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Abstract. Self-organization is a dynamic and adaptive process where components of a 

system acquire and maintain information about their environment and neighbors with-

out external control. Agent-Oriented Software Engineering (AOSE) can provide meth-

ods and technologies that help building self-organizing systems. A fundamental engi-

neering issue when designing self-organizing emergent multi-agent systems (MASs) is to 

achieve required macroscopic properties by manipulating the microscopic behavior of 

locally interacting agents. In this paper, we propose a bio-inspired approach consisting 

of a representation model that allows a systematic design of the desirable emergent 

macroscopic properties from a macro scale to the micro scale. 

Resumo. Auto-organização é um processo adaptativo e dinâmico onde componentes de 

um sistema adquirem e mantém informação sobre o ambiente e seus vizinhos sem con-

trole externo. A Engenharia de Software Orientada a Agente pode fornecer métodos e 

tecnologias que apóiam a construção de sistemas auto-organizáveis. Uma questão de 

engenharia fundamental durante o projeto de sistemas multiagentes organizáveis é al-

cançar propriedades macroscópicas desejadas para manipular o comportamento mi-

croscópico das interações locais dos agentes. Neste artigo é proposta uma abordagem 

inspirada na biologia que consiste de um modelo de representação que permite um pro-

jeto sistemático das propriedades emergentes macroscópicas desejadas a partir do ní-

vel macro para o micro. 

1. Introduction 

Self-organization is a very powerful approach to the engineering of complex systems 

because of its many interesting properties, including adaptation and robustness [Mameia 

et al., 2006]. Unfortunately, self-organization provides difficult design challenges as we 

are using apparent microscopic behavior of system components and their interactions to 

achieve a deterministic result for the entire system.  

However, biologists and computer scientists are collaborating closely as they seek to 

understand and to influence the natural information processes studied in computing 

[Denning, 2007]. Computing interacts constantly with other fields. The other fields 

teach us more about computing and we help them find better ways to model and perhaps 

understand the world. Thus, from the analysis of natural systems, it may be possible to 

identify underlying mechanisms and structures to support a software engineering meth-

odology for creating systems with complex behavior.  

Self-organization is a dynamic and adaptive process where components of a system 

acquire and maintain information about their environment and neighbors without exter-

nal control. Agent-Oriented Software Engineering (AOSE) can provide methods and 

technologies that help in the building self-organizing systems. A fundamental engineer-



ing issue when designing self-organizing emergent multi-agent systems (MASs) is to 

achieve required macroscopic properties by manipulating the microscopic behavior of 

locally interacting agents.  

Current agent-oriented methodologies are mainly focused on engineering such micro-

scopic issues as the agents, the rules, the protocols and their interaction without explicit 

support for engineering the required outcome of the system. As a consequence, the re-

quired macroscopic behavior is achieved in an ad-hoc manner. We propose a bio-

inspired approach consisting of a representation model that allows a systematic specifi-

cation of desirable emergent macroscopic properties, which can be mapped into the be-

havior of individual agents, going from the macro to the micro scale. It is bio-inspired, 

since we derived it from earlier experiences in modeling and simulating stem cell be-

havior using self-organizing multi-agent systems [Gatti et al., 2007], [Gatti, 2008a], 

[Gatti et al., 2008].  

First the paper presents some fundamental concepts to indicate why agent-oriented 

software engineering and agent-based simulation fit well in the domain of self-

organizing systems and why a bio-inspired representation model is a good choice. The 

paper then presents the meta-model underlined in the representation model and both the 

static and dynamics models. Then, we also demonstrate how the representation model 

can be applied by considering a self-organized autonomic and emergent application net-

working case study. In the final sub-section we show why the related work falls short on 

designing macro properties. We present the conclusions and future research in last sec-

tion. 

