

A Systematic Review of Dynamic Reconfiguration

of Software Projects

Daniel Antonio Callegari
1
, Ricardo Melo Bastos

1

1
Faculdade de Informática – Pontifícia Universidade Católica do Rio Grande do Sul

Avenida Ipiranga, 6681 – 90619-900 – Porto Alegre – RS – Brasil

{daniel.callegari, bastos}@pucrs.br

Abstract. Software companies often make use of project management knowledge

as well as a set of development processes in order to build their solutions with

quality and within scope, time and resource constraints. Software projects are

very dynamic systems that demand recurrent adjustments of their plans even

during execution due to their particular nature. Such adjustments can be viewed

as reconfigurations on schedule, on resource allocation and on other project

elements. A systematic review is a means of evaluating and interpreting all

available research relevant to a particular area of interest. This paper presents

the results from a systematic review of four subareas underlying the dynamic

reconfiguration of software projects. A number of works were analyzed from the

year of 2004 up to the present moment.

1. Introduction

The development of a software product demands a unique effort that involves dealing

with activities and resources among other elements to build the desired solution.

Organizations frequently combine some project management methodology along with a

specific software development process [Schwalbe 2002]. This combination translates

the need to address both production and management activities for one or more projects

that may share resources in an organization.

 Because of their nature, software projects comprise very dynamic systems that

require frequent adjustments of their plans, from the original planning to project kick-

off, to execution and finally deployment. Nevertheless, the complexity and the number

of projects a manager must simultaneously deal with increases every day. As the

number of projects increase, the manager must deal with a greater number of variables

[Schwalbe 2002] [Kerzner 2000].

 This complex scenery can be more easily addressed if we provide means to help

managers in making decisions that involve the resources, the activities and the flow of

work items during the execution of one or more simultaneous projects. The area of

dynamic reconfiguration of software projects deals with the events, the actions, the

affected elements and the consequences of the adjustments in software projects during

their execution.

 We present the main results obtained from a systematic review of the area, along

with comments and suggestions for future work. We first briefly present the area of

interest (section 2) and then describe the adopted methodology (section 3). The

collected information and discussion are presented in sections 4 and 5, respectively.

Finally, section 6 presents suggestions for further investigation.
Study developed by the Research Group of the PDTI 01/2008, financed by Dell Computers of Brazil Ltd. with resources
of Law 8.248/91.

2. Dynamic Reconfiguration of Software Projects

According to the PMBOK (2004), projects are temporary endeavors undertaken to

create a unique product or service. In a simplified view, projects of any nature have two

very distinct phases: the planning phase and the execution phase. During planning we

collect all the necessary information for the execution of the project, including the

activities to be performed, the necessary resources, the deadline and other restrictions.

The execution phase comprehends the management, monitoring and control of the

project as well as the development of the final product. Ideally, execution follows the

plan with minor variations. Unfortunately, this is hardly ever the norm for software

projects.

 According to [Joslin & Poole 2005] and other reviewed work, purely “static”

approaches do not solve the main problems in software development. The uncertainties

underlying any software project must be constantly monitored and the plan must be

adjusted accordingly during all the life cycle of the project. Current software

development processes help addressing this question by means of incremental and/or

cyclic refinements of both planning and product definition [Kruchten 2000] [Schwalbe

2000], but this is not sufficient. In order to help managers in dealing with all the

variables and uncertainties of software projects, we must provide them increasing levels

of support such as tools, guidelines, models and automated or semi-automated decision

support systems. Desired solutions should address resource selection and allocation,

scheduling of activities, single and multi-project support among other characteristics

(details in section 4).

 If we name the first planning of a project its “initial configuration” comprising

not only the flow of activities, the project’s priority, the involved resources, their

characteristics, allocation and availability, as well as any other necessary information,

then we can also define the term “project reconfiguration” as meaning any kind of

adjustment performed during project execution in order to adapt the plan to the current

state of all those variables. Thus, the term “dynamic reconfiguration of software

projects” refers to all kinds of effort that act over a preexistent plan of activities and

associated resources considering one or more simultaneous software projects. It is worth

noting that this term is also being used by many other areas such as networking,

autonomic computing and distributed systems [Coulouris et. al. 2002] [Horn 2001] (the

actual definitions differ a little, but the main concept is fundamentally the same: semi or

full automatic modifications that take place during execution).

 Following the analyzed papers, and based on the problems they address, we

have identified four main areas in the context of dynamic reconfiguration of software

projects: (A) resource selection, (B) resource allocation, (C) scheduling of activities,

and (D) the integration of the project’s activities to the organizational workflows of the

company. The details are presented in section 4.

