
PSSS - Process to Support Software Security

Francisco José Barreto Nunes1, Arnaldo Dias Belchior (In Memorium)

Mestrado em Informática Aplicada - Universidade de Fortaleza (UNIFOR)
Av. Washington Soares, 1321 CEP 60.811-341, Fortaleza – CE – Brasil

1fcojbn@yahoo.com.br

Abstract. Software security becomes very important to organizations that
depend on or whose customers demand software products that assure

information integrity, availability, and confidentiality. Unfortunately, despite
the investments made in process improvement according to Software
Engineering practices, there is still no guarantee that the developed software
products are immune to attacks or do not present security problems. This
paper presents a software security approach based on a specialized process to
help develop more secure software products, entitled Process to Support

Software Security (PSSS). In addition, this paper presents the results of the
PSSS’s application in a software development project.

1. Introduction

The growing need for software products to support business processes has motivated
considerable research in the improvement of software development processes. In this
sense, information security and security engineering increase their importance to
become part of the business processes and the systems supporting these processes, in
order to protect corporate assets and information. According to CERT (2007), software
security defects are the main concerns that security professionals deal with.

More and more, software organizations are starting various projects and
initiatives to develop more secure software products. For example, CLASP -
Comprehensive, Lightweight Application Security Process – (2006) is a framework
aimed at including security into a software development process.

OECD (2002) states the principle “Security design and implementation” as a
characteristic of information systems. In fact, information security acts to protect
information processed by information systems. This is achieved by maintaining the
information confidential, available and correct.

Many specialists still think that a cryptographic function implemented in
software to protect data integrity makes this software secure. Actually, this supposed
secure software just implements a security characteristic and can not be considered
secure. That is, security characteristics do not insure that software is secure [McGraw
2004].

Information security is related to many models and standards, like SSE-CMM
(Systems Security Engineering – Capability Maturity Model) (2003), ISO/IEC 15408
(2005a, 2005b, 2005c), ISO/IEC 27002 (2005), and OCTAVE (The Operationally
Critical Threat, Asset, and Vulnerability Evaluation) [Alberts et al. 2001]. This paper
proposes the Process to Support Software Security (PSSS) based initially on the
activities derived from these models and standards. In addition, this paper describes
briefly the results of the application of this process in a software development project.

This paper is organized as follows: Section 2 describes briefly the security
models and standards used to organize the activities of the PSSS; Section 3 describes
the activities of the Process to Support Software Security; Section 4 explains in more
detail the subprocess “Plan Security”; Section 5 analyzes the results of the application
of the PSSS in a development project of an access control and audit software; and
Section 6 presents the conclusions of this paper.

2. Information security models and standards

2.1 SSE-CMM

According to Anderson (2001), security engineering is about building systems to remain
dependable in the face of malice, error, or mischance. As a discipline, it focuses on the
tools, processes, and methods needed to design, implement, and test complete systems,
and to adapt existing systems as their environment evolves.

SSE-CMM (Systems Security Engineering – Capability Maturity Model) (2003)
ensures system security based on a framework that translates customer security needs
into security products that satisfy the security requirements. SSE-CMM is a process
reference model that describes security features of processes at different levels of
maturity. The scope encompasses:

• The system security engineering activities for a secure product or a
trusted system addressing the complete lifecycle of: concept definition,
requirements analysis, design, development, integration, installation, operation,
maintenance end decommissioning;

• Requirements for product developers, secure systems developers and
integrators, organizations that provide computer security services and computer
security engineering;

• Applies to all types and sizes of security engineering organizations from
commercial to government and the academe.

SSE-CMM takes the view that security is pervasive across all engineering
disciplines (e.g., systems, software and hardware) and defines components of the model
to address such concerns.

According to Schumacher and Roedig (2001), SSE-CMM architecture treats
security aspects such as privacy, confidentiality, integrity and availability. This
architecture separates basic characteristics of a security engineering process from the
institutionalization and management characteristics. Therefore, rather than regard SSE-
CMM as a complex model to satisfy an overall system requiring full implementation,
organizations can use the model as a pattern or benchmark for identification of current
status across a set of information security processes and provide a rationale for security
improvements. A previous version of SSE-CMM was adapted and became ISO/IEC
21827 (2002).