2. Self-Organization: Definitions and Mechanisms  

A fascinating self-organizing mechanism can be observed by the straight line of ants 

found in our gardens stretching from food sources to anthills. Taking a closer look, we 

found that this straight line was made from hundreds of individual industrious ants, each 

behaving energetically. If we next focus on the micro view (from a modeling perspec-

tive looking at the individual elements of a system), of an individual ant’s behavior, it is 

very easy to interpret the behavior of the individual as unfocussed and chaotic. It is cer-

tainly very difficult to interpret its behavior as being purposeful when taken in isolation. 

It is only when we take a step back, and look at the behavior of the entire group (called 

the macro view), that we can observe a purposeful global system behavior. The purpose 

of bringing food back to the ant hill (an emergent function) emerges from the cumula-

tive view of the behaviors and interactions of the apparently undirected individual. 

Somehow the sum of the local interactions of each individual, each responding only to 

their local environmental, produces a stable, surviving system, even though individual 

ants get lost or die. 

Here we define  

self-organization of a system as a dynamic and adaptive process where each compo-

nent of a system acquires and maintains information about its environment and 

neighbors without external control and where the emergent system behavior may evolve 

or change over time. 

Hence, self-organization has three main properties: evolution, emergence and adapta-

tion. Typically, people describe “emergence” as the phenomenon where global behavior 

arises from the interactions between the components of the system. Examples of emer-

gence include: global pheromone paths that arise from local path following and phero-



mone-dropping ants, the swarming movements of a flock of birds, and a traffic jam from 

the interactions of cars. Because of the complexity imposed by decentralization and the 

highly dynamic nature of the problem domain it is usually impossible to impose an ini-

tial macroscopic structure. The macroscopic behavior arises and organizes autono-

mously producing self-organizing emergent behavior. 

An adaptive system will self-modify into different system-states in order to navigate, 

function and succeed within different environments. The development of self-adaptive 

systems can be viewed from two perspectives, either top-down when considering an in-

dividual system, or bottom-up when considering self-organizing systems. A self-

organizing system is expected to cope with the presence of perturbations and change 

autonomously to maintain its organization. 

Finally, evolution is a consequence of emergence and adaptation in self-organizing 

systems. Constituent parts or components and behaviors can appear and disappear when 

needed.  

In multi-scale self-organization architecture, emergent function or properties emerge 

from micro scale agent interactions in several layers resulting in a complex self-

organized system. The emergent function might be a desirable behavior or an undesir-

able behavior (or misbehavior) in that the self-organization might emerge to a robust 

state or a failure state. For instance, in the ants foraging, the emergent property is the 

pheromone path. The ants are not aware of this property although they produce it. 

A multi-agent approach contains the definition of entities or components composing a 

system and of the interaction among them. This approach has proven to be appropriate 

to simulate systems characterized by emergent properties for which basic component 

behaviors are known while analyzing overall phenomena derived from the interactions 

among them, under particular starting conditions. From this architecture we can depict 

the heterogeneity property where agents can interact with emergent functions being rep-

resented by emergent components composed of agents which occur in biological sys-

tems as cells. In such systems each cell is a self-organized autonomous component that 

emerges from molecular interactions and also interacts not only with other cells but with 

other molecules at the environment level. 

The complexity of self-organizing emergent systems usually arises from our inability 

to reduce the global properties to a combination of local behaviors. Hierarchies are pre-

sent in a system when multiple nested self-organized levels can be observed. Living sys-

tems accomplish self-organization repeatedly across a vast range of length scales 

through hierarchical organization.  

Successful biological systems have been able to utilize the available (self-assembled) 

biological components at any particular length scale, together with the available forces 

and transport mechanisms, to develop new and distinct self-organization processes at a 

larger length scale. This hierarchical organization is evident in the animal kingdom 

through the assembly of: proteins from amino acids; cells from proteins and other mac-

romolecules; tissues and organs from cells; organisms from tissues and organs; social 

communities of organisms from individual organisms. 

3. A Bio-inspired Emergent-based Representation Model 

Not only are biological systems an excellent application area for multi-agent systems 

concepts and development technologies; they also inspire models for new software phe-

nomena (for instance, see [Kephart, 2003], [Lin et  al., et al., 2005], [Bandini et  al., et 



al., 2004]). By inspiring we mean that it is possible to apply the knowledge obtained 

from the study of biological systems to contribute to innovations in the engineering of 

multi-agent systems. 