3. Systematic Reviews in Software Engineering

Systematic reviews are very common research methodologies in areas such as medicine

and social sciences. A systematic review aims to integrate empirical research in order to

create generalizations. Some advantages are the elimination of common biases, the

discovery of general principles and the identification of relative influences of the

different individual studies due to a more formal methodology than a simple literature

review [Biolchini et. al. 2005]. The Software Engineering research area suffers from the

lack of available evidence of the technologies we use. According to [Kitchenham 2004],

most available evidence in the area is fragmented and limited, not properly integrated

and often do not agree on standards for conducting experiments. This is the main

motivation of our current work.

3.1 Systematic Review Details and Protocol

Systematic reviews begin with the definition of the research question. In our case:

“which automated or semi-automated approaches currently exist to select resources,

(re)schedule activities and (re)allocate resources to activities in the context of multiple

and simultaneous software projects?”. The next steps are the selection of sources, the

definition of inclusion and exclusion criteria and the selection of the studies. When

planning is done, we evaluate the protocol plan. If it is approved, information extraction

begins (see Figure 1). The results are also evaluated before we perform the final

analysis. Results packaging occurs during all the process in order to keep all relevant

information and to document decisions taken by the researchers.

Figure 1. Systematic review process [Biolchini et. al. 2005]

 We have selected the following sources for this study: Search engines of IEEE

Xplore Digital Library, ACM Digital Library, Springer Link and Science Direct.

Regarding the population and studies selection, all searches were made on January and

February, 2008, on journals and conference proceedings for papers written in English,

from the year of 2004 up to the present, in the areas of computer science, software

engineering, project management, information systems, decision support systems,

operations research and artificial intelligence. We chose this range of years in order to

filter recent and state-of-the-art work in the area. Searches were made by inputting

search strings in all of the aforementioned mechanisms.

 We have experimented with several combinations and variations of the

following keywords: resource, selection, allocation, software project, management,

dynamic, planning, and scheduling. Validating the possibilities with other colleague

researchers, we have selected the following string: “(software project) A(D (dynamic)

A(D (resource OR scheduling)”, when we noticed that the selected words embraced

some of the other mentioned concepts. It is important to note that some of the search

strings we tried have returned large amounts of papers (for example, 524, 377, and even

larger numbers such as 12603). Following other systematic review studies in software

engineering, we tried to stay in the range of 200 to 250 papers (the selected string

returned 242 results). Just in terms of comparison, as a matter of fact, running the same

query without the word “dynamic” returned 589 entries, which is far beyond the

acceptable number and would not meet one of the main requirements of this research.

 All 242 papers were analyzed by using the following workflow: (i) the search

string is submitted to all mechanisms; then, for each paper: (ii) the title and abstract of

the paper are read; (iii) if approved, the full text of each paper is then read for final

approval; (iv) when in doubt due to lack of information in the abstract, a quick reading

of the text is performed; (v) all the remaining papers were selected for full reading. This

first resulted in a selection of 27 papers. Eight of them were later discarded due to lack

of minimum expected relevance. The final selection included 19 papers (7.85% of the

overall search engines results), which represents an adequate sample according to our

references [Biolchini et. al. 2005] [Kitchenham 2004].

4. Results

The main criteria for the selection of the papers were to only accept papers that included

a good level of description of the solution and sufficient information about the methods,

algorithms, or strategies of any kind to solve the questions related to the four subareas

of the research theme. More specifically, we were interested in the following items (see

results in tables 1 and 2 – no particular order inferred):

• Resource selection: indicates whether the solution includes the choice of

resources, no matter if treating them individually (individual characteristics) or

uniformly (one does not differ from the other, only quantities matter);

• Resouce allocation: indicates if the solution supports resource allocation,

whether or not among multiple and simultaneous projects;

• Scheduling of activities: indicates if it presents a solution to the sequencing of

the activities;

• Multi-project support: does the solution support more than one single project?;

• Kind of solution: shows the “general class” of the solution (e.g. decision

support, optimization, methodology, etc.);

• Method: the method used for the solution (e.g. bayesian networks, machine

learning, dynamic programming, case based reasoning, etc.);

• Use of expert knowledge: is the solution based on expert judgment?;

• Use of simulation: does the solution involve some kind of computational

simulation?;

• Dynamic solution: indicates whether the solution is static or dynamic (in the

sense of “on demand”, during project execution); synonyms such as “online”,

“on-the-fly” and “adaptive” were also accepted;

• Includes case study or experiment: was the solution scientifically evaluated?;

• Provides a tool: the solution includes a tool or a prototype?

