

An Empirical Study of Requirements Elaboration

Ali Afzal Malik, Barry Boehm

Center for Systems and Software Engineering – University of Southern California
Los Angeles, U. S. A.

alimalik@usc.edu, boehm@usc.edu

Abstract. This paper describes an empirical study undertaken to investigate
the quantitative aspects of the phenomenon of requirements elaboration which
deals with the transformation of high-level goals into low-level requirements.
Prior knowledge of the magnitude of requirements elaboration is instrumental
in developing early estimates of a project’s cost and schedule. This study
examines the data on capability goals and capability requirements of 20 real-
client, MS-student, team projects done at USC. Metrics for data collection and
analysis are described along with the utility of the results they produce. These
results suggest some relationship between the nature of projects and the size of
requirements elaboration.

1. Introduction

Early estimation of a software project’s cost and schedule requires a viable set of
parameters for estimating a project’s size. One such parameter is the number of unique
requirements to be satisfied by the software. However, as illustrated graphically in
[Cockburn 2001], the same requirement at the top (goal) level may be elaborated into
several requirements at an intermediate level, and a large number of requirements at the
detailed acceptance-test level.

 An opportunity to analyze the requirements elaboration phenomenon has been
provided by USC’s annual two-semester series of real-client, MS-student, team-project
courses. These two project-based courses – Software Engineering I (SE I) and Software
Engineering II (SE II) – allow students to get a first-hand experience of a considerable
chunk of the software development life cycle. According to the terminology of the
Rational Unified Process (RUP) [Kruchten 2003], SE I exposes them to the Inception
and Elaboration phases whereas SE II deals with the Construction and Transition
phases.

Most of the time students work in development teams of four to six people. The
projects provided to these teams come from a variety of sources including the industry
and academia. By negotiations with the client the requirements for these projects are
prioritized to facilitate completion in two semesters.

This study deals with 20 such two-semester-long projects [SE I 2008, SE II
2008] done by student teams in the past few years. Table 1 presents a summary of these
projects. The column titled ‘Year’ indicates the year when the project was initiated.
Special care was taken in selecting these projects for analysis. COTS-based projects and
custom-development projects with incomplete data were filtered out. Thus, each of
these 20 projects is a fully-documented custom-development project. In addition to this,

each project followed the same MBASE/RUP [Boehm et al. 2005, Kruchten 2003]
development process.

Table 1. Projects summary

To provide an overview of the development process used by these projects, a
part spanning just the Inception and Elaboration phases is sketched in Figure 1. Boxes
represent the various steps carried out in the process. Multiple activities within a step
are presented as a bulleted list. Each step has been numbered for convenience. Arrows
signify the general flow of results/artifacts between the steps in the process. Step 3, for
instance, uses the results produced by both step 1 and step 2 to produce a result which,
in turn, is used by step 4. Steps 4 through 8, though presented as a sequence, contain
several concurrent activities. As explained later in Section 3, the Operational Concept
Description (OCD) and the System and Software Requirements Definition (SSRD) are
the two documents [Boehm et al. 2005] we focus on in this study.

S# Year Project Type

1 2004 Bibliographies on Chinese Religions in Western Languages Web-based database