We derived the representation model proposed here from earlier experiences on the 

development of stem cell computational modeling using self-organizing multi-agent 

systems [Gatti et al.,  2007], [Gatti, 2008a], [Gatti et al.,  2008]. During the research, we 

noticed a lack of design support in the literature for modeling the micro scale from the 

macro scale and for the design of dynamic adaptive behaviors. From the bio-inspired 

point of view, each cell is a self-organized autonomous component that emerges from 

molecular interactions and also interacts not only with other cells but with other mole-

cules at the environment level. 

The inspiration comes from two main characteristics concluded from the stem cell 

self-organization: the environment role in the process and the relation between states 

and action while the emergent properties appear. The former seems to show us that the 

environment behavior is explicitly coordinated with the local parts during the self-

organization. And the latter shows us the interplay between (agent and environment) 

behaviors states and actions that allows designing emergent properties and focusing the 

creative effort on the enabler of self-organization. Those design issues were specifically 

concluded from the cell life cycle and signaling pathways. Those intracellular processes, 

which are emergent properties, drive the cellular proliferation and differentiation in a 

multi-scale architecture. 

4. The Representation Model 

Meta-model 

The design consists of a meta-model to structure entities and a representation model 

which adapts UML 2 diagrams [UML, 2008], [Fowler, 2004], [Booch et  al., et al., 

2005] to support the mapping between macro and micro scale. 

There are two main early activities that must be done before using the representation 

model: the textual definition of the self-organizing global behavior which might be 

composed of self-organizing mechanisms patterns [Gardelli, 2007], [Mameia et al.,  

2006], [DeWolf, 2007b] and the description of the desired emergent properties that 

compose the global behavior and associated patterns. During the design, the modeling 

consists of: defining the structural entities defined on top of the proposed meta-model, 

and designing the local behaviors relative to the self-organizing patterns.  

The goal of the meta-model proposed in this paper is to provide a foundation for self-

organizing agent-based software engineering on top of a known and trusted meta-model 

for software development. Therefore our meta-model was based on the UML 2 meta-

model. The Unified Modeling Language (UML) has a long history and is the result of a 

standardization effort based on different modeling languages (such as Entity-

Relationship-Diagrams, the Booch-Notation, OMT, OOSE). The most popular versions 

of UML are UML 1.x, but during the last four years UML 2.0 has been gradually re-

placing UML 1.x. The representation model proposed reuses all the notation and graphi-

cal notation in UML and extends the UML meta-model in order to provide the founda-

tions.  

We consider the environment as an explicit part of multi-agent systems, considering 

both the environment and the agents as first-order abstractions. The rationale for mak-

ing the environment a first-order abstraction in multi-agent systems is presented in 



[Weyns et al.,  2007]. Although this discussion is not directed to self-organizing sys-

tems, we have seen in Section 2 and 3 the importance of the environment role in self-

organizing systems. In this situation, the environment has a dual role: it provides the 

surrounding conditions for agents to exist, which implies that the environment is an es-

sential part of every multi-agent system, and the environment provides an exploitable 

design abstraction to build multi-agent system applications [Weyns et al.,  2007]. This 

second role will be explicitly addressed in the dynamic representation model presented 

in the next subsection. 

An important issue in self-organizing systems is the global state. The global state is 

composed of the environment state and agent state. The environment state in turn is 

composed of all agent states, since if one agent leaves the environment or moves itself, 

the environment state changes.  If we want to design the global state, we must consider 

explicitly the environment state in our modeling.   

Moreover, the environment provides the conditions under which agents exist and it 

mediates both the interaction among agents and their access to resources. Moreover, the 

environment is locally observable to agents and if multiple environments exist, an agent 

can only exist in one environment at a time. In self-organizing systems, the environment 

acts autonomously with adaptive behavior just like agents and interacts by means of re-

action or through the propagation of events.  

