
Support for Requirement Traceability: The Tropos Case

Rosa Candida Pinto, Carla Silva and Jaelson Castro

Universidade Federal de Pernambuco – Centro de Informática
Recife (PE) – Brazil - 50732-970

{rccp, ctlls, jbc}@cin.ufpe.br

Abstract. For many years, the research and business communities have
agreed that the traceability is very important in the software development
process. It helps the impact analysis of required changes, improving the
efficient management of software projects and hopefully improving the
software quality. Software development methodologies supporting requirement
traceability can develop and maintain higher quality software with less cost.
Our research aims to support traceability through the agent-oriented software
lifecycle. In particular, this paper proposes a requirement traceability process
to be used in the requirements specifications and system architecture models
of the Tropos framework. An e-commerce example is used to demonstrate the
applicability of the proposed approach.

1 The Introduction

If we are to be successful in the development of the next generation of agent-oriented
software systems we must deal with the critical issue of requirement traceability
[Castor, Pinto, Castro and Silva 2004]. Requirement Traceability refers to the ability to
ensure continued alignment between stakeholders’ requirements and various outputs of
the system development process. A requirements traceability process describes and
follows the life of a requirement, in both a forward and backward direction (i.e. from its
origins, through its development and specification, to its subsequent deployment and
use, and through all periods of on-going refinement and iteration in any of these phases)
[Gotel 1996]. Failure to do so will imply in higher costs for maintaining software
systems. However, empirical studies of traceability needs and practices in industrial
organizations have indicated that traceability support is not always satisfactory. As a
result, traceability is rarely established in existing industrial setting [Zisman,
Spanoudakis, Pérez-Miñana and Krause 2003].

This paper proposes a requirement traceability process [Pinto, Silva and Castro
2005] to be used in the requirements specifications and system architecture models of
the Tropos framework [Castro, Kolp and Mylopoulos 2002] [Bresciani, Giorgini,
Giunchiglia, Mylopoulos and Perini 2004] [Giorgini, Kolp, Mylopoulos, Castro 2005].
In particular, we present a general traceability framework [Toranzo and Castro 1999]
[Toranzo 2002] applied in the context of agent-oriented development [Wooldridge
1999] [Wooldridge 2002] to enhance the Tropos1 framework in order to support
traceability through the agent-oriented software lifecycle.

The structure of this paper is as follows: Section 2 describes the Tropos
approach for agent-oriented development in Section 3 presents the meta-models that are
required to support traceability. In Section 4, we defined a process that can be used to

1 For further detail and information about Tropos project, see http://www.troposproject.org

19º Simpósio Brasileiro de Engenharia de Software

54
40

derive traceability information in the context of the Tropos approach. In Section 5, we
apply Tropos to a case study and show all phases of the proposed requirement
traceability process. Section 6 describes related work and finally Section 7 concludes
the paper

2 TROPOS

Tropos is a requirements-driven framework in the sense that it proposes to use the
concepts used during early requirements analysis at various stages of the software
development lifecycle. Tropos rests on the idea of using requirements modeling
concepts to build a model of the system-to-be within its operational environment
[Castro, Kolp and Mylopoulos 2002]. This model is incrementally refined and extended,
providing a common interface to the various software development activities. The
models also serve as a basis for documentation and evolution of the software system.
Tropos [Bresciani, Giorgini, Giunchiglia, Mylopoulos and Perini 2004; Giorgini, Kolp,
Mylopoulos, Castro 2005] spans four phases: Early requirements, Late requirements,
Architectural design, Detailed design.

Tropos adopts the concepts and models offered by i* framework [Yu 1995]
which offers concepts such as actor (actors can be agents, positions or roles), as well as
social dependencies among actors including goal, softgoal, task and resource
dependencies.

The i* framework also includes the Strategic Dependency (SD) model for
describing the network of relationships among actors, as well as the Strategic Rationale
(SR) model for describing and supporting the reasoning that each actor goes through
concerning its relationships with other actors by using a means-ends analysis. Due to
space limitation, we do not explain the phases of Tropos methodology in detail.
However, an overview of them is presented in the case study (section 4). An interested
reader can find a full description of the Tropos’ phases in [Castro, Kolp and Mylopoulos
2002; Bresciani, Giorgini, Giunchiglia, Mylopoulos and Perini 2004].