A restriction of the SSE-CMM is that it does not explain how to implement its
process areas. Because of this characteristic, it is hard to understand and implement
SSE-CMM.

2.2 OCTAVE

OCTAVE (The Operationally Critical Threat, Asset, and Vulnerability Evaluation)
[Alberts et al. 2001] is a strategic planning and evaluation technique based on security

risks. The risks of the most critical assets are used to prioritize processes that need
improvement and to elaborate a strategic orientation to mitigate these risks.

According to Alberts (2001), OCTAVE defines an approach to information
security risk evaluations that is comprehensive, systematic, context driven, and self
directed. The approach requires a small, interdisciplinary analysis team of business and
information technology personnel from the organization to lead its evaluation process.
That is, OCTAVE enables an organization’s personnel to sort through the complex web
of organizational and technological issues to understand and address its information
security risks.

OCTAVE-S is a variation of the OCTAVE tailored to the limited means and
unique constraints typically found in small organizations.

A restriction of OCTAVE is that it is a self-directed approach, meaning that
people from an organization assume responsibility for setting the organization’s security
strategy. However, this could lead to security problems when these people have no
security education or because they could have other responsibilities and are not entirely
responsible for the security program.

2.3 ISO/IEC 15408

ISO/IEC 15408 (Evaluation Criteria for Information Technology Security) (2005a,
2005b, 2005c) presents a set of criteria to evaluate the security of products. This
standard claims that a development process to produce secure software should include
security in the development environment and security in the developed application.
ISO/IEC 15408 is based on the Common Criteria (CC) (2005).

ISO/IEC 15408 is applied when it is necessary for the system to protect
organizational assets. The security needs should be treated during all the development
life cycle, from requirement management, functional specification, and project, to the
final implementation in production environment. The secure development context of
ISO/IEC 15408 is based on the execution of activities that describe how security
requirements and specifications are derived when developing a software product.

Both the Common Criteria and ISO/IEC 15408 present a set of requirements that
should be satisfied to make software more secure. The requirements are divided into:
security functional requirements (2005b) and security assurance requirements (2005c).
The former are a set of security characteristics that a software product can implement.
The latter may function as actions to be executed during the development process to
validate and certify that the software developed is secure because these actions were
performed according to part 3 of ISO/IEC 15408 (2005c).

In addition, three similar difficulties were encountered in both the Common
Criteria and ISO/IEC 15408: The requirements have complex correlations; they allow
different interpretations; and there is no advice on how to fulfill these requirements
during a software life cycle process.

A restriction of ISO/IEC 15408 is that it has its use restricted because of its
complexity in implementing and assessing the security aspects of the software product.
This standard requires a specialized knowledge which makes its use more expensive
and time consuming. Another drawback is that ISO/IEC 15408 focuses individually on
a software product and does not consider the interdependency among other systems and
components.

2.4 ISO/IEC 27002

ISO/IEC 27002 (Code of Practice for Information Security Management) (2005) aims to
preserve information confidentiality, integrity and availability in such type of business
scenario. This is achieved through the implementation of security controls, including
policies, practices, or processes. These controls ensure that defined security goals will
be satisfied.

ISO/IEC 27002 states that it is necessary for an organization to identify its
security requirements. This can be accomplished with the execution of risk assessments
of the organization's assets by implementing vulnerability, threat and impact analysis.

A restriction of ISO/IEC 27002 is that it contains a vast number of security
controls to be applied among different processes in any kind of organization. This could
be seen as a weakness as this could lead to wrong interpretations. Another issue is that
the standard does not explain how to best implement each security control.

Based on these models and standards, a mapping of similar activities was
organized to draft the first PSSS. The SSE-CMM was the baseline of this mapping,
sampled as shown in Table 1 below.

