An Empirical Study of Requirements Elabor ation
Ali Afzal Malik, Barry Boehm

Center for Systems and Software Engineering — Usityeof Southern California
Los Angeles, U. S. A.

alimali k@sc. edu, boehmausc. edu

Abstract. This paper describes an empirical study undertalcemvestigate
the quantitative aspects of the phenomenon of reopants elaboration which
deals with the transformation of high-level goaisoilow-level requirements.
Prior knowledge of the magnitude of requiremenébetation is instrumental
in developing early estimates of a project’s costl achedule. This study
examines the data on capability goals and capabikiguirements of 20 real-
client, MS-student, team projects done at USC. iekefor data collection and
analysis are described along with the utility of tlesults they produce. These
results suggest some relationship between the eatuprojects and the size of
requirements elaboration.

1. Introduction

Early estimation of a software project’'s cost amthiesiule requires a viable set of
parameters for estimating a project’s size. Oné& qarameter is the number of unique
requirements to be satisfied by the software. Hawneas illustrated graphically in
[Cockburn 2001], the same requirement at the taaljgevel may be elaborated into
several requirements at an intermediate level,aaladge number of requirements at the
detailed acceptance-test level.

An opportunity to analyze the requirements elatimmaphenomenon has been
provided by USC’s annual two-semester series dfalent, MS-student, team-project
courses. These two project-based courses — Softwagimeering | (SE I) and Software
Engineering 1l (SE II) — allow students to get mstfihand experience of a considerable
chunk of the software development life cycle. Ading to the terminology of the
Rational Unified Process (RUP) [Kruchten 2003], ISExposes them to the Inception
and Elaboration phases whereas SE Il deals withQbestruction and Transition
phases.

Most of the time students work in development teafm®ur to six people. The
projects provided to these teams come from a yaoksources including the industry
and academia. By negotiations with the client tbguirements for these projects are
prioritized to facilitate completion in two semeste

This study deals with 20 such two-semester-longepts [SE | 2008, SE I
2008] done by student teams in the past few y@atsle 1 presents a summary of these
projects. The column titled ‘Year' indicates theayavhen the project was initiated.
Special care was taken in selecting these projecanalysis. COTS-based projects and
custom-development projects with incomplete dataewdtered out. Thus, each of
these 20 projects is a fully-documented custom-dgweent project. In addition to this,

each project followed the same MBASE/RUP [Boehmalet2005, Kruchten 2003]
development process.

Table 1. Projects summary

S# | Year Project Type
1| 2004| Bibliographies on Chinese Religions in Wiesteanguageg Web-based database
2 | 2004| Data Mining of Digital Library Usage Data tBanining
3| 2004| Data Mining from Report Files Data mining
4| 2005| Data Mining PubMed Results Data mining
5| 2005| USC Football Recruiting Database Web-basgabdse
6 | 2005| Code Generator — Template based Stand-ahpieation
7 | 2005| Develop a Web Based XML Editing Tool Webdzhapplication
8 | 2005| EBay Notification System Stand-alone apfilica
9 | 2005| Rule-based Editor GUI
10| 2005| CodeCount™ Product Line with XML and C++ dE&ounter Tool
11| 2006| California Science Center Newsletter System Web-based database
12 | 2006| California Science Center Event RSVP System Web-based database
13| 2006| USC Diploma Order/ Tracking Database System Web-based database
14| 2006| USC Civic and Community Relations web ayapibn Web-based database
15| 2006| Student's academic progress web application Web-based database
16 | 2006| New Economics for Woman (NEW) Web-basedlutse
17| 2006| Web Portal for USC Electronic Resources Waeted GUI
18 | 2006| Early Medieval East Asian Tombs Web-basadidhse
19| 2006| USC CONIPMO Cost model
20 | 2006| An Eclipse Plug-in for Use Case Authoring tanf-alone application

To provide an overview of the development processduby these projects, a
part spanning just the Inception and Elaboratioaspk is sketched in Figure 1. Boxes
represent the various steps carried out in thegsodViultiple activities within a step
are presented as a bulleted list. Each step hasrheabered for convenience. Arrows
signify the general flow of results/artifacts beeémethe steps in the process. Step 3, for
instance, uses the results produced by both steql Istep 2 to produce a result which,
in turn, is used by step 4. Steps 4 through 8,ghgwesented as a sequence, contain
several concurrent activities. As explained lateSection 3, the Operational Concept
Description (OCD) and the System and Software Reqents Definition (SSRD) are
the two documents [Boehm et al. 2005] we focusnathis study.