2 2004 Data Mining of Digital Library Usage Data Data mining

3 2004 Data Mining from Report Files Data mining

4 2005 Data Mining PubMed Results Data mining

5 2005 USC Football Recruiting Database Web-based database

6 2005 Code Generator – Template based Stand-alone application

7 2005 Develop a Web Based XML Editing Tool Web-based application

8 2005 EBay Notification System Stand-alone application

9 2005 Rule-based Editor GUI

10 2005 CodeCount™ Product Line with XML and C++ Code Counter Tool

11 2006 California Science Center Newsletter System Web-based database

12 2006 California Science Center Event RSVP System Web-based database

13 2006 USC Diploma Order/ Tracking Database System Web-based database

14 2006 USC Civic and Community Relations web application Web-based database

15 2006 Student's academic progress web application Web-based database

16 2006 New Economics for Woman (NEW) Web-based database

17 2006 Web Portal for USC Electronic Resources Web-based GUI

18 2006 Early Medieval East Asian Tombs Web-based database

19 2006 USC CONIPMO Cost model

20 2006 An Eclipse Plug-in for Use Case Authoring Stand-alone application

Client project
screening

Developer
self-profiling

• Developer team
formation

• Project selection

• Client-developer
team building

• Prototyping
• WinWin

negotiation

LCO Package
preparation

LCO Review

LCA Package
preparation

LCA Review

{developer profiles} {project descriptions}

{selected client-developer teams}

{LCA package guidance}

{expanded OCD, prototypes, SSRD’,
SSAD’, LCP’, FRD’}

{product development guidance}

{build-to OCD, prototypes, SSRD,
SSAD, LCP, FRD}

{draft OCD}

LCO: Life Cycle Objectives
LCA: Life Cycle Architecture
OCD: Operational Concept
Description
SSRD: System and Software
Requirements Definition
SSAD: System and Software
Architecture Description
LCP: Life Cycle Plan
FRD: Feasibility Rationale
Description
ABC’: Top-level version of
document ABC

Figure 1. Partial development process

1 2

3

4

5

6

7

8

Inception

Elaboration

At the time of inception, most projects are specified in terms of informal
statements of the goals wished to be achieved. With the passage of time, and as the
understanding of the problem and its domain matures, these goals are transformed into
much clearer low-level requirements. The aim of this study is to quantify and measure
this phenomenon of requirements elaboration across different types of projects thereby
gaining some useful insights about its utility with respect to early software cost and
schedule estimation. The main contribution of our work lies in defining the metrics for
quantifying requirements elaboration and analyzing the results produced by these
metrics on concrete data.

The rest of this paper is organized as follows. Section 2 briefly discusses some
related work and gives the motivation behind this study. Section 3 presents the
methodology used for gathering the data required for this study. It defines appropriate
metrics and indicates the rationale for their usage. Section 4 summarizes the results
while section 5 comments on the salient aspects of these results. Finally, section 6
concludes with a brief outline of future work in this area.

2. Motivation and Related Work

Researchers in the past have looked at a number of ways of supporting and improving
the process of requirements elaboration. Letier and van Lamsweerde proposed an agent-
based approach towards requirements elaboration [Letier and van Lamsweerde 2002].
Several formal tactics for refining goals and then assigning them to single agents (e.g.
human stakeholders, software components etc.) that can realize these goals were
defined. Earlier, Antón had described the GBRAM (Goal-Based Requirements Analysis
Method) and the results of its application in a practical setting [Antón 1996]. Using the
GBRAM goals were identified and elaborated for later operationalization into
requirements.

While the research done in this area so far has focused on facilitating and
improving the process we have adopted an altogether different approach. We define
metrics to analyze the process itself. This quantitative approach is augmented by looking
at some qualitative aspects of the projects we scrutinize. In particular, we look at the
differences in elaboration with respect to the type of the projects.

A better understanding of this process will be of great value in areas such as
software sizing and software cost estimation. Most software cost estimation models
such as Putnam’s SLIM [Putnam 1978], RCA’s PRICE-S [Freiman and Park 1979], and
COCOMO II [Boehm et al. 2000] rely on software size as one of their primary inputs.
Information about software size, however, is not available at the early stages of the
project life cycle. The only information available at this time is about the overall goals
and nature of the project. If this information can somehow be leveraged to estimate the
size of the project then cost estimates made at the time of inception would be much
more accurate. This, in turn, requires a thorough understanding of the transformation of
and the relationship between high-level goals and low-level requirements. This study is
a step forward in developing such an understanding.

3. Methodology

As an approximation to the phenomenon of requirements elaboration we examine the
relationship between the capability goals and the capability requirements of these 20
projects. Capability goals and capability requirements represent, respectively, the
functional goals and the functional requirements of a project. A typical capability goal,
taken from one of these 20 projects, states: “Integrate all existing USC libraries
resources search services into a single web-based portal”. This goal is later refined into
multiple implementable capability requirements. The description of one of these low-
level requirements states: “A user shall be able to perform searches through either web
feat or serial solutions through a single portal webpage”.

 A number of metrics have been gathered to examine the relationship between the
capability goals and the capability requirements. All metrics related to the capability
goals are collected from documentation produced at the time of the Life Cycle
Objectives (LCO) milestone [Boehm 1996] which is achieved at the end of the Inception
phase. Specifically, we gather data from the Operational Concept Description (OCD)
document [Boehm et al. 2005] delivered by teams as part of their LCO package [SE I
2008]. This is represented as “expanded OCD” in Figure 1.