 Sources marked with an asterisk (*) have atypical characteristics: [Harman

2007], [Shepperd 2007] and [Wernick & Hall 2007], for instance, deal with one or more

issues in a broader view, without directly presenting a solution to the mentioned

problems (yet they are useful in this research); [Trainer et. al. 2005], by its turn, is used

as a supplementary work over [Souza et. al. 2007], bringing contributions to their

original approach. Items marked with “-/N.A” are not applicable.

5. Discussion

By analyzing tables 1 and 2 we can derive some finding based on a purely quantitative

analysis (individual analysis of the four areas is presented afterward):

• Firstly, five from the selected papers deal with resource selection (but not

exclusively) – about one third of the works underline that resources should be

treated individually due to their unique characteristics. Treating resources

homogeneously, though, is typical for solutions that make use of simulation;

• Nine of the analyzed work support resource allocation. Alternatives cover the use of

Bayesian Belief Networks and System Dynamics, among others, and are often

associated with decision support approaches. The remaining papers do not even

mention this issue;

• Activity scheduling is directly addressed by eight papers. A distinctive work is

[Jalote et. al. 2004], an approach that seem to eliminate the need of a complete

planning of activities;

• Only five of the analyzed papers deal with a multiproject scenario;

• It is worth noting that a few more than the half of them indicate: (i) being based on

expert knowledge, (ii) were elaborated through case studies or experiments, and (iii)

have included some kind of tool (not necessarily the same papers on each case);

• Regarding the “dynamic” solutions, some authors use alternative terms like

“online”, “on-the-fly” and even “adaptive” for basically the same idea. In this

systematic review, 10 papers explicitly address this issue. According to [Harman

2007], techniques such as Particle Swarm Optimization and Ant Colony

Optimization seem promising in this context. Kabbaj et. al. (2007) is the only one to

support this idea at the “meta” level (e.g. at process level, instead of project level),

through the use of Process-Centered Software Engineering Environments, or PSEEs,

and a set of 30 “rules”. This kind of solution is often associated with workflow

systems, in which the effect of a failure or unhandled exception reflects an action

that breaks the consistency relationships of the process. In these cases we need to

operate outside the PSEE, change the underlying model, or adapt the PSEE to

tolerate some deviation;

• As a final remark, there is some prominence of optimization techniques (dynamic

programming, local search and simulated annealing, for instance), decision support

systems, and many apply Bayesian Networks, which are basically cause-effects

graphs associated with tables of probabilities, that belong to the group of “decision

systems”.

 Despite that last remark, Harman (2007) states that deterministic optimization

algorithms are often inapplicable in real world software engineering problems, because

the problems have objectives that cannot be characterized by a set of linear equations.

 The use of simulation aims to maximize (or minimize) some fitness function,

created according to the specific goals of the solution, for instance: minimization of

cost, minimization of time, or a combination of factors. According to [Joslin & Poole

2005], simulation offers the possibility for representing the complexity that is necessary

for realistic reasoning about a project, including the inherent uncertainty. A common

example is the use of Monte Carlo techniques.

 Instead of simulation, some proposals, such as [Fan & Yu 2004], bet on the use

of Bayesian Belief Networks (BBNs) due to their capacity of modeling uncertainty and

providing probabilistic estimates when solving problems. They state that the main

difference of the two approaches relies exactly over this characteristic: while simulation

typically provides deterministic results, BBNs may yield a set of probabilistic results at

each run, allowing the manager to preview situations even based on incomplete

information.

 As we can see from the above examples, many researchers do not agree on the

techniques when dealing with uncertainty, for instance. The combination of methods of

many of the proposals (see last column of Table 1) seems to indicate alternative efforts

to solve the problem by merging solutions.

 More detailed conclusions for each of the four areas can be found below.

5.1 Area A – Resource Selection

Resource selection deals with choosing which resources to work on which projects

based on a set of criteria such as individual capacities, cost, sharing level and

availability. The simplest approaches do not distinguish among resources, treating them

only as quantities (ignoring individual characteristics); this is the case with most

approaches that use simulation. In the other hand, ability levels, startup penalties and

individual or role characteristics are used by the counterpart solutions such as [Fan &

Yu 2004], [Fenton et. al. 2004] and [Joslin & Poole 2005] – “employees are not

interchangeable”. The startup penalty refers to the famous Brooks’ Law [Brooks 1995]

that adding more people to a late project only makes it even later. Another interesting

finding (pointed out in [Joslin & Poole 2005]) is that “resources are even less

interchangeable after work on a task has begun. [Thus…] reassigning someone from

one task to another, or adding an additional resource to a task after substantial progress

has already been made on it, will usually be inefficient in the short term”.