Table 1. Sample of the mapping of the security models and standards

SSE-CMM ISO/IEC 15408 ISO/IEC 27002 OCTAVE

SSE-CMM : PA 04 – Assess Threat

BP.04.02 – Identify Man-made
Threats

Assess threats

- Describe areas of concern

- Identify the threats to each
critical asset by first mapping
the areas of concern for each
critical asset

SSE-CMM : PA 10 – Specify Security Needs

BP.10.06 Define a consistent set
of statements which define the
protection to be implemented in
the system

Specify
functional
security
requirements

12.1 Identify
information
system security
requirements

- Creates or refines the security
requirements for the
organization’s critical assets

- Create risk mitigation plans

3. Process to Support Software Security (PSSS)

The Process to Support Software Security was designed to follow the iterative and
incremental life cycle approach which facilitates the coordination between the PSSS and
any particular corporate development process. In order to use the PSSS with other life
cycles, this would need validation.

There is no need to use all the activities of the PSSS. They can be adapted to
function effectively within the organizational development process. It is an important
aspect to have each activity as integrated as possible into the life cycle phases and one
approach to reach this integration is to apply each activity in parallel with the phases.

In addition, the type and scope of a project define which activities to select to
better suit the developed product. Besides that, the type of product defines the level of
formalism and the rigors of evaluations to be implemented.

The PSSS identifies two important actors: the Security Engineer and the
Security Auditor. The Security Engineer is responsible for the specialization of the

PSSS based on the objectives of the software development project and in connection
with business plans and strategies. Another responsibility is to monitor if the project
satisfies the security objectives.

The Security Auditor is responsible to evaluate whether the software
development projects are done in compliance with the specialized PSSS. This person
validates the effectiveness of the PSSS application, for example, in terms of the results
of the activities and the artifacts developed. Preferably, the Security Auditor should not
perform the activities of the software quality assurance team.

Both the Security Engineer and the Security Auditor should have experience, or
at least knowledge, in security engineering, software engineering, software project
management, and information security.

The PSSS considers 37 activities grouped in a set of 11 subprocesses (Figure 1).
The subprocesses are described as follows:

3.1 Plan security

This subprocess assures that all information needed to plan the security of a project is
defined and registered.

That is, the Security Engineer identifies the security objectives of the software to
be developed, prepares the project security plan, and organizes information related to
the project team.

The activities include: Developing security plan; Planning processing
environments; Planning security incidents management.

3.2 Assess security vulnerability

This subprocess identifies and describes, for each iteration, the system security
vulnerabilities related to the environment where the system would operate.

The Security Engineer is responsible to institute a vulnerability assessment
method, to perform the identification of security vulnerabilities, and to analyze the
identified vulnerabilities. In order to identify effectively the security vulnerabilities, the
Security Engineer and the Software Engineer should organize interviews with selected
users among executives, managers, and operational staff.

The activities include: Identifying security vulnerabilities; Analyzing identified
security vulnerabilities.

3.3 Model security threat

This subprocess identifies and describes system security threats with their properties
and characteristics based on the security vulnerabilities assessed previously.

Security threats can be defined as an event that compromise the normal behavior
of software and, as a consequence, may have a negative impact in the organization.
Threat modeling can be used to identify threats and make project decisions based on
threats that can cause the major damage to the software.

The information about threats is necessary to develop strategies to reduce these
threats. The strategies can influence the software development project, the coding, and
test cases.

The Security Engineer is responsible to execute security threat identification and
implement abuse cases and attack trees. Then, he selects an adequate approach to
classify these threats and organizes interviews with defined users among executives,
managers, and operational staff to develop strategies to reduce the impact of these
threats.

The activities include: Identifying security threats; Classifying security threats;
Developing strategies to reduce security threats.

3.4 Assess security impact

This subprocess identifies and describes relevant system security impacts and defines
the probability of their causes based on the security vulnerabilities and threats assessed
previously.

Security impacts can be tangible, such as fines, or intangible, like loss of
reputation. Impact is defined as a consequence of an undesirable incident that can be
caused deliberately or accidentally and affects the software. The consequences can
result in destruction or damage of software artifacts or even in loss of confidentiality,
integrity, or availability.

The Security Engineer, Software Engineer, and users (customer) are responsible
to prioritize the critical activities influenced by the software. Security Engineer and
Software Engineer review software’s security artifacts.