Client project
screenin

Developer
1 selfprofiling 2

{project descriptions

{develope profiles}

» Developer team
formation
* Project selectiog

{selected clier-developer team:

\ 4

* Client-developer
team building

 Prototyping

e WinWin
negotiatiol 4

{draft OCD}
v

LCO Package
preparatio g

SSAD’, LCP’, FRD}

) 4
LCO Review

LCO: Life Cycle Objectives
LCA: Life Cycle Architecture
OCD: Operational Concept
Description
SSRD: System and Software
Requirements Definition
SSAD: System and Softwar
Architecture Description
LCP: Life Cycle Plan

FRD: Feasibility Rationale
Description

ABC': Top-level version of
document ABC

1%

\ 4

LCA Package
preparatio 7

SSAD, LCP, FRD}

A 4

LCA Review

8

y
{product devel‘opment guidance}

Figure 1. Partial development process

{expanded OCD, prototypes, SSRD’,

Inception

{LCA package guidanceéIab i
oration

{build-to OCD, prototypes, SSRD,

At the time of inception, most projects are spedfiin terms of informal
statements of the goals wished to be achieved. WMghpassage of time, and as the
understanding of the problem and its domain matuhese goals are transformed into
much clearer low-level requirements. The aim o$ iudy is to quantify and measure
this phenomenon of requirements elaboration aatdfsent types of projects thereby
gaining some useful insights about its utility witlspect to early software cost and
schedule estimation. The main contribution of oorkndies in defining the metrics for
quantifying requirements elaboration and analyzihg results produced by these
metrics on concrete data.

The rest of this paper is organized as followsti8e@ briefly discusses some
related work and gives the motivation behind thisdg. Section 3 presents the
methodology used for gathering the data requiredhis study. It defines appropriate
metrics and indicates the rationale for their us&ction 4 summarizes the results
while section 5 comments on the salient aspectthede results. Finally, section 6
concludes with a brief outline of future work inglarea.

2. Motivation and Related Work

Researchers in the past have looked at a numbgayd of supporting and improving
the process of requirements elaboration. LetienamdLamsweerde proposed an agent-
based approach towards requirements elaboratiamefland van Lamsweerde 2002].
Several formal tactics for refining goals and tlassigning them to single agents (e.g.
human stakeholders, software components etc.) ¢hat realize these goals were
defined. Earlier, Antén had described the GBRAM &=Based Requirements Analysis
Method) and the results of its application in acgical setting [Anton 1996]. Using the
GBRAM goals were identified and elaborated for dat@perationalization into
requirements.

While the research done in this area so far haaskxt on facilitating and
improving the process we have adopted an altogetiflerent approach. We define
metrics to analyze the process itself. This quainig approach is augmented by looking
at some qualitative aspects of the projects wetis@za. In particular, we look at the
differences in elaboration with respect to the tgpthe projects.

A better understanding of this process will be t#ag value in areas such as
software sizing and software cost estimation. Msxsftware cost estimation models
such as Putnam’s SLIM [Putnam 1978], RCA’s PRICE#®&iman and Park 1979], and
COCOMO Il [Boehm et al. 2000] rely on software saeone of their primary inputs.
Information about software size, however, is nadilable at the early stages of the
project life cycle. The only information availaldé this time is about the overall goals
and nature of the project. If this information amehow be leveraged to estimate the
size of the project then cost estimates made atirtiee of inception would be much
more accurate. This, in turn, requires a thorougtesstanding of the transformation of
and the relationship between high-level goals amdlevel requirements. This study is
a step forward in developing such an understanding.

3. Methodology

As an approximation to the phenomenon of requirémetaboration we examine the
relationship between the capability goals and teability requirements of these 20
projects. Capability goals and capability requirateerepresent, respectively, the
functional goals and the functional requirements q@iroject. A typical capability goal,
taken from one of these 20 projects, states: “hategall existing USC libraries
resources search services into a single web-baw¢al”p This goal is later refined into
multiple implementable capability requirements. Tescription of one of these low-
level requirements states: “A user shall be ablpeidorm searches through either web
feat or serial solutions through a single portabpage”.

A number of metrics have been gathered to exathmeelationship between the
capability goals and the capability requirementB. metrics related to the capability
goals are collected from documentation producedhat time of the Life Cycle
Objectives (LCO) milestone [Boehm 1996] which ikiawed at the end of the Inception
phase. Specifically, we gather data from the Opmrat Concept Description (OCD)
document [Boehm et al. 2005] delivered by teampaas of their LCO package [SE |
2008]. This is represented as “expanded OCD” imfed..