 Among the analyzed papers, there is an expressive number of solutions that

make use of simulation. One of the distinctive works is [Padberg 2004] in which diverse

team abilities are modeled via different probability distributions for the time necessary

to complete the activities. Following that, works that explore team work, such as

[Peslak 2006], gain attention when suggesting that “team processes, or at least their

perception, are independent of personality. Team processes can be viewed to function

well regardless of the makeup of the team.”

 From this perspective, it is clear that the maturity of our knowledge on software

project management demands treating resources as individuals. Personal abilities and

soft skills play an important role in such human centered systems [Verma 1996]. Thus,

although quantitative simulation of resources can help understanding some aspects in

resource selection and allocation (as pointed out in this review), more realistic solutions

will only be possible if we consider individual characteristics.

 For the present analysis we expected more research to (i) find out which cases

demand working with individually characterized resources and which cases we can treat

them as a homogeneous group; and (ii) to find out what are the most relevant criteria

distinguishing among resources in terms of selection.

 While dealing with individual characteristics may lead to a more realistic

solution, we must also be aware of the scalability, specifically in terms of combinatorial

explosion. It is worth noting that only one of the analyzed papers suggests grouping

resources on roles and assigning corresponding skills to each role [Fan & Yu 2004].

This represents and interesting intermediate solution.

Table 1. First part of the results from the systematic review

Source Resource

selection

Resource

allocation

Scheduling of

activities

Multi-

project

Kind of

solution

Method

[Fan & Yu 2004] Yes – role

skills

Yes –

some

support

No Yes Decision

support

Bayesian networks +

Fuzzy Functions

[Fenton et. al. 2004] Yes –

individual

skills

Yes No No Decision

support

Bayesian networks

[Harman 2007]* - - - - Optimization A review on “Search

Based Software

Engineering”

[Jalote et. al. 2004] No Yes Eliminates the

need

No Methodology Time boxing, activity

pipelining and

parallelism

[Joslin & Poole 2005] Yes –

individual

skills

Yes Yes – two kinds

of activities

No Decision

support

Search on strategy

space

[Kabbaj et. al. 2007] No No Unusual No Workflow Detects workflow

exceptions

[Lee & Miller 2004] No Yes Yes Yes Decision

support

Critical Chain +

System Dynamics +

Sceneries

[Melo & Sanches

2008]

No Yes -

some

support

Yes No Decision

support

Bayesian networks

[Padberg 2004] No Yes Yes No Optimization Machine learning +

Simulation + Markov

Decision Process

[Shepperd 2007]* - - - - - -

[Yiftachel et. al. 2006] Yes –

individual

skills

Yes Unusual No Optimization Dynamic

programming

[Lee & Lee 2005] No No Yes No Semi-

automated

Case-based reasoning

[Padberg 2005] No No Yes No Optimization Machine learning +

Simulation + Markov

Decision Process

[Peslak 2006] Yes No No No Study Empiric Sw. Eng.

[Sentas et. al. 2007] No No Yes Yes Methodology Statistical

[Souza et. al. 2007] No Yes –

component

based

Yes No Decision

support

Dependency graphs

[Trainer et. al. 2005]* - - - - - -

[Vähäniitty 2005] No No No Yes Methodology Conceptual

framework

[Wernick & Hall

2007]*

- - - - - -

Table 2. Second part of the results from the systematic review

Source Expert

knowledge

Simulation Dynamic

solution

Case study /

experiment

Provides a

tool

[Fan & Yu 2004] Yes No Yes Yes Yes
[Fenton et. al.

2004]
Yes No No Yes Yes

[Harman 2007]* - - - - No

[Jalote et. al.

2004]
No No Yes Yes Yes

[Joslin & Poole

2005]
No Yes Yes No No

[Kabbaj et. al.

2007]
No No Yes No No

[Lee & Miller

2004]
No Yes (probably) Yes No Yes

[Melo & Sanches

2008]
Yes No Yes No Yes

[Padberg 2004] Yes Yes Yes No Yes
[Shepperd 2007]* - - - - -

[Yiftachel et. al.

2006]
Not clear No Yes Yes No

[Lee & Lee 2005] Yes No No Yes Yes

[Padberg 2005] Yes Yes Yes No Yes
[Peslak 2006] N.A. N.A. N.A. Yes N.A.