When dealing with capability requirements we examine both nominal and off-
nominal requirements since all types of capability goals specified in OCD are
considered. In other words, we consider the requirements of system behavior in normal
as well as abnormal conditions. The System and Software Requirements Definition
(SSRD) document [Boehm et al. 2005] delivered at the end of the Construction phase
(not shown in Figure 1) is the source of all metrics related to capability requirements.
The end of the Construction phase corresponds to the Initial Operational Capability
(IOC) milestone [Boehm 1996]. Therefore, all capability requirements-related metrics
have been gathered from the SSRD document which is a part of the last IOC Working
Set. Occasionally, when the deliverables of the last IOC Working Set are not available
in the project archives [SE II 2008], we have used the SSRD document present in the
As-built Specification for collection of our metrics. At worst, this slight inconsistency in
our data makes an insignificant difference to our analysis.

Table 2. Metrics summary

S# Metric Description

1 NCGI Number of initial capability goals

2 NCGR Number of capability goals removed

3 NCRD Number of delivered capability requirements

4 NCRN Number of new capability requirements

5 NCGA Number of adjusted capability goals

6 NCRA Number of adjusted capability requirements

7 EF Elaboration Factor

Table 2 summarizes the metrics we have employed in our study. Out of these
seven metrics the first four are collected directly from the project documentation by
inspection as described above. The first two (NCGI and NCGR) are related to capability

goals whereas the next two (NCRD and NCRN) pertain to capability requirements. NCGI

represents the number of capability goals specified during the Inception phase whereas
NCGR specifies the number of capability goals that were removed or not considered
during the later phases of the project. NCRN indicates the number of capability
requirements that were added later-on in the project and had no relationship to the goals
included in NCGI. This metric gives a crude indication of the extent of the
requirements- or feature-creep phenomenon. NCRD simply records the number of
capability requirements satisfied by the product delivered to the client upon reaching the
IOC milestone.

The last three metrics (NCGA, NCRA, and EF) are derived metrics. These are
calculated according to the following formulae:

NCGA = NCGI – NCGR

NCRA = NCRD – NCRN

EF = NCRA / NCGA

As is clear from the formulae above, NCGA and NCRA are adjustments while EF is a
ratio of these adjusted metrics. NCGA signifies the capability goals that were retained till
the end of the project while NCRA indicates the capability requirements that emerge
solely from these retained capability goals as opposed to being introduced later on. The
EF metric quantifies the phenomenon of requirements elaboration. Projects with more
adjusted capability requirements per adjusted capability goal have higher EF values.

Ranges of EF values can be used to classify projects in different groups.
Keeping in view the nature of projects encountered in our academic setting and based on
the data we have observed (see Section 4) we have come up with a simple criterion for
defining these groups. This criterion is depicted in Figure 2. The continuous spectrum of
EF values shown in this figure by a horizontal line is divided into four sections. It is
trivially true that all EF values must be positive since EF is a ratio of counts. Moreover,
any project with an EF value less than 1 is an outlier. This is because, under normal
circumstances, NCRA is at least as large as NCGA. Projects with EF values between 1
and 1.5 (both inclusive) are assigned to the Low Elaboration Factor (LEF) group while
those with EF values between 1.5 and 2 (inclusive) constitute the Medium Elaboration
Factor (MEF) group. Finally, projects with EF values greater than 2 form the High
Elaboration Factor (HEF) group. In our setting, even though it is hard to imagine a
project with an EF value of greater than 10 the upper bound of the range for the HEF
group has been left unspecified to accommodate exceptional cases. Here it must be
mentioned that the EF ranges defining these project groups may be tailored according to
the data observed in a particular setting.

4. Results

Table 3 lists the values of the seven metrics introduced in the previous section for each
of the 20 projects. For the sake of brevity, project names have been omitted from this
table. Serial numbers (first column), however, have been retained for reference. These
correspond to the serial numbers in Table 1. Also, for the sake of convenience, the data
in this table is presented in ascending order of EF values.