Based on the previous information and information about security vulnerabilities
and threats, the Security Engineer and users identify security impacts from unwanted
incidents and detailed information about these impacts.

The activities include: Treating critical activities for security; Reviewing system
security artifacts; Identifying and describing security impacts.

3.5 Assess security risk

This subprocess analyzes the security risks of the developing system by identifying the
security exposure, the risk caused by this exposure, and the priorities of these risks
based on the security vulnerabilities, threats and impacts assessed previously. The risk
assessment verifies the exposures which can prevent the software to meet its objectives.

The Security Engineer and Software Engineer, with the help of the user, identify
security exposure by evaluating and prioritizing security risks.

The activities include: Identifying security exposure; Assessing security
exposure risk; Prioritizing security risks.

3.6 Specify security needs

This subprocess specifies the security needs of the system according to stakeholders’
security needs.

The Security Engineer, with the help of the user and of the customer, is
responsible for understanding customer’s security needs and for developing a high-level
security view of the software. This high-level view helps to define the security
requirements. Finally, the Software Engineer mediates between customers and Security
Engineer to obtain agreement about the security requirements.

The activities include: Understanding customer security needs; Capturing a
high-level security view of the system; Defining security requirements; Obtaining
agreement about security requirements.

3.7 Provide security information

This subprocess provides system architects, designers, implementers, or users with any
security information needed to perform their work.

Security information would be considered kind of information which has impact
on, is necessary to support, or helps members of a software security project.

Additional security information is also provided to examine software security
problems against the defined security objectives, to make team members understand the
PSSS, and to guarantee that the software product implements the security requirements.

The Security Engineer acts as a security mentor to the project team identifying
necessary information and making it available. For example, architects could need
information about security in Web services. In this case, the Security Engineer interacts
with Software Architects to give the information.

The activities include: Understanding information security needs; Identifying
security constraints and considerations; Providing security alternatives; Providing
support requirements.

3.8 Verify and validate security

This subprocess assures that software solutions are verified and validated according to
their designed security goals. That is, the subprocess tries to guarantee that solutions are
verified and validated in relation to the security requirements, architecture, project and
customer security needs based on observation, demonstration, analysis and test. Because
of this approach, customers are more confident that the software solutions implement
effectively the security requirements and therefore satisfy their security needs.

 Verifying security ensures that software satisfies specified security
requirements. Validating security demonstrates that software accomplishes its intended
security requirements when placed in its production or operational environment.

The Security Engineer, with the help of the Software Engineer, defines security
verification and validation approach that involves plan elaboration, scope, depth, and
tests.

Then, the Security Engineer, with the help of the quality assurance team,
performs the security verification and validation, reviews and communicates the results.

The Security Auditor assesses the security verification and validation to check
whether the activities are being performed correctly.

The activities include: Defining security verification and validation approach;
Performing security verification; Performing security validation; Reviewing and
communicating security verification and validation results.

3.9 Manage security

This subprocess controls the activities needed to organize and to keep the security
mechanisms to the software development project, as well as to manage the control
implementation for new functions.

Figure 1. Process to support software security

Another purpose of this subprocess is to define how the security management
will be organized, which includes security educational programs and security training.
The security services and mechanisms for the software development project are
detailed. In addition, this subprocess addresses the issues identified during the
subprocess “Verify and validate security”.

The Security Engineer deals with and controls additional security services and
system components. The Security Engineer identifies training needs and educational
programs about information security and about the process to support software security.
Finally, he manages the implementation of security controls in the software being
developed. The Project Manager helps the Security Engineer with the management of
all the activities of the PSSS.

The activities include: Managing security services and components; Managing
security training and education programs; Managing the implementation of security
controls.

3.10 Monitor security behavior

This subprocess monitors the system developed and already in use to identify whether
the security features defined in the project are achieved.

In this subprocess, the internal and external environments are monitored in
relation to the factors that can impact software security. The main objectives are:
Internal and external security events are detected and supervised; Incidents are treated
according to the incident management plan; and Changes in the security circumstances
are identified and handled according to security objectives.