[Sentas et. al.

2007]
Yes No Yes Yes No

[Souza et. al.

2007]
No No No Yes Yes

[Trainer et. al.

2005]*
- - - - -

[Vähäniitty 2005] Yes No Yes Yes No
[Wernick & Hall

2007]*
- - - - -

5.2 Area B – Resource Allocation

Resource allocation is highly associated with resource selection and scheduling of

activities. When removing resources from an activity, for instance, we expect some

impact on the execution time of that activity which, in turn, may affect other dependent

activities. As another important issue, some researchers suggest that multitasking of

resources is a bad idea and they mathematically show the consequences of it, especially

when considering multiple and simultaneous projects [Lee & Miller 2004]. Joslin and

Poole (2005), by their turn, state that multitasking can work with specific types of

activities but only with certain resources (based on individual characteristics).

 Only two of the analyzed work [Souza et. al. 2007] [Padberg 2004] suggest

using information from technical dependencies among software components to

influence resource allocation. The idea is to allocate the same set of resources to groups

of interrelated tasks, which are determined based on the artifacts they relate to.

 The main findings in this area are: (i) most of the analyzed work offer different

levels of decision support (as opposed to automated solutions); thus investigating the

limits between decision support and automation in this context is a future research

possibility; (ii) Brooks’ Law needs more investigation when considering a project’s

characteristics such as size and available time; (iii) there is no consensus on the

“granularity” of the activities, i. e. breaking down an activity to smaller steps may affect

the way resources are allocated; (iv) some papers indicated the necessity of

distinguishing among types of activities (prioritary or optional, for instance), but none

of them explored the three kinds of activities we have proposed in [Callegari & Bastos

2007] and [Rosito et. al. 2008]: managerial activities, productive activities and

supporting managerial activities, which are related to the area D of this research; and (v)

different types of software processes also demand different approaches (e.g. “agile” vs.

“traditional”) [Anderson 2003] [Lee & Miller 2004].

5.3 Area C – Scheduling of Activities

The scheduling of activities is the most affected area in terms of uncertainties and

external events [Jalote et. al. 2004] [Joslin & Poole 2005]. The idea of “contingency

plans” (as in [Joslin & Poole 2005]) seems very promising because it fights great part of

the subjectivity regarding decisions made by managers every day. But the solution is

very simplified as they only simulate one type of resource (developers).

 The proposal in [Joslin & Poole 2005] is a search in a space of planning

strategies and the use of simulation to evaluate the strategies. As the authors point out,

“a strategy is not a static set of commitments, but rather a representation of high-level

considerations that can be used to guide dynamic decision-making during simulated or

actual execution”. The problem here is the large amount of possible situations, leading

to the problem of combinatorial explosion.

 Jalote et. al (2004) brings an interesting approach based on “timeboxing” (a

process model for iterative software development), which involves pipelining concepts,

where development is done in a series of fixed duration time boxes. Each time box is

divided into a sequence of fixed duration stages, with a dedicated team for each stage.

They claim that “the turnaround time for each release is reduced substantially, without

increasing the effort requirement” and that this technique “eliminates scheduling”. This

clearly makes it incompatible with all other “common” approaches that follow a chain

of activities and dependencies among them. Nevertheless, they acknowledge that

timeboxed projects with large teams are hard to manage.

 One of the analyzed works adopts Case Based Reasoning (see Table 1) to assist

the construction of a software project network of activities, claiming that managers

already do this naturally [Lee & Lee 2005]. The solution is based on 17 independent

factors and a base of 30 cases with information for each one of the factors. One obvious

characteristic of these kinds of solutions is that we need to store a significant amount of

historical data in order to compute similarities to the case we are facing at the present.

In addition, the simple automatic generation of a project schedule will not satisfy the

various project managers, they admit, because “even for the same project, the project

network may be designed differently depending upon the development methodology

adopted, a project manager’s style, and preferred way of displaying the network”.

Besides, although the idea of applying CBR seems interesting, this particular proposal

works only for the first configuration of a project (in other words, it will not work as a

dynamic solution).

 As mentioned before, under a single software project several correlations of

activities can be found in terms of the elements they handle (artifacts or software

components, for instance). As a result, we can expect that allocating the same resources

to each such groups of interrelated activities may reduce the so called startup penalty.

 Also, Padberg (2004) claims that the teams in software projects do not work

independently: “the progress of one task not only depends on the productivity of the

corresponding team, but also on the progress of the other tasks. This kind of feedback is

typical for software projects and is a key driver for the uncertainty about the future

progress of a software project”. Thus, when re-planning the schedule of the activities,

their dependencies must also be adjusted by means of the dependency of the associated

artifacts.