In the sequel we sketch the models supporting requirement traceability that will
be used in an e-commerce case study.

3 Requirements traceability Meta-Model

The requirement engineering process supports the understanding of the stakeholders’
goals, as well as the refinement of these goals into requirements. An important task of
this process is keeping track of bi-directional relationships between requirements and
stakeholders’ motivations as well as between requirements and development process
artifacts in order to facilitate the maintenance and verification of the system [Ramesh
and Jarke 2001] [Gotel 1996]. Systems evolution requires a better understanding of the
requirements, which can only be achieved by the agility to trace back to their sources.
Moreover, test procedures, if traceable to requirements or design, can be modified when
errors are discovered.

As a consequence of these different uses and perspectives on traceability, there
are wide variations on the format and content of traceability information across different
system development efforts. Thus, a reference model is needed to facilitate the
construction of a requirement traceability scheme [Toranzo and Castro 1999].

19º Simpósio Brasileiro de Engenharia de Software

55
41

In this paper requirement traceability is defined as the ability to describe and
follow the life of a requirement, in both forward and backward direction. This process
happens within the context of four composite, interrelated and parallel information
layers:
External Layer represents elements (such as constraints) on the universe where the
organization is inserted.
Organizational Layer represents an element (with goals and decisions) of the universe.
Managerial Layer is related to activities that can be performed by an organization (such
as management of people, budge and contracts).
Development Layer is related to artifacts produced by a development process [Toranzo
2002].

These layers define classes that composes the traceability reference model. They
are related to each other by means of associations named satisfy, resource,
responsibility, represents and allocated_to. Satisfy specifies that an activity must be
realized in the target element in order to fulfill the needs of the source elements
connected to it. Resource represents information needed to understand a specific
element. Responsibility associates stakeholders with the software elements, decisions or
activities. Represents captures the requirements mapping into other languages, such as
modeling or programming. Allocated_to defines which component will take care of
what requirement. The notation used to represent the proposed associations is based on
UML (Unified Modeling Language) [Booch, Rumbauch and Jacobson 1999]
stereotypes. Moreover, the reference model is divided into two sub-models for clarity.

Requirement Management sub-model (Figure 1) helps requirements
understanding, capture, tracking, validation and verification. We can also represent the
CONSTRAINTs imposed by the environment on the system.

E x t e r n a l

Organizational Objectives

0..n

1..n

0..n

1..n

<<resource>>

0..n 10..n 1

S y s t e m O b j e c t i v e s

0..n
1..n
0..n
1..n << resource>>0..n 10..n 1

C o n s t r a i n t

Change Purpose

0..n

0..n

0..n

0..n

<<satisfy>>

 T a s k

0..n

0..n

0..n

0..n

<<resource>>

0..n0..n 0..n0..n
<<resource>>

0..n 10..n 1
0..n
0..n
0..n
0..n<<resource>>

S t a k e h o l d e r

I n f o r m a t i o n

0..n

1..n

0..n

1..n
<<satisfy>>

0..n 0..n0..n

<<resource>>

0..n
0..n

0..n

0..n

0..n

<<responsability>>

R e q u i r e m e n t

0..n
0..n

0..n
0..n

<<resource>>

1..n0..n 1..n0..n
<<resource>>

0..n 10..n 1

0..n0..n 0..n0..n

<<responsability>>

0..n

0..n

0..n

0..n

<<resource>>

Figure 1. Requirements Management Sub-model

SYSTEM OBJECTIVES represents goals to be achieved by the software system. The
TASK class represents the management activities to be performed by the project manager.
To be effective, requirements have to be associated to the stakeholders that propose
them. This is illustrated in the model by the STAKEHOLDER class and its associations to the
REQUIREMENT class. To control the changes in a system, the model includes the CHANGE
PURPOSE class associated to TASK, REQUIREMENT and ORGANIZATIONAL OBJECTIVES classes.

Design sub-model is used to refer to any activity that creates artifacts, including
implementation (Figure 2).