 Figure 1. The meta-model proposed 

We classify the events as:  (i) emission: signal an asynchronous interaction among 

agents and their environment. Broadcasting can be performed through emissions; (ii) 

trigger: signal a change of agent state as a consequence of a perceived event. For in-

stance, an agent can raise a trigger event when perceiving an emission event which 

changed its state; (iii) movement: signal an agent movement across the environment; 

(iv) reaction: signal a synchronous interaction among agents, however without an ex-

plicit receiver. It can be a neighbor of the agent or the environment; and (v) communica-

tion: signal a message exchange between agents with explicit receivers (one or more). 

Note that when an event is an emission the agent does not wait for a response, while in a 



communication it may wait. Each of those events may be raised by actions performed 

by agents or by the environment and updates their states. Furthermore, the messages ex-

changed through communication events are interaction protocols and should be FIPA 

[FIPA, 2008] compliant so they can be understood by the receiver agents. 

Fig. 1 shows the new meta-classes and the new stereotypes that have been proposed. 

The icons that represent the stereotypes are associated with the meta-classes on which 

the stereotypes are based. In UML, a class may be designated as active (i.e., each of its 

instances having its own thread of control) or passive (i.e., each of its instances execut-

ing within the context of some other object) through the Boolean attribute isActive. If 

true, then the owning class is referred to as an active class. If false, then such a class is 

referred to as a passive class. Default value is false. Since an active object has a differ-

ent meaning than an agent [Silva, 2004], [Silva, 2007] we have defined the Adaptive 

class for classifying agents and environments. The next sub-section provides more detail 

about the meta-classes with the proposed representation model. 

Static Model: Class Diagram 

We propose to reuse the UML Class Diagram to represent the static model presented in 

this paper. A Class Diagram describes both a data model, i.e. collection of declarative 

(static) model elements, like classes and types, and its contents and relationships. More-

over, the static structure of the system to be developed and all relevant structure de-

pendencies and data types can be modeled with class diagrams. 

We defined the meta-class Adaptive, which must be stereotyped either as agent or en-

vironment. The Adaptive class holds for all agent common definitions (for instance, see 

[Jennings, 2000], MAS-ML [Silva, 2004], [Silva, 2007], AUML [Bauer, 2001], Anote 

[Choren, 2005]). It can be either a proactive or reactive agent with sensors and effectors. 

An agent can execute several actions regarding its goals or perceptions. As well, the en-

vironment has the same features as its autonomous behavior, mentioned before in this 

paper. However, it must be clear that an emergent property or macro property must not 

be defined as agents goals: they must emerge from the several agents and environment 

interactions. 

We are not addressing the agent local interactions through protocols and messages in 

this work since there has been a huge effort from the agent research community about 

inter-agent communication. For instance, MAS-ML or AUML protocols diagrams can 

be combined with the work proposed here for designing interaction protocols. 

We have two new structural features, the input and output event, and one new behav-

ior feature, the action. The former define the events that the agent or environment per-

ceives (input event) and that is a condition for activating an action, and the events that 

they generate (output event) after executing the action. They vary according to the 

stereotypes and can be stereotyped according to our previous classification (last page, 

last paragraph). 

An action is executed during agent or environment execution without explicitly being 

called by other objects or agents. Agents interact with one another and the environment 

sending and receiving messages or sending and receiving events. Regarding objects, an 

operation can be implemented by a method that can be called either by itself or by an-

other object. In our model, an operation can be implemented through a method that can 

be called through actions execution by the action owner. Moreover, the UML Action 

meta-class was not used to represent agents and environment actions, since it does not 

extend BehavioralFeature, so cannot be described as a Classifier characteristic. 



Every action is described specifying preconditions and effects. Like the Operation 

meta-class, the Action meta-class is associated with the Constraints meta-class in order 

to define the pre and post conditions and the in and output events. Constraints are condi-

tions expressed in natural language text or in a machine legible language in order to de-

clare an entity’s semantics [UML, 2008].  