 Therefore, the following aspects needs more development: (i) identifying the

types of feedback (as in [Padberg 2004]) among different types of activities in order to

evaluate the impact of a change to other related activities; (ii) identifying which events

fire subsequent re-planning needs to one or more software projects; (iii) determining an

effective manner of coding predefined actions, in response to the fired events; and (iv)

distinguishing the different types of activities, as mentioned earlier.

5.4 Area D – Integration of Workflows and Project’s Activities

In [Callegari & Bastos 2007] we have presented a model that integrates productive and

managerial activities in software projects. Companies often have a set of related

activities (workflows) that may be shared among two or more simultaneous projects.

Those activities are called supporting managerial activities and they do not belong to

any specific project; rather, they can be “instantiated” by the projects when they need.

Some examples are workflows for hiring new people or for setting up some required

environment for work.

 The closest idea in this respect in our analysis is presented in [Lee & Miller

2004]. Here the authors show some strategies that the manager may take according to

defined “policies”. Another relevant work [Joslin & Poole 2005] just mentions this fact

as an example. Thus, it becomes clear that more effort is needed in this direction of

research.

5.5 Integrating the subareas

Although the four subareas have been presented in individual sections, in practice it is

very hard to treat them as independent problems. Figure 2 represents an integrated view

of the problem of dynamic reconfiguration of software projects.

 By means of the previous analysis it becomes evident that the main pillars for a

solution are the resources, the activities and the projects of a given software company.

 Determining the events that may disturb one or more projects sharing resources

can help in coding a set of corresponding actions to be taken appropriately. Some of

these actions may be fully automated (if desired), such as rescheduling, while other

actions may need human intervention (some options are presented to the manager for

the problems that the system cannot handle).

 Regarding the resources, an important decision is needed between solutions that

handle resources individually (a heterogeneous pool) or as a group of leveled persons (a

homogeneous pool of resources). While the latter may be more computationally cost

effective, when we handle resources’ individualities we gain in accuracy. Another idea

that is current under development by the authors is the concept of affinity between

resources and activities, in order to reduce startup penalties.

 In addition, when considering a multi-project scenario we must deal with

different projects’ characteristics such as size, type, priority and base process model.

While some authors are emphatic in this respect (for instance, [Fan & Yu 2004] [Lee &

Miller 2004]) claiming it is more realistic, there is no strong evidence the heuristics they

present work well on diverse scenarios. As an example, the solution proposed by Lee

and Miller (2004) first plans each project on a common basis and then adjusts the

individual projects based on different priorities and requirements. But their work is

mostly based on [Turner & Payne 1997], which is not specific for software projects. Fan

& Yu (2004), by their turn, make a clear distinction of different sources of factors that

may affect projects: some are related to the organization as a whole, and some are

directly related to one or more specific projects (a link to area D is clear here).

 Besides, in order to build a model that integrates all the aspects identified in this

review, one should also consider the distinct types of activities (e.g. prioritary;

mandatory or optional; managerial or productive) [Lee & Miller 2004] [Joslin & Poole

2005] and their possible groupings, as in [Souza et. al. 2007] and [Padberg 2004].

 Walking towards the development of a more complete model for the dynamic

reconfiguration of software projects is one of the goals of the authors. This systematic

review allowed us to achieve an overall perspective of the most recent work on the area.

Figure 2. A view of the integration of the four areas

 EVENTS

...or...

Homogeneous
Pool

Common
characteristics

Heterogeneous
Pool

Individual
characteristics
and affinity

Resources

ACTIONS

P1 P2 P3 Characteristic

Size

Type

Priority

Base process

.

.

.

Projects

ACTIONS

Organization’s
Workflows

Activities

Types and Groups of Activities

ACTIONS

AUTOMATION DECISION SUPPORT

6. Conclusion

This paper presented some results from a systematic review of dynamic reconfiguration

of software projects. As a general finding, we can say that this multifaceted problem is

far from being solved by the current approaches. Even the more recent works do not

present a solution that addresses all the problems at the same time. The trend is for

approaches that deal with at most two of the identified problems simultaneously.

Integrating the solutions is thus a clear area for future work. Dealing with resource

multitasking was found to be one of the most complex problems to which we do not

have a satisfactory solution yet. While resource allocation has many acceptable

solutions in areas such as manufacturing, this problem in software engineering remains

unsolved. Yet, some approaches that differentiate among the resources based on

individual characteristics are starting to gain focus. Many solutions make use of expert

knowledge to help in decisions, but we need to advance in identifying and modeling the

relevant variables in this subarea.