19º Simpósio Brasileiro de Engenharia de Software

56
42

E x t e r n a l

Organizational Objectives

0..n

1..n

0..n

1..n

<<resource>>

0..n 10..n 1

S y s t e m O b j e c t i v e s

0..n
1..n
0..n
1..n << resource>>0..n 10..n 1

C o n s t r a i n t

Change Purpose

0..n

0..n

0..n

0..n

<<satisfy>>

 T a s k

0..n

0..n

0..n

0..n

<<resource>>

0..n0..n 0..n0..n
<<resource>>

0..n 10..n 1
0..n
0..n
0..n
0..n<<resource>>

S t a k e h o l d e r

I n f o r m a t i o n

0..n

1..n

0..n

1..n
<<satisfy>>

0..n 0..n0..n

<<resource>>

0..n
0..n

0..n

0..n

0..n

<<responsability>>

R e q u i r e m e n t

0..n
0..n

0..n
0..n

<<resource>>

1..n0..n 1..n0..n
<<resource>>

0..n 10..n 1

0..n0..n 0..n0..n

<<responsability>>

0..n

0..n

0..n

0..n

<<resource>>

Figure 2. Design Sub-model

This sub-model indicates that the DESIGN ELEMENT class is the root of DIAGRAM,
PROGRAM and SUBSYSTEM classes. PROGRAMs represent REQUIREMENTs that are resources
for TEST. Due to various reasons, changes may be required and should be recorded by
the CHANGE PURPOSE and its association to DESIGN ELEMENT indicates that it has a resource
dependency with some design elements. TASK is always related to project management,
i.e., tasks to be performed by the manager to support some organizational need,
implementation of a requirement or a diagram. The satisfy association between the TASK
and DESIGN ELEMENT expresses that the satisfaction of the tasks depends on some design
elements. The allocated_to association between REQUIREMENT and SUBSYSTEM classes
expresses that requirements are assigned to one or more subsystems.

In addition to these sub-models, Toranzo (2002) presents a Rational model for
identification and structure of the problems and decisions made (reasoning) during the
software development (Figure 3).

Organizational Objectives System Objectives

Assumption

P o s i t i o n

D o c u m e n t

S u b j e c t

0..n 0..n0..n 0..n

<<resource>>

0..n0..n 0..n0..n

<<resource>>

0..n0..n 0..n0..n

<<resource>>

0..n0..n 0..n0..n <<resource>> Constraint

0..n
0..n

0..n
0..n

<<resource>>

A r g u m e n t

0..n

1..n

0..n

1..n

Support

<<resource>>

0..n

0..n

0..n

0..n

Contradict<<resource>>

0..n0..n 0..n0..n

<<resource>>

D e c i s i o n

0..n
0..n

0..n
0..n<<resource>>

0..n

0..n

0..n

0..n

<<resource>>

0..n

1..n

0..n

1..n

<<resource>>

S t a k e h o l d e r
0..n

1..n

0..n

1..n
<<responsability>>

0..n0..n 0..n0..n <<resource>> 0..n

0..n

0..n

0..n

<<resource>>

1..n

1..n

1..n

1..n

<<responsability>>

Figure 3. The Rational model

In the Rational model, the SUBJECT can be any problem that requires a discussion
or resolution. The problem does not need to be related to a requirement as it could be
related to ORGANIZATIONAL or SYSTEM OBJECTIVES. Various POSITIONs or alternatives that
address the resolution should be considered and for each one of them there will be one
or more ARGUMENTs that will support or contradict it. The relationships support and
contradict indicate that a position can have, as a resource, none or many arguments that
support or contradict it. A DOCUMENT can be a resource of information used as basis to
some ARGUMENT. The resource associations between CONSTRAINT/ASSUMPTION and SUBJECT
expresses that the formers can be resources of information to understand the SUBJECT.
The same happens with the association between CONSTRAINT and DECISION. CONSTRAINT
can also be resources of information to understand a DECISION. There are some

19º Simpósio Brasileiro de Engenharia de Software

57
43

stakeholders who provide an argument and stakeholders who are responsible for the
argument that generates the decision so we have two associations between the classes
ARGUMENT and STAKEHOLDER. The associations are of type resource and responsibility.

As emphasized before, the traceability reference model is a general purpose one.
If we aim to use it in connection with a certain software development approach, e.g.
Tropos, we must then describe a process for guiding the creation of the traceability
matrixes. This process is described in the next section.