When dealing with capability requirements we examoth nominal and off-
nominal requirements since all types of capabilifyals specified in OCD are
considered. In other words, we consider the reqergs of system behavior in normal
as well as abnormal conditions. The System andw@oét Requirements Definition
(SSRD) document [Boehm et al. 2005] delivered atéhd of the Construction phase
(not shown in Figure 1) is the source of all meatnielated to capability requirements.
The end of the Construction phase corresponds ddrtiial Operational Capability
(I0C) milestone [Boehm 1996]. Therefore, all capgbrequirements-related metrics
have been gathered from the SSRD document whiahpert of the last IOC Working
Set. Occasionally, when the deliverables of thelfa€ Working Set are not available
in the project archives [SE Il 2008], we have u#ieel SSRD document present in the
As-built Specification for collection of our metsicAt worst, this slight inconsistency in
our data makes an insignificant difference to malysis.

Table 2. Metrics summary

S# | Metric | Description

NCG Number of initial capability goals

NCG Number of capability goals removed

NCR, Number of delivered capability requirements

NCRy Number of new capability requirements

NCGy Number of adjusted capability goals

NCRy Number of adjusted capability requirements

~N (o (o0 | W N

EF Elaboration Factor

Table 2 summarizes the metrics we have employealinstudy. Out of these
seven metrics the first four are collected diredttyn the project documentation by
inspection as described above. The first two (N&@ NCG&) are related to capability

goals whereas the next two (NERBnd NCR)) pertain to capability requirements. NCG
represents the number of capability goals spectdigihg the Inception phase whereas
NCGr specifies the number of capability goals that wene@oved or not considered
during the later phases of the project. NCiRdicates the number of capability
requirements that were added later-on in the prejed had no relationship to the goals
included in NCG This metric gives a crude indication of the exktedf the
requirements- or feature-creep phenomenon. NGRnply records the number of
capability requirements satisfied by the produdivdeed to the client upon reaching the
IOC milestone.

The last three metrics (NGGNCRa, and EF) are derived metrics. These are
calculated according to the following formulae:

NCGa = NCG - NCR

NCRa = NCR, — NCRy

EF = NCR,/ NCGy

As is clear from the formulae above, NC@&hd NCR are adjustments while EF is a
ratio of these adjusted metrics. NEC$§ignifies the capability goals that were retainéd t
the end of the project while NGRndicates the capability requirements that emerge
solely from these retained capability goals as spddo being introduced later on. The
EF metric quantifies the phenomenon of requiremetdboration. Projects with more
adjusted capability requirements per adjusted ahgyaipoal have higher EF values.

Ranges of EF values can be used to classify psojectdifferent groups.
Keeping in view the nature of projects encounténealir academic setting and based on
the data we have observed (see Section 4) we lwwe ap with a simple criterion for
defining these groups. This criterion is depictedrigure 2. The continuous spectrum of
EF values shown in this figure by a horizontal lisedivided into four sections. It is
trivially true that all EF values must be positsiace EF is a ratio of counts. Moreover,
any project with an EF value less than 1 is ani@utlThis is because, under normal
circumstances, NCRis at least as large as N&@°rojects with EF values between 1
and 1.5 (both inclusive) are assigned to the Loab&iation Factor (LEF) group while
those with EF values between 1.5 and 2 (inclustesistitute the Medium Elaboration
Factor (MEF) group. Finally, projects with EF vadugreater than 2 form the High
Elaboration Factor (HEF) group. In our setting, rexkough it is hard to imagine a
project with an EF value of greater than 10 theemgmund of the range for the HEF
group has been left unspecified to accommodateptiooal cases. Here it must be
mentioned that the EF ranges defining these prgjeetps may be tailored according to
the data observed in a particular setting.

Outliers

LEF

MEF

HEF

y N

Y.

y N

\ 4

4. Results

> e - - - e - - - -

o —— - - -

o1

Figure 2. EF ranges defining groups

EF

\4

Table 3 lists the values of the seven metrics thiced in the previous section for each
of the 20 projects. For the sake of brevity, projggmes have been omitted from this
table. Serial numbers (first column), however, hbeen retained for reference. These
correspond to the serial numbers in Table 1. Aisothe sake of convenience, the data
in this table is presented in ascending order oV&lkes.