Dynamic Model: State-Action-based Behavior Communication 

Our dynamic model is based on the UML State Machine diagram. It combines state 

charts [Harel, 1988]) with action and interaction overview diagram [UML, 2008], 

[Fowler, 2004], [Booch et al.,  2005]. We did not use activity modeling from Activity 

diagrams. Activity modeling emphasizes the sequence and conditions for coordinating 

lower-level behaviors. These behaviors are commonly called control flow and object 

flow models. The actions coordinated by activity models can be initiated because other 

actions finish executing, as objects and data become available, or because events occur 

external to the flow. They certainly play a key role in modeling self-organizing systems 

because they allow the information flow modeling to achieve coordination [DeWolf, 

2007]; they can also be used as a complementary design activity. However we need to 

model the global state, the environment state. Recall that the macro properties are de-

fined through emergent properties which materialize from a set of local and global states 

during local behaviors. Thus, we need to adapt the State Machine Diagram so it can be 

useful for our need. 

A State Machine Diagram describes discrete behavior modeled through finite state-

transition systems. UML 2.0 distinguishes behavioral state machines, i.e. state machines 

can be used to specify behavior of various model elements. For example, they can be 

used to model the behavior of individual entities (e.g., class instances). The state ma-

chine formalism described is an object based variant of Harel state charts; and Protocol 

State machines, i.e. Protocol state machines are used to express usage protocols. Proto-

col state machines express the legal transitions that a classifier can trigger. The state 

machine notation is a convenient way to define a lifecycle for objects, or an order of the 

invocation of its operation. Protocol state machines do not preclude any specific behav-

ioral implementation and enforce legal usage scenarios of classifiers. 

More specifically, our dynamic model reuses the UML 2 behavioral state machine. 

Each agent and environment behavior is designed using behavioral state machine dia-

grams. Each behavioral state machine diagram can communicate with all the other dia-

grams through a communication channel and the desired emergent property may appear 

as a result of those communications. Moreover, behaviors are composed of actions. Ac-

tions are executed through input events and pre-conditions and raise output events. 

We need to compose behaviors in parallel. The most noticeable concepts of state-

charts are hierarchy and orthogonality [Harel, 1988]. The hierarchy concept allows hier-

archical state decomposition, i.e., nesting of states within states. The outer enclosing 

state is called a superstate, and the inner states are called substates. The problem is that 

the parent state is always in a single child state. Another important concept, called or-

thogonality, allows a state on one statechart to be decomposed into two or more concur-

rent and independent orthogonal regions. Each of the orthogonal regions is named and 

operates independently of the other regions, and the state of the entire machine or en-

closing superstate is represented by a combination of active states of the orthogonal re-

gions. For instance, if a statechart consists of two, X and Y, orthogonal regions. When 

an event occurs, it is transferred to both orthogonal regions X and Y simultaneously, 



resulting in the two final states for each region. It provides little concurrency support 

when dealing with concurrent real-time tasks, in this case, agent behaviors.  

Within the context of state machines, we define a behavior as a particular instance of 

the agent or environment in a scenario that represents a typical path through the state 

space within a single state machine, i.e., an ordered sequence of state transitions trig-

gered by events and accompanied by actions. A notable problem with a traditional state 

machine is that it allows only a single behavior within itself at a time, thus executing 

concurrent behaviors (for each agent/ environment) only in a sequential manner on a 

behavior-by-behavior basis, not on an event-by-event basis. The result can be poor real-

time performance and underutilization of system resources such as CPU and network 

bandwidth. 

The rationale behind our approach is that it can interleave the execution of concurrent 

behaviors by switching among behaviors on an event-by-event basis. As well, the self-

organizing mechanism may reuse all or part of local behaviors. Thus, the new dynamic 

model representation must be able to encapsulate behaviors in such a way that they can 

be reused. To characterize the macro properties, we need to represent the communica-

tion of the agents with the environment. Thus we need local behaviors communicating 

with environment behaviors in order to achieve a macro behavior or emergent property. 

Hence the semantics of state-actions models proposed by this paper to accomplish those 

issues is defined by the semantics of state diagrams, dynamic overview diagram and de-

scriptions in natural languages. 