4 The Requirements Traceability Process

The main contribution of this paper is to apply this process to the following
Tropos phases: late requirements and architectural design.

In this section we sketch a process which includes three stages as follows:
1.Information Gathering (IG): we identify the information related to the four layers
(external, organizational, management and development) previously described.
2.Information Structuring (ST): consists of two activities. First, we remove the instances
that represent irrelevant information, as well as select instances with the same meaning.
Then, we determine the relationship among the instances.
3.Definition of the Traceability Matrixes (TM): Last but not least, we define the
matrixes that capture and store the relationships among the instances of the classes.

In the sequel, nine guidelines are defined. The first four ones (IG1-IG4) are
related to information gathering. The proper structuring of this collected information is
achieved by means of guidelines ST1 and ST2. The set of valid values for association
instances are defined in ST3. The construction of the appropriate traceability matrixes is
guided by TM1 and TM2.

In this work, we consider that the organizational setting was understood, during the
early requirements phase and that it was decides to develop a software system. In late
requirements phase we extend the conceptual model developed during early
requirements to include the system-to-be. The system is described within its operational
environment, along with relevant functions and qualities. The artifacts produced by this
phase are the Strategic Dependency (SD) and Strategic Rationale (SR) models for the
actor representing the system. During architectural design phase the system’s global
architecture is defined in terms of subsystems, interconnected through data, control and
other dependencies. The artifact produced by this phase is the architectural design
model.

As Tropos is still evolving its detailed design and implementation phases, in this
paper we do not apply the new requirement traceability process to these phases. It is
expected that new guidelines are to be included when these phases is properly
addressed. Now, we can introduce the process guidelines in detail:

Guideline IG1. Appropriate for finding the instances of the Requirements
Management sub-model classes (Figure 1) from the SD diagram of the actor
representing the system. We have the following rules: (1) The actor which has some
dependency relationship with the actor representing the system represents an instance of
the STAKEHOLDER class; (2) If the actor representing the system is the dependee of a
softgoal, resource or task dependency, the dependum is an instance of the REQUIREMENT
class; (3) If the actor representing the system is the dependee of a goal dependency of

19º Simpósio Brasileiro de Engenharia de Software

58
44

the actor representing the organization, then the goal is an instance of the
ORGANIZATIONAL OBJECTIVES class; (4) If the actor representing the system is the depender
of a goal dependency of the actor does not represent the organization, then the goal is an
instance of the SYSTEM OBJECTIVES class; (5) If the actor representing the system is the
depender of a (goal, softgoal, resource or task) dependency, the dependum is an instance
of the EXTERNAL class.

Guideline IG2. Appropriate for finding the instances of the Requirements
Management sub-model classes (Figure1) from the SR diagram of the actor representing
the system. During the means-ends analysis of the actor representing the system, the
following rules apply: (1) Each goal depicted represents an instance of the SYSTEM
OBJECTIVES class; (2) Each task depicted represents an instance of the REQUIREMENT class;
(3) Each softgoal depicted is a non-functional requirement and therefore represents an
instance of the REQUIREMENT class; (4) Each resource depicted is the result of some
functionality associated to a functional requirement which represents an instance of the
REQUIREMENT class.

Guideline IG3. Appropriate for finding the instances of the Rational model
classes (Figure 3) from the process for selecting the proper architectural style. We have
the following rules: (1) An instance of the SUBJECT class represents an issue on which a
decision must be taken; (2) Instances of the POSITION class represent the alternative
solutions for the SUBJECT; (3) An instance of the ARGUMENT class represents some criteria
used for choosing the proper solution; (4) Instances of the ASSUMPTION class represent
facts that must be taken into account for choosing the proper solution; (5) Instances of
the CONSTRAINT class represent limitations/restrictions that must be taken into account for
deciding the proper solution; (6) An instance of the DOCUMENT class represents some
information used as reference for choosing the proper solution.

Guideline IG4. Appropriate for finding the instances of the Design sub-model
classes (Figure 2) from the architectural design model of the system under development.
We have the following rules: (1) Each architectural component represents an instance of
the SUBSYSTEM class.