Table 3. Project data for different metrics

SH NCG, NCGg NCRp NCRy NCG, NCR4 EF Group
10 14 2 10 1 12 g 0.7)
Outliers
19 8 1 8 2 7 6 0.86
3 3 1 7 5 2 2 1
16 5 2 3 0 3 3 1
7 10 5 6 1 5 5 1
LEF
1 12 3 12 2 9 10 1.11
8 10 2 12 2 8 10 1.25
9 7 4 8 4 3 4 1.33
2 3 0 9 4 3 5 1.67
20 5 2 7 2 3 5 1.6]
17 7 1 21 10 6 11 1.8
MEF
6 4 1 7 1 3 6 2
4 5 1 14 6 4 te p.
15 5 1 11 3 4 8 2
14 3 0 10 3 3 7 2.33
18 6 0 20 5 6 15 2.5
5 4 1 12 3 3 9 3
HEF
13 2 0 11 3 2 8 4
12 6 2 19 2 4 17 4.25
11 8 5 16 3 3 13 4.33

The last column (Group) categorizes these 20 projaccording to the groups
defined in Section 3. Note that the first two rofpsojects with serial numbers 10 and
19) are clear outliers since their EF values ass lthan 1. In other words, they
underwent a ‘negative’ elaboration. A detailed exetion of these two projects helped
in understanding the reason behind this anomaletawior. In the first case (serial #
10) a few pairs of capability goals were mergea isingle capability requirements
whereas in the second case (serial # 19) the systsnso well-understood that the
capability goals were already specified at thelle¥eapability requirements. These two
outliers have been omitted from all subsequentyarsal

18

16

14 4

12 4

10 -

NCG,

Figure 3. NCRp vs. NCGp

Figure 3 displays the graph obtained by plotting@@gainst NCG. By default
each dot represents a single project. Howevehearevent where two or more projects
have identical values of the pair (N&GNCR,), we indicate this by annotating the dot
with a parenthesized number specifying the numb@raects aggregated by that dot.
Thus, as is apparent from this figure, 2 of the diis represent two projects. A
regression line has also been added for conveniétare it must be pointed out that the
y-intercept of this line (and all subsequent regj@s lines) has been set to zero. This
makes intuitive sense since a project that hasapaility goals to start with will not
exhibit the phenomenon of requirements elaborafitlwugh new requirements may be
added, these will be discounted in the adjustedicdCRa.

5. Discussion

A glance at Figure 3 indicates a roughly increasiationship between the two
metrics: NCR and NCG. This relationship, however, is not very strongl &mere is a
lot of variation around the fitted regression lirke.careful observation of the same
figure reveals something very subtle — the presefadfferent groups of elaboration.
This subtlety is made apparent in Figure 4 whidpldiys three regression lines along
with their equations and coefficient of determinat{F’) values. This figure divides the
remaining 18 data points into three distinct grosF, MEF, and HEF) as defined in
Section 3.

y = 3.1446x
20 -
R =0.3262 o LEF
181 g ‘ = MEF
. . + HEF
16
A
14 s
. . y=1.8737x
12 - K R =0.9447 y =1.1458x
<
g 10
8 -
6 -
4 -
2 -
0 :
0 1 2 3 4 5 6 7 8 9 10

Figure 4. NCR4 vs. NCG4 with project groups identified

Points around the solid line at the bottom of Fegdirepresent projects with the
lowest EF values (1 — 1.33). The dashed line imtidxle fits points that correspond to
projects with intermediate EF values (1.67 — 2hahy, points around the dotted line at
the top map to projects with the highest EF val@e33 — 4.33). This classification is
also indicated in the last column of Table 3.

It is obvious from these results that, as one msgispect, there is no one-size-
fits-all formula for requirements elaboration. Degang on how well they are
understood at the Inception phase, different ptsjedll undergo different rates of
elaboration. Knowledge of a project’s type, howeean give some sort of an indication
of its EF value even at the time of inception. Asdr examination of the projects in the
HEF group revealed that all of these projects veérype “Web-based Database” (see
Table 1). These were the ones that underwent exéeekaboration. Other factors such

as the project's complexity and novelty also nemdée considered. These additional
factors could explain why, for instance, all pragein the HEF group were of type

“Web-based Database” but not all projects of tyjiéeb-based Database” had an EF
value greater than 2.

Another side benefit of early determination of aject’'s EF group is that there
is potential to save valuable time, money, andreffthis is especially true for projects
that belong to the LEF group. Since these projeat® low EF values some steps of the
Elaboration phase may be skipped and the Consirugithase activities may begin
earlier.