 

Figure 2. The abstract state-action-based behavior representation model for an agent’s 
behavior 

 

Figure 3. Abstract view of behavior communication channels and input versus output 
event perceptions. 



Fig. 2 illustrates the abstract state-action behavior representation model for an agent’s 

behavior. From the diagram top you have to define the instance of the agent for that be-

havior state. If it was an environment behavior, then the agent instance name has to be 

replaced by the environment instance name. Each behavior state diagram must start with 

a transition. The behavior state of the agent (or environment) instance may change ac-

cording to a transition firing (action execution); the transition will only be fired if the 

agent executing the specified behavior is in State 1 and according to the input event re-

ceived and the evaluated pre-condition, if specified. 

The action executed might also fire an output event and might affect the agent state 

resulting in a post condition definition. In order to identify which entity would perceive 

the output event in a complex composition behavior, attributes can be defined and speci-

fied in the transition before the ^ symbol and output event to be perceived by the entity 

(ies). 

Fig. 3 shows how behaviors can communicate through our abstract state-action repre-

sentation model. The Figure shows the abstract view of behavioral communication 

channels and input versus output event perceptions. For instance, an output event from 

the upper left model from State 1 to State 2 (dashed line) may be perceived as an input 

event that starts at the bottom left model and takes it to State 1. The arrows between be-

haviors’ state models show how they communicate among themselves and whether they 

perceive an input event or an output event.  In [Gatti, 2008b] you can find instantiated 

descriptions about how the behavior communications works and how the parallel behav-

ior model is accomplished.  

While developing the models we realized how the emergent properties or self-

organization patterns can be represented in a meso-scale through the agent and envi-

ronment behavior communications. Models can be encapsulated as emergent properties 

achieving modularity and cohesion at that level of abstraction (Fig. 4). 

Figure 4. Emergent Properties decomposed in meso scale behaviors 

In addition, there are several behavior state intersections between emergent properties. 

Through this modeling representation we can easily reuse them and determine how they 

are related to other emergent properties. For instance, in our case study we reused sev-



eral agent and environment behaviors in different emergent property models. We also 

noticed the presence of multiple environment static entities, as shared resources in those 

models. Fig. 4 illustrates these phenomena and more details can be found in [Gatti, 

2008b]. 

Once we have defined the meso scale models, we need to model the micro scale. I.e., we 

need to define the local behaviors of those models. As already mentioned, if necessary 

our models can combine state diagrams with overview interaction diagram. The interac-

tion overview diagram plays a key role in this process since we can use it to model for 

each state the local interaction between the state owner and other entities from the sys-

tem, as objects, agents or environment. Hence, we use interaction overview diagrams to 

define interactions through a variant of static-action behavior diagrams in a way that 

promotes an overview of the control flow where the nodes are interactions and a link 

between the meso scales to the micro scale. 

Case Study: The Self-Organized Autonomic and Emergent Application Net-

working 

We present the representation model for emergent-based self-organizing multi-agent 

systems through a self-organized autonomic and emergent application network case 

study (Fig. 5). Autonomic computing is an important research area in which self-

organizing emergent solutions address a specific need. Decentralized autonomic com-

puting in [DeWolf, 2007] is achieved when a system is constructed as a group of locally 

interacting autonomous entities that cooperate in order to maintain the desired system-

wide self-star requirements adaptively [Kephart, 2003], [IBM, 2001] without any exter-

nal or central control.  

 

Figure 5. The autonomic application network case study, adapted from [Suzuki, 2005] 

In order to apply the design approach the first step is to define the macro properties to 

be achieved. In the self-organized autonomic application networking [Suzuki, 2005], we 

want to achieve two macro properties: scalability and adaptation.  

The second step consists of defining the underlined behavior which leads to the self-

organization pattern. So, we might have each application service and middleware plat-

form modeled as a biological entity, analogous to an individual ant in an ant colony. An 

application service is designed as an autonomous and distributed software agent, which 

implements a functional service and follows simple biological behaviors such as replica-

tion, death, migration and energy exchange (see Fig 5). In that way, agents may imple-

ment a grid application or Internet data center application on a wired network. 