The Security Engineer, with the help of the Software Engineer, is responsible for
the following activities: Analysis of events with security impact; Identification and
preparation of the incidents response; Monitoring changes in environments, in security
vulnerabilities, threats, and risks, and in their characteristics; and Reviewing software
security behavior to identify necessary changes.

The Security Auditor assesses the activities described below to identify
irregularities and problems. Besides that, he is responsible for (1) Reassessment of the
changes in environments and in security vulnerabilities, threats, and risks; (2)
Performing security audits.

The activities include: Analyzing events with security impact; Identifying and
preparing the answer to relevant security incidents; Monitoring changes in security
threats, vulnerabilities, impacts, risks, and environment; Reviewing system security
condition to identify necessary changes; Performing security audit.

3.11 Assure security

This subprocess defines a set of activities which can be applied to guarantee that the
security of the software product is achieved.

The stakeholders should receive information to assure that their expectations are
satisfied in relation to the effective application of the PSSS and the security of the
software being developed.

Therefore, this subprocess aims to assure that effective controls are defined and
implemented to guarantee the correct protection of critical artifacts (information,
function, database tables, etc).

The Security Engineer and the Software Engineer, with the help of the customer,
should develop a strategy to guarantee the maintenance of security assurance. This
strategy promotes the effective performance of this subprocess.

The Security Auditor executes an impact analysis based on security changes to
assure that no change compromises software security. Finally, the Software Engineer
and the Security Auditor control the security assurance evidences that confirm this
maintenance.

The activities include: Defining security assurance strategy; Performing security
change impact analysis; Controlling security assurance evidences.

In the next section, the subprocess Plan Security will be exemplified.

4. Subprocess “Plan Security”

The purpose of the subprocess Plan Security (Figure 2) is to define, to establish, and to
register the necessary information to plan the security in a software development
project. Examples of information to plan the security include: project scope, objectives,
activities to be used, project team, and environment.

The information security objectives and plans should be elaborated (or refined)
and a security team (as the instantiation of the PSSS) organized.

The Security Engineer is responsible, with the help of the project team, for the
definition of the security vision to be established for the project. The Security Engineer
may be also a software security consultant for the stakeholders. Each one of the
activities is described below.

4.1 Develop security plan

The purpose of this activity is to define the security plan and to identify project
coordination mechanisms.

The business security objectives are identified from information security and
software development documents, among others, and organized in the artifact
“Organizational security assets”. Security objectives and strategies of the project are
selected from this artifact and from the software development plan. Therefore,
objectives and scope of the PSSS according to the project are defined.

The project’s security team should be structured which includes the Security
Engineer, the Security Auditor and other specialists whose experience could help the
application of the PSSS. Responsibilities and roles between the software development
team and the security team should be agreed to guarantee that the communication
during the project flows correctly.

The security team is responsible for educating and guiding other project teams to
apply the PSSS, perform its selected activities, and integrate the PSSS with the
organizational software development process.

The Project Manager helps the other actors to understand the project to assure
that the defined objectives and coordination mechanisms correspond to the project
characteristics.

Figure 2. Subprocess “Plan Security”

4.2 Plan processing environments

The purpose of this activity is to identify and analyze the development, test, and
environments of production. The separation level needed among these environments is
evaluated to prevent from operational and security problems.

4.3 Plan security incidents management

The purpose of this activity is to analyze the project to verify the plan to manage
security incidents.

This activity defines the project’s incident management plan in order to have a
fast, effective and coordinated security incidents response.

In the following section, the results of the application of the process to support
software security will be presented.

5. Application of the PSSS

The PSSS was applied in a large sanitation public company with more than four million
customers. This company has a small development team involved with java
development.

The application occurred with a small set of activities. The selection of these
activities was due to time constraint of this project, i.e.: 4 (four) weeks, and these
activities were selected based on the characteristics of the project and on the experience
of the software engineering team. This activity selection approach contributed to make
the application of the PSSS costless to the company.

The PSSS was applied in a software development project of an access control
and audit web-based system that, among other functions, defines and controls user
access and registers the actions of these users. The system’s functionalities were
formalized among 9 (nine) use cases.