Having gathered the relevant information, we can now proceed to the next stage
of the requirement traceability process that has to do with structuring the information
(ST):

Guideline ST1. Given a set of instantiated classes of the reference model, we
have to structure them. Hence, we can remove those unnecessary ones. Instances with
the same meaning can also be deleted.

Guideline ST2. For each pair of associated classes in the reference model, we
have to instantiate the association to be later used in the correspondent traceability
matrix. For example if we want to create a traceability matrix to relate REQUIREMENT
instances with ORGANIZATIONAL OBJECTIVES instances we have to instantiate the
<<resource>> association between them (Figure 1).

Guideline ST3. For each instance created in the ST2, we define the set of values
assigned to it. For example, the dependency degree between organizational information
and functional requirements can be evaluated as <H> (High), <M> (Medium) or <L>
(Low).

19º Simpósio Brasileiro de Engenharia de Software

59
45

The last stage of the requirement traceability process is the definition of the
traceability matrixes (TM).

Guideline TM1. For each pair of instantiated classes which are associated in a
reference model, we can create a traceability matrix.

Guideline TM2. For each created matrix, we have to analyze the system
artifacts that are related to the matrix and fill the association which has been instantiated
in a previous stage of the process.

In the sequel we outline the Tropos’ phases through an e-commerce example and
make some remarks on how the traceability issues can be addressed.

5 Case Study

Media Shop is a store selling and shipping different kinds of media items such as books,
newspapers, magazines, audio CDs, videotapes, and the like. Media Shop customers
(on-site or remote) can use a periodically updated catalogue describing available media
items to specify their order. To increase market share, Media Shop has decided to open
up a B2C retail sales front on the Internet. The system has been Medi@ and is available
on the world-wide-web using communication facilities provided by Telecom Cpy. It
also uses financial services supplied by Bank Cpy. The basic objective for the new
system is to allow an on-line customer to examine the items in the Medi@ Internet
catalogue, and place orders.

In the next sections we describe how the requirement traceability process
previously outlined can be used in conjunction with the Tropos phases. After applying
the proposed process to this example, we will be able to justify the existence of each
requirement in the Medi@ system, as well as, the selection of a specific architectural
style applied in the system architecture design

5.1 Applying guidelines for Information Gathering (IG)

The description provided in the previous section is sufficient for producing a
model of an organizational environment. For details, see [Giorgini, Kolp, Mylopoulos,
Castro 2005]. Having understood the organizational setting one can now decide to
develop a software system to support it. As shown in Figure 4, actors are represented as
circles; dependums -- goals, softgoals, tasks and resources -- are respectively
represented as ovals, clouds, hexagons and rectangles; and dependencies have the form
depender dependum dependee.

In late requirements phase we extend the conceptual model developed during
early requirements to include the system-to-be, i.e., the Media@. As late requirements
analysis proceeds, Medi@ is given additional responsibilities, and ends up as the
dependee of several dependencies including Availability, Security and Adaptability
softgoals (Figure 4). For more details about the evolution of the models provided by
Tropos see [Giorgini, Kolp, Mylopoulos, Castro 2005].

According to the guidelines presented in previous section, we begin to perform
the traceability process from the late requirements phase. Applying Guideline IG1, we
conclude that all the actors depending on (or depended upon) the actor representing the
system (Medi@ actor in Figure 4) corresponds to stakeholders, information to be
regarded in the traceability process, since they will use the system and/or be used by the

19º Simpósio Brasileiro de Engenharia de Software

60
46

Increase
Market Share

Buy Media
Items

Browse
Catalogue

Telecom
Cpy

Media
Supplier

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Adaptability

Availability

Continuing
Supply

system. Thus, Media Shop, Customer Media Supplier, Telecom Cpy and Bank Cpy are
instances of the STAKEHOLDER class. This association is extremely important in the
requirement traceability process because it stores information about the stakeholders
and their contributions to the system. When a change is required, the correspondent
stakeholders can be questioned about possible doubts as well as conflicts can be
resolved. The incoming softgoal, resource or task dependencies of the actor representing
the system (Medi@ actor in Figure 4) correspond to requirements, i.e. they are
needs/requests to the system. Thus, Availability, Adaptability and Security softgoals,
Browse Catalogue, Keyword Search and Place Order tasks (Figure 6) are instances of
the REQUIREMENT class.