A middleware platform is the environment. It runs on a network host and operates 

agents (application services). Each platform implements a set of runtime services that 



agents use to perform their services and behaviors, and follows biological behaviors 

such as replication, death and energy exchange. Similar to biological entities, agents and 

platforms in our case study store and expend energy for living. Each agent gains energy 

in exchange for performing its service to other agents or human users, and expends en-

ergy to use network and computing resources. Each platform gains energy in exchange 

for providing resources to agents, and continuously evaporates energy to the network 

environments. 

Model agents and platforms follow several rules to determine how much energy 

agents/platforms expend at a time and how often they expend energy. Agents expend 

more energy more often when receiving more energy from users. Platforms expend 

more energy more often when receiving more energy from agents. 

The abundance or scarcity of stored energy affects behaviors of an agent/platform. 

For example, an abundance of stored energy indicates higher demand for the 

agent/platform; thus the agent/platform may be designed to favor replication in response 

to higher energy level. A scarcity of stored energy (an indication of lack of demand) 

may cause death of the agent/platform. 

Similar to biological systems, the application networking exhibits emerging desirable 

system characteristics such as scalability and adaptation. These characteristics emerge 

from collective behaviors and interactions of agents and platforms, rather than being 

present in any single agent/platform. We do not describe all the case study specification 

for space constraints, and it can be found in [Gatti, 2008b]. 

The third step was to identify the system environment(s) and agents. Figure 6 exempli-

fies our meta-model by showing the partial class diagram from the autonomic network 

case study. There you can see the Platform being classified as an environment adaptive 

class, the Application Service being classified as an agent adaptive class and their rela-

tionships with the resources and hosts. 

 
Fig. 6. The partial class diagram overview 

The fourth step consists of designing the state-action-based behavior diagrams. We 

started with the exchange energy behavior since it drives all other behaviors. Figure 7 

shows how the exchange energy behavior of the application service AS1 is related to the 

exchange energy behavior of the platform P1: whenever the AS1 stores or releases en-

ergy, P1 also perceives and stores or releases energy. And whenever one of them is in a 

higher demand, they fire an event of type emission which will activate the respective 

replication behaviors. 



 

Figure 7. Exchange energy behaviors communication 

Once the behavior diagrams are being built, then the fifth step is to update the static 

model. Figure 8 provides details of the input and output events and actions from the 

Application Service class. For instance, the Store_ernergy() action is executed if the 

agent trigger store_energy input event is raised by a different action and if this applica-

tion service is not in a high demand state. The high demand state is defined as a pre-

condition. The Store_ernergy() action will also emit the store_energy output event so it 

can be triggered by the Platform occupied by the agent. The post-condition for this ac-

tion is that the energy of the application service must be increased by ten percent. 

Figure 8. The Application Service Agent Class 

5. Representations and Related Work for Self-Organizing Systems 

This section presents the state of the art regarding agent-oriented methodologies not-

related to self-organization and the ones directly related to. 



Agent-based not-related to self-organization 

Current agent-oriented methodologies focus on engineering microscopic issues [Ber-

genti et al.,  2004] e.g. the agents, their goals, their rules, action-selection, knowledge-

representation, how they interact, protocols, organizations, norms, etc. As extensively 

argued in [Zambonelli, 2004], most current approaches to agent-oriented software engi-

neering mainly disregard the macro scale issues and focus on development of small-size 

MASs (micro), and on the definition of suitable models, methodologies and tools for 

these kinds of systems.  Examples include: Gaia v.2 [Zambonelli, 2003], Anote 

[Choren, 2005], MaSE [Wood, 2001], Tropos [Giorgini, 2003], MAS-ML [Silva, 2004], 

[Silva, 2007], AUML [Bauer, 2001], and ADELFE [Bernon et al.,  2003].  

ADELPHE, in particular, argues that they provide a methodology for adaptive multi-

agents and self-organization. However, it simplified the concept of self-organization to 

cooperation and it does not address macro properties. They address non-cooperative be-

haviors designed at local or agent level and the agents are aware of the emergent behav-

ior which does not really happen as already discussed in Section 2. 