Firstly, each activity was described and explained to the sponsor, the Chief
Information Officer, and the Chief Financial Officer. Then, the activities were evaluated
to verify if they could be really applied to the project and, afterwards, a simple version
of a security plan was prepared.

Next, the Security Engineer (new role created in the company) and the Software
Engineer identified and analyzed security vulnerabilities and identified security threats.
The information related to security vulnerabilities and threats helped to understand and
select security needs. With these security needs and with the help of abuse cases (Figure
3) and attack trees (Figure 4), it was possible to identify a set of security requirements:

• Prevent the creation of unsafe passwords: the system must assure that
every password creation and password change follows defined password
creation criteria;

• Prevent wrong system access: the system must provide a secure user
access with authentication and validation;

• Prevent the change of registered audit information: the information
related to the actions of users and administrators must be registered for
consultation and this information must not be changed or deleted.

Finally, after design and implementation, the security and software engineers
verified whether the security requirements were implemented in the final software
according to the activity “Perform security verification”. However, only a small portion
of the security tests was done because of project time constraints. For example,
penetration tests were not executed. The results obtained from the security verification
and validation indicated the end of the PSSS’s application.

Figure 3. Example of an abuse case of the access control and audit system

Figure 4. Example of an attack tree of the access control and audit system

The following points were noticed after the initial application and are worth
mentioning:

• In addition to the previously selected activities, it was necessary to
execute informally other activities, as “Performing security validation” and

Audit log
modification

Improper Admin access
right

Improper User access

right

DBA modifies the

table

DBA has no

permission

Improper
creation of users

with admin
rights

No update of
users with

admin rights

“Performing security verification”, in order to obtain a satisfactory result in this
application;

• Some performed activities, as “Developing security plan” and
“Identifying security vulnerabilities”, were adapted to improve its effectiveness
to fit in the project’s peculiarities;

• An effective method to identify assets is an important aspect for a
successful application of the PSSS, in order to facilitate the assessment of
vulnerabilities and threats;

• The inexperience to perform security vulnerability and threat
identification demanded more time to perform these activities;

• There was not an organizational knowledge base with system problems
and flaws to help an effective security vulnerability and threat identification;

• It was necessary to prepare formal training in java secure programming.

Although the PSSS had been received enthusiastically by the sponsors, high
management, project manager, developers and users, it presented some problems during
the application. The main problems included:

• Identification and understanding of software assets (artifacts);

• Lack of knowledge to implement in its entirety the activities related to
threat modeling;

• Insufficient time for the teams to get used to the PSSS and its activities;

• Need for additional resources to implement effectively the PSSS.

The main advantages gained by applying and following the PSSS were:

• Assurance that security was considered during the system development
through elaboration of security activities and artifacts, such as attack trees and
abuse case, and that potential security vulnerabilities, threats and risks would
be treated;

• Identification and definition of security requirements based on a set of
security assessments to protect the system against security problems. One
example of this problem is loss of information integrity were avoided because
prevention controls were developed against creation of unsafe password or
unauthorized audit log modification;

• Assurance that the limited project resources were effectively applied
based on security assessments and according to the major negative security
impacts.

The security status of the system and user satisfaction increased not only
because the security requirements were implemented but also because the customer and
users have known that the software was being developed with security consideration
and precautions in the form of an organized software security development process.

6. Conclusion and future work

This research aims to consolidate the proposition of a set of information security
activities divided among subprocesses which were derived from SSE-CMM, ISO/IEC
15408, ISO/IEC 27002, and OCTAVE and selected to form the Process to Support
Software Security (PSSS).

 Although there are well organized software development processes based on
maturity models or international standards, the approach and ability to develop secure

software have not been achieved yet. That is, they still lack adequate support for
security.

The proposition of a software development process formed with security
activities could help in the production of more secure software as it protects the
confidentiality, integrity, and availability of processed and stored information,
satisfying the growing customer demand for security in software products. According to
Howard (2002), application security should be designed and incorporated into the
products since the beginning of the development process.