Table 3. Project data for different metrics

S# NCGI NCGR NCRD NCRN NCGA NCRA EF Group

10 14 2 10 1 12 9 0.75

19 8 1 8 2 7 6 0.86
Outliers

3 3 1 7 5 2 2 1

16 5 2 3 0 3 3 1

7 10 5 6 1 5 5 1

1 12 3 12 2 9 10 1.11

8 10 2 12 2 8 10 1.25

9 7 4 8 4 3 4 1.33

LEF

2 3 0 9 4 3 5 1.67

20 5 2 7 2 3 5 1.67

17 7 1 21 10 6 11 1.83

6 4 1 7 1 3 6 2

4 5 1 14 6 4 8 2

15 5 1 11 3 4 8 2

MEF

14 3 0 10 3 3 7 2.33

18 6 0 20 5 6 15 2.5

5 4 1 12 3 3 9 3

13 2 0 11 3 2 8 4

12 6 2 19 2 4 17 4.25

11 8 5 16 3 3 13 4.33

HEF

1 1.5 2
EF

0

LEF MEF HEF Outliers

Figure 2. EF ranges defining groups

The last column (Group) categorizes these 20 projects according to the groups
defined in Section 3. Note that the first two rows (projects with serial numbers 10 and
19) are clear outliers since their EF values are less than 1. In other words, they
underwent a ‘negative’ elaboration. A detailed examination of these two projects helped
in understanding the reason behind this anomalous behavior. In the first case (serial #
10) a few pairs of capability goals were merged into single capability requirements
whereas in the second case (serial # 19) the system was so well-understood that the
capability goals were already specified at the level of capability requirements. These two
outliers have been omitted from all subsequent analysis.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

NCGA

N
C

R A

(2)

(2)

Figure 3. NCRA vs. NCGA

Figure 3 displays the graph obtained by plotting NCRA against NCGA. By default
each dot represents a single project. However, in the event where two or more projects
have identical values of the pair (NCGA, NCRA), we indicate this by annotating the dot
with a parenthesized number specifying the number of projects aggregated by that dot.
Thus, as is apparent from this figure, 2 of the 16 dots represent two projects. A
regression line has also been added for convenience. Here it must be pointed out that the
y-intercept of this line (and all subsequent regression lines) has been set to zero. This
makes intuitive sense since a project that has no capability goals to start with will not
exhibit the phenomenon of requirements elaboration. Though new requirements may be
added, these will be discounted in the adjusted metric NCRA.

5. Discussion

A glance at Figure 3 indicates a roughly increasing relationship between the two
metrics: NCRA and NCGA. This relationship, however, is not very strong and there is a
lot of variation around the fitted regression line. A careful observation of the same
figure reveals something very subtle – the presence of different groups of elaboration.
This subtlety is made apparent in Figure 4 which displays three regression lines along
with their equations and coefficient of determination (R2) values. This figure divides the
remaining 18 data points into three distinct groups (LEF, MEF, and HEF) as defined in
Section 3.

y = 1.1458x

R2 = 0.9688

y = 1.8737x

R2 = 0.9447

y = 3.1446x

R2 = 0.3262

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

NCGA

N
C

R A

LEF

MEF

HEF

(2)

(2)

Figure 4. NCRA vs. NCGA with project groups identified

Points around the solid line at the bottom of Figure 4 represent projects with the
lowest EF values (1 – 1.33). The dashed line in the middle fits points that correspond to
projects with intermediate EF values (1.67 – 2). Finally, points around the dotted line at
the top map to projects with the highest EF values (2.33 – 4.33). This classification is
also indicated in the last column of Table 3.

It is obvious from these results that, as one might suspect, there is no one-size-
fits-all formula for requirements elaboration. Depending on how well they are
understood at the Inception phase, different projects will undergo different rates of
elaboration. Knowledge of a project’s type, however, can give some sort of an indication
of its EF value even at the time of inception. A closer examination of the projects in the
HEF group revealed that all of these projects were of type “Web-based Database” (see
Table 1). These were the ones that underwent extensive elaboration. Other factors such

as the project’s complexity and novelty also need to be considered. These additional
factors could explain why, for instance, all projects in the HEF group were of type
“Web-based Database” but not all projects of type “Web-based Database” had an EF
value greater than 2.

Another side benefit of early determination of a project’s EF group is that there
is potential to save valuable time, money, and effort. This is especially true for projects
that belong to the LEF group. Since these projects have low EF values some steps of the
Elaboration phase may be skipped and the Construction phase activities may begin
earlier.