Related self-organizing system research 

Van Parunak and Bruckner proposed a design guide for swarming systems engineer-

ing  [Parunak, 2004] consisting of ten design principles that are mainly based on interac-

tions through the exchange of information between coupled agents or processes), auto-

catalysis and functional adjustment (the self-organizing system must produce functions 

that are useful to the system’s stakeholders). The ten given principles are very general 

and no associated tools exist. No representation model is given which helps to map the 

design from micro scale to macro scale.  

Luca Gardelli [Viroli et  Al, 2006], [Gardelli et  al, 2005a], [Gardelli et  al, 2005b], 

[Gardelli et  al, 2006] proposed a meta-model and a methodological approach for engi-

neering self-organizing multi-agent systems. The meta-model is based on stigmergy (in-

direct communication where individual parts communicate with one another only by 

modifying their local environment). He developed the engineering framework on top of 

the TuCSoN agent coordination infrastructure and used Pi-Calculus for specifying and 

verifying the system. Although the use of formal tools allows us to gain a deeper insight 

in emergence and self-organization, there is a general belief and proof that emergent 

systems cannot be specified formally [Wegner, 1997], [DeWolf, 2007d]. There is also a 

gap between the emergent (macro) properties defined through self-organizing design 

patterns from the model itself. The meta-model allows the design of only one scale.  

De Wolf [DeWolf, 2007a SASO] has proposed "Information flow" as a design ab-

straction (by using the UML 2.0 Activity Diagram) for designing a solution independent 

of the coordination mechanism. We find two main problems as a sufficient design ab-

straction for this type of system. First, a very complex system would require very com-

plex information flows at the macro scale. DeWolf does not propose any way to modu-

larize, compose or even reuse the models, which makes the design approach hard to un-

derstand. As well the macroscopic information flows are based on information, not 

states. However, the macro properties are usually related to an optimum or desired sys-

tem state or to avoid undesired system misbehavior.  

6. Conclusions and Future Work 

In contrast with current agent-oriented methodologies, which mainly focus on engineer-

ing such microscopic issues, our focus is on explicit support for engineering the re-



quired outcome of the system and the adjustment of the emergence properties towards 

convergence.  

We proposed a bio-inspired approach consisting of a representation model that al-

lows a systematic design of desirable macroscopic properties. The inspiration comes 

from the fact that in biological systems the environment behavior is explicitly coordi-

nated with the local parts during the self-organization. And the relation between states 

and action while the emergent properties appear shows us the interplay between (agent 

and environment) behaviors states and actions that allows designing emergent properties 

and focusing the creative effort on the enabler of self-organization. 

Regarding the representation model, we proposed a multiple scale design from macro 

to micro properties. To accomplish this design we proposed a UML-based meta-model 

on which we put forward the environment as an explicit part of the multi-agent system, 

considering both the environment and the agents as a first-order abstractions. We be-

lieve that the global state is composed of the environment state and agent state together. 

We added new meta-classes and the new stereotypes to the UML meta-model. 

We also described the static and dynamic representation model. Our dynamic model 

reuses the UML 2 behavioral state machines. We represented the emergent properties or 

self-organization patterns at a meso-scale through the agent and environment behavior 

communications. In our approach, the models can be encapsulated as emergent proper-

ties achieving modularity and cohesion at that level of abstraction.  

In addition, behaviors’ state intersections between emergent properties can be easily 

identified through our approach. The modeling representation can help support further 

research on how to modularize aspects of emergent properties, as well as on how to re-

use or combine them.  In addition, we proposed to use interaction overview diagrams to 

define interactions through a variant of static-action behavior diagrams in a way that 

provides an overview of the control flow where the nodes are interactions and a link be-

tween the meso-scale and the micro scale. 

For both case studies (the stem cell project and the autonomic network) the represen-

tation model proved its adequacy. We are currently also applying the proposed work in 

this paper in two more self-organizing case studies in industrial and market-based appli-

cations. 
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