It was verified that information security, among SSE-CMM, OCTAVE,
ISO/IEC 15408 and ISO/IEC 27002, is not directly related to a software development
process. This fact increases the importance of establishing a set of information security
activities forming a process to help developing more secure software and the
importance of discussing security in software products in a software engineering
context.

The PSSS could also be seen as a security engineering approach to improve the
effectiveness of software security projects. The development and organization of the
PSSS tried to avoid common problems and restrictions of these information security
models and standards so as to not repeat them or limit their influence on it.

Some contributions of the PSSS are:
i. Increase the awareness about the importance of including security into

software development by applying a self-oriented process based on known
security approaches;

ii. Stimulate the assessment of security vulnerability, threat, impact and risk in
every phase of the development process according to defined security
activities;

iii. Show the necessity and the importance of making security requirements
assessment based on security vulnerability, threat, impact and risk
information;

iv. Reinforce the importance of executing security tests to validate and verify
software security as a continuous activity that depends on security
requirements elicitation;

v. Express the necessity to formalize a process to assure that the established
security was completed and accepted; and

vi. Permit proactively the identification and correction of software security
problems.

Despite these advantages, the implementation of the PSSS may initially increase
the need for more resources and investments which can vary depending on the project’s
specifications. However, the utilization of the PSSS is recommended in comparison to
best practices and practical experiences because their conceptual bases are incipient,
they do not consider aspects of analysis and design phases satisfactorily, and they fail to
perform proactive actions in accordance with security engineering principles.

As a final comment, it appears that the utilization of the Process to Support
Software Security should be considered to develop more secure software because this
process includes important characteristics from security models like ISO/IEC 15408
(Common Criteria) and SSE-CMM. Moreover, the PSSS’s capability to be specialized
facilitates its utilization in different companies and its implementation among different
projects.

Further work will be done on applying the PSSS in a bigger software
development project to perform activities from all the subprocesses and to obtain new
results to make the PSSS more effective and consistent.

References

Alberts, C. et al. (2001) “OCTAVE - The Operationally Critical Threat, Asset, and

Vulnerability Evaluation”, Carnegie Mellon – Software Engineering Institute.
Available at: www.cert.org/octave.

Anderson, R. (2001), Security Engineering: A Guide to Building Dependable

Distributed Systems. John Wiley and Sons.

CERT. (2007), Coordination Center Statistics. Available at:
www.cert.org/stats/cert_stats.html.

CLASP. (2006), Comprehensive, Lightweight Application Security Process. Version
1.2. Available at: www.owasp.org/index.php/owasp_clasp_project.

Common Criteria (2005), Version 2.3, August 2005. Available at:
http://www.commoncriteriaportal.org.

Howard, M.; LeBlanc D. (2002), Writing Secure Code, 2
nd

 edition. Microsoft Press.

ISO/IEC 15408-1. (2005a) Information technology – Security techniques – Evaluation

criteria for IT security – Part 1: Introduction and general model.

ISO/IEC 15408-2. (2005b) Information technology – Security techniques – Evaluation

criteria for IT security – Part 2: Security functional requirements.

ISO/IEC 15408-3. (2005c) Information technology – Security techniques – Evaluation
criteria for IT security – Part 3: Security assurance requirements.

ISO/IEC 21827. (2002) Information technology - Systems Security Engineering -
Capability Maturity Model.

ISO/IEC 27002. Information technology – Security technical - Code of practice for
information security management. 2005.

McGraw, Gary (2004), Software Security, IEEE Security and Privacy, 2(2): 80-83,
2004.

OECD. (2002) Organisation for Economic Co-operation and Development. Guidelines
for the Security of Information Systems and Networks: Towards a Culture of
Security, page 13, Principle 7, Security design and implementation. Available at:
www.oecd.org.

Schumacher, M., and Roedig, U. (2001), “Security engineering with patterns”, In
Proceedings of the PLoP conference on Pattern Languages of Programs (Illinois, The
USA, September 11 – 15, 2001).

SSE-CMM. (2003) System Security Engineering – Capability Maturity Model, Version
3. Available at: www.sse-cmm.org.