A number of techniques such as Use Case Points1@dr993] and Predictive
Object Points [Minkiewicz 1997] have been proposedome up with early estimates
of the effort required for a software project. Aif these techniques, however, are
applicable only after some preliminary analysislesign of the software project at hand.
Early determination of a project's EF group may#eaa much earlier goals-based
estimation. It should not be hard to see that tieeepositive relationship between the
EF value and the size of a project. Assuming elergtelse is constant, a project that
undergoes more elaboration of goals will be of ggér size than the one which
undergoes less elaboration. Thus, accurate a pletermination of a project’s EF group
(which, in turn, bounds the EF value) has a diteearing on the accuracy of early
estimation of a project’s cost and schedule. Fsiaimce, a project belonging to the HEF
group is likely to be more risky in terms of schiedslippage and budget-overrun vis-a-
vis a project classified in the LEF group. Proje@nagers can, therefore, take this into
consideration during the Inception phase and reiten their estimates of the project’s
cost and schedule.

6. Future Work

While this empirical study has developed the bdsamework for the quantitative
analysis of the phenomenon of requirements elalborahe study is by no means
complete. For one, we have restricted ourselves&mnining the relationship between
only the capability (or functional) goals and thapability requirements. The
relationship between the level-of-service (or nonetional) goals and level-of-service
requirements still needs to be examined. Due ttiéuwdk contrast between the nature of
capability and level-of-service requirements wepsas this relationship to be very
different.

Other relationships worth looking into are betwéss metrics already examined
(e.g. number of capability goals, number of capgbilequirements, etc.) and the
metrics provided by the architectural documentshsas the System and Software
Architecture Description (SSAD) document [Boehmakt2005]. These new metrics
include, but are not limited to, the number of e&stdhe number of use cases, the
number of sequence diagrams, and the number cdeda®Ve are in the process of
gathering data for this purpose.

Moreover, we intend to investigate the relationdigpween our current metrics
and software functional size metrics (such as thds#ned in [IFPUG 2000] and
[COSMIC 2003]) collected from these projects. Alpending is our analysis of
industrial data. Efforts are underway to obtain pamble data of commercial projects.

Among other things, the sheer difference between rttagnitude and duration of
industrial and academic projects may result in hiert valuable insights into the
phenomenon of requirements elaboration.

References

Antén, A. |. (1996). “Goal-Based Requirements Ay, Proc. of the IEEE Int. Req.
Eng. Conf. (RE)pages 136-144.

Boehm, B. (1996). “Anchoring the Software ProcetSEE Software 13(4)ages 73—
82.

Boehm, B., Abts, C., Brown, A., Chulani, S., Clai, Horowitz, E., Madachy, R.,
Reifer, D., and Steece, B. (2000), Software Cogdintagion with COCOMO I,
Prentice Hall.

Boehm, B., Klappholz, D., Colbert, E., et al. (2R0%uidelines for Lean Model-Based
(System) Architecting and Software Engineering (MBASE)”, Center for
Software Engineering, University of Southern Cathia.

Cockburn, A. (2001), Writing Effective Use Casesldison-Wesley.

COSMIC (2003). COSMIC measurement manual versiay Zommon Software
Measurement International Consortium.

Freiman, F.R. and Park, R. E. (1979). “PRICE Saféwdodel-Version 3: An
Overview”, Proc. IEEE-PINY Workshop on Quantitative Softwaredkls pages 32-
41.

IFPUG (2000). Function point counting practices oarnversion 4.1.1, International
Function Point Users Group.

Karner, G. (1993). “Resource Estimation for Objegterojects”. Objectory Systems.
Kruchten, P. (2003), The Rational Unified Procdssintroduction, Addison-Wesley.

Letier, E. and Lamsweerde, A. van (2002). “Agens&h Tactics for Goal-Oriented
Requirements ElaborationProc. of the IEEE Int. Conf. on Soft. Eng. (ICS&gges
83-93.

Minkiewicz, A. (1997). “Measuring Object-Orientedf8vare with Predictive Object
Points”, Applications in Software Measurement (ASM.97)

Putnam, L. H. (1978). “A General Empirical Solutitanthe Macro Software Sizing and
Estimating Problem”|[EEE Trans. Software Engmpages 345-361.

SE 1 (2008). Links to websites of all past semastdrSoftware Engineering | (CSCI
577A) course at USC, http://sunset.usc.edu/cssesemot/course_list.html#577a

SE 1l (2008). Links to websites of all past semestéd Software Engineering Il (CSCI
577B) course at USC, http://sunset.usc.edu/cssafemot/course_list.htmi#577b