 It is important to note that none of the reviewed works present a solution to the

problem of allocating the same people (or teams) to related activities in order to reduce

the startup time on new activities, although the problem has been indentified by some of

them. There is also a concern with the combinatorial explosion of possible states due to

the large number of interrelated variables in solutions based on Bayesian networks or

simulation, for instance. The integration of the scheduling solutions with an

organization’s common activities (workflows) is also a subarea of research that

demands further investigation.

6.1 Limitations of this research

According to [Biolchini et. al. 2005], applying systematic reviews in software

engineering is much more difficult than in other areas, greatly due to the lack of rigor

and conscience in reporting the results of the primary studies in software engineering. It

is also hard to make comparisons when we do not have quantitative data; and the lack of

standardization on the form of presenting the results is also a difficulty.

 In this particular study, the main extraction was performed by the first author,

while all the process of choosing and refining the search string, the set of inclusion and

exclusion criteria, and the evaluation of the extracted information were discussed among

three other colleagues. This certainly represents some bias. Nevertheless, this

methodology enables us to summarize current evidence on the literature to some extent,

identify any gaps by comparing different approaches, and to provide a wider view of the

field of research, while pointing out opportunities for future work.

7. References

Anderson, David. (2003) Agile Management for Software Engineering. Prentice Hall,

Pearson Education.

Biolchini, J., Mian, P.G., Natali, A.C.C., Travassos, G.H. (2005): Systematic review in

software engineering. Technical report, Systems Engineering and Computer Science

Department, Rio de Janeiro.

Brooks, F. (1995) The Mythical Man-Month: Essays on Software Engineering.

Addison-Wesley, 2nd Ed.

Callegari, D.; Bastos, R. (2007) Project Management and Software Development

Processes: Integrating RUP and PMBOK. ICSEM – International Conference on

Systems Engineering and Modeling. Haifa, Israel.

Coulouris, G., Dollimore, J., Kinberg. (2002) Distributed systems: concepts and design.

3a. edição. Addison-Wesley, 2001. Tanenbaum, A. S. Distributed systems: principles

and paradigms. Prentice Hall.

Fan, Chin-Feng; Yu, Yuan-Chang. (2004) BBN-based software project risk

management. Journal of Systems and Software, Volume 73, Issue 2, Applications of

statistics in software engineering, pp. 193-203.

Fenton, Norman; Marsh, William; Neil, Martin; Cates, Patrick; Forey, Simon; Tailor,

Manesh. (2004) Making Resource Decisions for Software Projects. In Proceedings of

the 26th international Conference on Software Engineering (May 23 - 28). IEEE

Computer Society, Washington, DC, 397-406.

Harman, Mark. (2007) The Current State and Future of Search Based Software

Engineering. In 2007 Future of Software Engineering (May 23 - 25). International

Conference on Software Engineering. IEEE Computer Society, Washington, DC,

342-357.

Horn, P. (2008) Autonomic computing: IBM perspective on the state of information

technology, IBM T.J.Watson Labs, NY, 15th October 2001. AGENDA 2001,

Scottsdale. Available at http://www.research.ibm.com/autonomic/.

Jalote, Pankaj; Palit, Aveejeet; Kurien, Priya; Peethamber, V.T. (2004) Timeboxing: a

process model for iterative software development. Journal of Systems and

SoftwareVolume 70, Issues 1-2, February, pp. 117-127.

Joslin, David; Poole, William. (2005) Agent-Based Simulation For Software Project

Planning. In Proceedings of the 37th Conference on Winter Simulation (Orlando,

Florida, December 04 - 07). Winter Simulation Conference. Winter Simulation

Conference, 1059-1066.

Kabbaj, Mohammed; Lbath, Redouane; Coulette, Bernard. (2007). A Deviation-tolerant

Approach to Software Process Evolution. In Ninth international Workshop on

Principles of Software Evolution: in Conjunction with the 6th ESEC/FSE Joint

Meeting (Dubrovnik, Croatia, September 03 - 04. IWPSE '07. ACM, New York, NY,

75-78.

Kerzner, H. (2000) Applied project management: best practices on implementation,

John Wiley & Sons.

Kitchenham, B. (2004): Procedures for performing systematic reviews. Technical report

Software Engineering Group, Department of Computer Science, Keele University.

Kruchten, P. (2000) The Rational Unified Process: An Introduction, Addison-Wesley,

2nd edition.