A number of techniques such as Use Case Points [Karner 1993] and Predictive
Object Points [Minkiewicz 1997] have been proposed to come up with early estimates
of the effort required for a software project. All of these techniques, however, are
applicable only after some preliminary analysis or design of the software project at hand.
Early determination of a project’s EF group may enable a much earlier goals-based
estimation. It should not be hard to see that there is a positive relationship between the
EF value and the size of a project. Assuming everything else is constant, a project that
undergoes more elaboration of goals will be of a bigger size than the one which
undergoes less elaboration. Thus, accurate a priori determination of a project’s EF group
(which, in turn, bounds the EF value) has a direct bearing on the accuracy of early
estimation of a project’s cost and schedule. For instance, a project belonging to the HEF
group is likely to be more risky in terms of schedule-slippage and budget-overrun vis-à-
vis a project classified in the LEF group. Project managers can, therefore, take this into
consideration during the Inception phase and reflect it in their estimates of the project’s
cost and schedule.

6. Future Work

While this empirical study has developed the basic framework for the quantitative
analysis of the phenomenon of requirements elaboration the study is by no means
complete. For one, we have restricted ourselves to examining the relationship between
only the capability (or functional) goals and the capability requirements. The
relationship between the level-of-service (or non-functional) goals and level-of-service
requirements still needs to be examined. Due to the stark contrast between the nature of
capability and level-of-service requirements we suspect this relationship to be very
different.

Other relationships worth looking into are between the metrics already examined
(e.g. number of capability goals, number of capability requirements, etc.) and the
metrics provided by the architectural documents such as the System and Software
Architecture Description (SSAD) document [Boehm et al. 2005]. These new metrics
include, but are not limited to, the number of actors, the number of use cases, the
number of sequence diagrams, and the number of classes. We are in the process of
gathering data for this purpose.

Moreover, we intend to investigate the relationship between our current metrics
and software functional size metrics (such as those defined in [IFPUG 2000] and
[COSMIC 2003]) collected from these projects. Also pending is our analysis of
industrial data. Efforts are underway to obtain comparable data of commercial projects.

Among other things, the sheer difference between the magnitude and duration of
industrial and academic projects may result in further valuable insights into the
phenomenon of requirements elaboration.

References

Antón, A. I. (1996). “Goal-Based Requirements Analysis”, Proc. of the IEEE Int. Req.
Eng. Conf. (RE), pages 136–144.

Boehm, B. (1996). “Anchoring the Software Process”, IEEE Software 13(4), pages 73–
82.

Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B, Horowitz, E., Madachy, R.,
Reifer, D., and Steece, B. (2000), Software Cost Estimation with COCOMO II,
Prentice Hall.

Boehm, B., Klappholz, D., Colbert, E., et al. (2005). “Guidelines for Lean Model-Based
(System) Architecting and Software Engineering (LeanMBASE)”, Center for
Software Engineering, University of Southern California.

Cockburn, A. (2001), Writing Effective Use Cases, Addison-Wesley.

COSMIC (2003). COSMIC measurement manual version 2.2, Common Software
Measurement International Consortium.

Freiman, F.R. and Park, R. E. (1979). “PRICE Software Model–Version 3: An
Overview”, Proc. IEEE-PINY Workshop on Quantitative Software Models, pages 32-
41.

IFPUG (2000). Function point counting practices manual version 4.1.1, International
Function Point Users Group.

Karner, G. (1993). “Resource Estimation for Objectory Projects”. Objectory Systems.

Kruchten, P. (2003), The Rational Unified Process: An Introduction, Addison-Wesley.

Letier, E. and Lamsweerde, A. van (2002). “Agent-Based Tactics for Goal-Oriented
Requirements Elaboration”, Proc. of the IEEE Int. Conf. on Soft. Eng. (ICSE), pages
83–93.

Minkiewicz, A. (1997). “Measuring Object-Oriented Software with Predictive Object
Points”, Applications in Software Measurement (ASM’97).

Putnam, L. H. (1978). “A General Empirical Solution to the Macro Software Sizing and
Estimating Problem”, IEEE Trans. Software Engr., pages 345–361.

SE I (2008). Links to websites of all past semesters of Software Engineering I (CSCI
577A) course at USC, http://sunset.usc.edu/csse/courseroot/course_list.html#577a

SE II (2008). Links to websites of all past semesters of Software Engineering II (CSCI
577B) course at USC, http://sunset.usc.edu/csse/courseroot/course_list.html#577b