Figure 4.Strategic Dependency Diagram for Medi@ System

The incoming goal dependencies of the actor representing the system (Medi@
actor in Figure 4) from the actor representing the organization (Media actor in Figure 4)
correspond to organization objectives, i.e. they are needs/requests to the system. Thus,
Process Internet Orders (Figure 4) is an instance of the ORGANIZATION OBJECTIVE class.
The incoming goal dependencies of the actor representing the system (Medi@ actor in
Figure 4) from the actor not representing the organization (Media Supplier actor in
Figure 4) correspond to system objectives, they are needs/requests to the system. Thus,
Find New User Needs goal (Figure 4) is an instance of the SYSTEM OBJECTIVE class.

All the outcoming dependencies of the actor representing the system (Medi@
actor in Figure 4) correspond to external information, i.e. they are needs/requests from
the system to the environment. Thus, Internet Services and Process On-line Money
Transactions are instances of the EXTERNAL class.

19º Simpósio Brasileiro de Engenharia de Software

61
47

After a means-ends analysis of the Medi@ actor, we define the Strategic
Rationale (SR) model (Figure 5). Now, we introduce softgoal contributions to model
sufficient/partial positive (respectively ++ and +) or negative (respectively -- and -)
support to Security, Availability, Adaptability, Attract New Customers and Increase
Market Share softgoals.

Figure 5. Strategic Rationale diagram for Medi@

Applying Guideline IG2 of the proposed process, we find that all the goals
resulting from means-ends analysis of the Medi@ actor (Figure5) correspond to system
goals, i.e. they are the state of affairs the system aims to achieve through its
functionalities. Thus, Internet Orders Handled, Item Searching handled, Classic
Communication Handled and Internet Handled goals (Figure 5) are instances of the
SYSTEM OBJECTIVES class. All softgoals resulting from means-ends analysis of the Medi@
actor (Figure 5) correspond to requirements, they are non-functional requirements that
the system must to satisfy. Thus, Adaptable, Attract New Customer, Available and
Secure softgoals (Figure 5) are instances of the REQUIREMENT class. All the tasks
resulting from means-ends analysis of the Medi@ actor (Figure5) correspond to
requirements, they are operations that the system should able to perform. Thus, Update
Catalogue, Produce Statistics, Internet Shop Managed, Database Querying, Catalogue

Internet

Available

Process

++

Place

Availability

-

++

Form

+

Media

Order

On-line
Money

Transactions

Process

Get

Buy

Secure

-

-
Search

Keyword

Catalogue

Consulting

+

Browse

Media

+

-

+

Cpy
Telecom

Detail

Order

++

Market Share

Cpy
Bank

Media
Shop

Orders

Items

Supplier

Catalogue

Secure

Catalogue

Identification

Customer
Attract New

Customer
Produce
Statistics

Update

Services

Shop

Internet
Handled

Adaptation

Increase

Item

Internet

Managed

Security
Adaptability

Medi@

Find User
New Needs

Internet

Orders
Handled

Internet

Handled
Searching

Order

MonitoringSystem

Available Non Available
Pre-Order

Item

System
Database

Communication

Shopping
Cart

Querying

Classic

Evolution

Item

Order

Form

Fax

Pick

Phone

Check Out

Order

Adaptable

Standard

Handled

Add Item
Select Item

Update GUI

19º Simpósio Brasileiro de Engenharia de Software

62
48

Consulting, Secure Form Order, Standard Form Order, Get Identification Detail,
Check Out, Add Item, Select Item, Adaptation, System Evolution, Monitoring System,
Update GUI, Shopping Cart, Phone Order, Fax Order and Pre-Order Non Available
Item tasks (Figure 5) are instances of the REQUIREMENT class. The details about the
traceability of means-ends analysis of the system actor Medi@ (Figure 5) is described
in [Pinto, Silva and Castro 2005].

Now we can design the proper system architecture aiming to meet the non-
functional requirements previously defined. Hence, we present the requirement
traceability process applied on the Tropos architectural phase in order to show how the
design information and management decisions can be traced.