Lee, Bengee; Miller, James (2004) Multi-Project Management in Software Engineering

Using Simulation Modelling. In Software Quality Journal, Volume 12, Number 1,

pp. 59-82, March.

Lee, Jae Kyu; Lee, Nobok. (2005) Least modification principle for case-based

reasoning: a software project planning experience. In Expert Systems with

Applications, Volume 30, Issue 2, February, pp. 190-202.

Melo, Ana C.V. de; Sanchez, Adilson J. (2008) Software maintenance project delays

prediction using Bayesian Networks. Expert Systems with ApplicationsVolume 34,

Issue 2, February, Pages 908-919.

Padberg, Frank. (2004) Linking Software Process Modeling with Markov Decision

Theory. In Proceedings of the 28th Annual International Computer Software and

Applications Conference, 2004. COMPSAC 2004., vol.2, pp. 152-155, 28-30 Sept.

Padberg, Frank. (2005) On the Potential of Process Simulation in Software Project

Schedule Optimization. Computer Software and Applications Conference, 2005.

COMPSAC 2005. 29th Annual International, vol.2, pp. 127-130, 26-28 July.

Peslak, Alan R. (2006) The Impact of Personality on Information Technology Team

Projects. In Proceedings of the 2006 ACM SIGMIS CPR Conference on Computer

Personnel Research: Forty Four Years of Computer Personnel Research:

Achievements, Challenges &Amp; the Future (Claremont, California, USA, April 13

– 15). SIGMIS CPR '06. ACM, New York, NY, 273-279.

PMBOK. (2004) – Project Management Body of Knowledge. Project Management

Institute. Available at http://www.pmi.org.

Rosito, M.; Callegari, D.; Bastos, R. (2008) Gerência de Projetos e Processos de

Desenvolvimento de Software: uma proposta de integração. SBSI – IV Simpósio

Brasileiro de Sistemas de Informação, Rio de Janeiro.

Schwalbe, K. (2002) Information Technology Project Management. 2nd Ed., Thomson

Learning, Canada.

Sentas, Panagiotis; Angelis, Lefteris; Stamelos, Ioannis. (2007) A statistical framework

for analyzing the duration of software projects. In Empirical Software Engineering,

Journal, Springer.

Shepperd, Martin. (2007) Software project economics: a roadmap. In 2007 Future of

Software Engineering (May 23 - 25). International Conference on Software

Engineering. IEEE Computer Society, Washington, DC, 304-315.

Souza, Cleidson R. B. de; Quirk, Stephen; Trainer, Erik; Redmiles, David F. (2007)

Supporting Collaborative Software Development through the Visualization of Socio-

Technical Dependencies. In Proceedings of the 2007 international ACM Conference

on Supporting Group Work (Sanibel Island, Florida, USA, November 04 - 07).

GROUP '07. ACM, New York, NY, 147-156.

Trainer, Erik; Quirk, Stephen; Souza, Cleidson de; Redmiles, David. (2005) Bridging

the Gap between Technical and Social Dependencies with Ariadne. In Proceedings

of the 2005 OOPSLA Workshop on Eclipse Technology Exchange (San Diego,

California, October 16 - 17). eclipse '05. ACM, New York, NY, 26-30.

Turner, J.R. and Payne, J.H. 1997. The problem of projects of differing size and skill

mix. Journal of the Project Management Association 3(1): 14–17.

Vähäniitty, Jarno. (2005) A Tentative Framework for Connecting Long-Term Business

and Product Planning with Iterative & Incremental Software Product Development.

In Proceedings of the Seventh international Workshop on Economics-Driven

Software Engineering Research (St. Louis, Missouri, May 15 - 15). K. Sullivan, Ed.

EDSER '05. ACM, New York, NY, 1-4.

Verma, V. (1996) Human Resource Skills for the Project Manager: The Human Aspects

of Project Management. Project Management Institute.

Wernick, Paul; Hall, Tracy. (2007) Getting the Best out of Software Process Simulation

and Empirical Research in Software Engineering. In Proceedings of the Second

international Workshop on Realising Evidence-Based Software Engineering (May 20

- 26). International Conference on Software Engineering. IEEE Computer Society,

Washington, DC, 3.

Yiftachel, Peleg; Peled, Dan; Hadar, Irit; Goldwasser, Dan. (2006) Resource Allocation

among Development Phases: An Economic Approach. In Proceedings of the 2006

international Workshop on Economics Driven Software Engineering Research

(Shanghai, China, May 27 - 27). EDSER '06. ACM, New York, NY, 43-48.

