quality of the requirements models. of these models.

b. During corrective evolution The

requirements mode are released, toget

\r,gtlzjirecr);gﬁrts Song ?rqeeerar(tcl)f? C;[ﬁe ansdoftv The cost of the structural

u(lllity assurance tgam) identifismoblems o changes in the requirementsThe improvement in the requiremerjts

4 P phase needs be calculatedmodels also impacts and contributes

D

structural changes malyartifacts (those that depend on ahd
impact the next artifacts in are generated from the requirements
the software developmentmodels).
process.

c. During the process @erfective evolutiorn
Requirements modelare released toget
with other software artifacts, and
requirements engineer (or the softy
quality assurance team) decidesnprove the
requirements model.

The case study based on a real and complex reqmtenmodel provides some
indication that the AIRDoc may be applied to anusitial scale requirement models.
Moreover, based to the value of metrics cafléauring the exercise we might infer
if there was any quantitative improvement witepect to the quality attribute at study
(i.,e. namelyUnderstandability). Of course more empirical evaluation is requited
validate our approach, and the next step is to ainesqualitative evaluation of the
AIRDoc approach. Several on-going case studiesaks®@ under way. Moreover, tool
support is under development.

Acknowledgements

The authors thank Helena C. Bastos (Manager of $¥RP Recife) on your
fundamental contribution in this work. This work svaupported by several research
grants: CAPES/GRICES Proc. 129/05, CNPq Procs.808507-3, 478132/2007-7.

References

1.
2.

3.
4.
5

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.

27.
28.
29.
30.

31.

Wiegers, K. E. (2003) Software Requirements. MicfioBeess, Second Edition.

Firesmith, D. (2007)Common Requirements Problems,irTNegative Consequences, and Industry Best
Practices to Help Solve Them, in Journal of Objexthnology, vol. 6, no. 1, January-February 20@7,17-33.
Boehm, B.W., Sullivan, K.J. (2000) Software economécgbadmap. In: ICSE — Future of SE Track. 319-343.
Pressman, R. (2005) Software Engineering: A Prangti's Approach. McGraw-Hill.

Schneider, G., Martin, J., Tsai, W. (1992) An expental study of fault detection in user requiretsen
documents, ACM Transactions on Software EngineairdjMethodology (TOSEM), v.1 n.2, p.188-204.
Travassos, G.H., Shull, F., Carver, J. and Basili(1999) “Reading Techniques for OO Design Inspestibn
Proceedings of NASA/GSFC, Greenbelt, MD, December.

Elssamadisy, A., Schalliol, G. (2002) Recognizing aesponding to bad smells in extreme programiiimg.
Proceedings of the 24th International conferenc8aitware Engineering.

Xu, J., Yu, W., Rui, K., Butler, G. (2004) Use casdfactoring: a tool and a case study. In: Software
Engineering Conference, 2004. 11th Asia-Pacific4®4.

Meyer, B. (1997)Object-oriented software construc{idnd ed.), Prentice-Hall, Inc., Upper Saddle Ril}.
Overgaard, G., Palmkvist, K. (2004) Use Cases Pattnd Blueprints. Addison Wesley Professional.

Mens, T. and Tourwe, T. (2004) A Survey of SoftwdRefactoring. IEEE Transactions on Software
Engineering, Vol. 30, n° 2, February.

Basili, V. R., Caldiera, G., and Rombach, H. D. (199%j)e goal question metric approach. Encyclopedia of
Software Engineering, pages 528-532.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Riégi®e, Wesslén, A. (2000) Experimentation in
Software Engineering: An Introduction Series: Intdional Series in Software Engineering , Vol. 33 D.

IEEE Standard for a Software Quality Metrics Metblodly, IEEE Std. (1992) 1061-1992.

Ramos, R. A., Aradjo, J., Castro, J. F. B., Moreira, Mencar, F., Silva, C. (2006)A" Quality Model to
Evaluate Requirement Documents”(in portugyebe XV Jornadas de Ingenieria del Software y Bades
Datos. Sitges - Barcelona.

Ramos, R.A., Aradjo, J., Castro, J., Moreira, A., Am F., Silva, C. (2006): “Uma abordagem de insta@o

de métricas para medir documentos de requisitestados a aspectos”, in: 3° Brazilian Workshop ope&s
Oriented Software Development - WASP2006. Florianigp Brazil.

Fenton, N.E., Pfleeger, S.L. (1997) Software Mstri& Rigorous and Practical Approach. PWS Publishing
Company.

Jacobson, |., Griss, M., Jonsson, P. (1997) “Sa#wReuse: Architecture, Process, and Organization fo
Business Success”, in: Addison Wesley.

Firesmith, D. (2007) “Common Requirements ProblentseilT Negative Consequences, and Industry Best
Practices to Help Solve Them”, in Journal of Objeethnology, vol. 6, no. 1, January-February 2Q®7,17.
Ramos, R., Piveta, E., Castro, J., Araljo, J., MoréiraGuerreiro, P., Pimenta, M., and Tom Price2B0().
Improving the Quality of Requirements with Refactgriin: VI Simpdsio Brasileiro de Qualidade de Sofeva

— SBQS2007, Porto de Galinhas, Recife, Pernambucsil Branho 27 — 30.

Ramos, R. A.; Aradjo, J. ; Moreira, A. ; Castro, JAlencar, F. and Penteado, R. (2008) Early Aspects
Requirements. In: XI Iberoamericano de Ingenieri&dquisitos y Ambientes de Software (IDEAS 08), Recif
- Pe. Proceedings of XI Iberoamericano de Ingemigei Requisitos y Ambientes de Software, feb.

Ramos, R. A.; Araujo, J.; Moreira, A.; Castro, J.;dar, F. and Penteado, R. (2007) “A Pattern to Bafsd
Requirements”, i portuguesg in: 6th Latin American Conference on Pattern Lagps of Programming
(SugarLoafPlop’2007), Porto de Galinhas, RecifenBebuco , Brazil.

Alexander, I.F., Stevens, R. (2002) “Writing BettelgReements”, Pearson Education Limited..

Sommerville, 1. (2004) Software Engineering, 7tlitied. Pearson Education.

Alexander, C., et. al. (1977) A Pattern Languagdp@kUniversity Press, New York.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. (1285ign Patterns - Elements of Reusable Objecta@rie
Software. Reading-MA, Addison-Wesley.

Brazilian Federal Revenue Service Technologic Awg21308): see http://www.serpro.gov.br/

Jacobson, I. (2003) Use cases and aspects - Waskanglessly together. Journal of Object TechnoR{gy.
Jacobson, I., Ng, P.W. (2005) Aspect-Oriented SarbDevelopment with Use Cases. Addison-Wesley.
Travassos, G. H., Shull, F., Fredericks, M. and IBasi (1999) Detecting Defects in Object Orientedsigns:
Using Reading Techniques to Increase Software Qualibnference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Ber@olorado.

Caldiera, G. and Basili, V. (1991)“ldentifying and &ifying Reusable Software Components,” |IEEE
Computer, vol. 24(2): 61-70, February.