The software quality attributes (Availability, Security, and Adaptability), which
we have highlighted in the SD diagram of the Late Requirements phase (Figure 6), will
guide the selection process of the appropriate architectural style [Kolp, Giorgini and
Mylopoulos 2002]. The Rational model (Figure 3) captures this information. It will be
useful to justify the decision taken.

To cope with non-functional requirements (NFRs) (software quality attributes or
softgoals) and select the architectural style for the system, we go through a means-ends
analysis (see [Kolp, Giorgini and Mylopoulos 2002] for more details) using the NFR
framework [Chung, Nixon, Yu and Mylopoulos 2000]. We refine the identified non-
functional requirements to sub-requirements that are more precise and evaluate
alternative organizational styles against them. The result is a Correlation Catalogue
[Kolp, Giorgini and Mylopoulos 2002] (using the notation of NFR framework (++, +, --,
-)) which demonstrates the suitability or not of certain architectural styles for the
required NFRs.

Accordingly to the Correlation Catalogue (Table 1) provided in [Kolp, Giorgini
and Mylopoulos 2002], the lines are the softgoals (i.e. non-functional requirements –
NFR) to be fulfilled and the columns are some architectural organizational styles.

Table 1.Correlation Catalogue

Structure-in-5 Pyramid Joint Venture Bidding

Predictability + ++ + --
Security + ++ + --
Adaptability + ++ ++
Cooperativity + ++ + -
Competitivity - - - ++
Availability + + ++ --
Failability-Tolerance -- ++
Modularity ++ - + +
Aggregability ++ ++

For simplicity we assume that the architectural style selection was based only on
the use of the softgoalsand the Correlation Catalogue. We can use the Guideline IG3 to
record the decision taken. Of course a richer set of information could equally be
used/recorded to select the architectural style.

19º Simpósio Brasileiro de Engenharia de Software

63
49

Applying Guideline IG3 of the proposed process, we find that the issue on
which a decision must be made in architectural design phase is the selection of the
proper architectural style to be used. Thus, this selection process is an instance of the
SUBJECT class in the Rational model (Figure3). The alternative solutions for the selection
process are the architectural styles available in the literature. Hence, each architectural
style is an instance of the POSITION class in the Rational model. The criteria used for
deciding the proper solution is the non-functional requirements have been found in Late
Requirements phase of Tropos. Thus, each non-functional requirement is an instance of
the ARGUMENT class in the Rational model. Choosing the proper architectural style based
on organizational approach and not based on traditional architectural styles is a fact
taken into account in the selection process and therefore represents an instance of the
ASSUMPTION class in the Rational model. The information taken as reference for choosing
the proper organizational architectural style is the Correlation Catalogue which
represents an instance of the DOCUMENT class in the Rational model. Now we can apply
the architectural style Joint Venture in the system and find the architectural model
depicted in Figure 6.

Figure 6. Architectural model for Medi@

Applying Guideline IG4 of the proposed process, we conclude that each
architectural components of Medi@ (Store Front, Back Store, Joint Manager and Order
Processor) is an instance of the SUBSYSTEM class of the Design sub-model (Figure2).

5.2 Applying guidelines for Information Structuring (ST)

Having gathered all the relevant information, we can now structure it according to the
second stage of the requirement traceability process. For simplicity we will not
explicitly show the deletion or review some gathered instances performed according to
Guideline ST1. Applying Guideline ST2, we can, for example, define an instance of
the <resource> relationship between REQUIREMENT and ORGANIZATIONAL OBJECTIVES classes

19º Simpósio Brasileiro de Engenharia de Software

64
50

in the Requirements Management model (Figure 1). The influence between
organizational information and functional requirements can be evaluated as <H> (High),
<M> (Medium) or <L> (Low).

We also can define an instance of the <resource> association between POSITION
and ARGUMENT classes in the Rational model (Figure 3). The relationship used in the
NFR framework (++, +, --, -) can be mapped to the <resource> association (Table 2), as
<support, S>, <support, P>, <contradict, P>, <contradict, S>, respectively (read S as
sufficient and P as partial).

Table 2. Instances of the association between positions and arguments

++ (make) <support, S>

+ (help) <support, P>

- (hurt) <contradict, P>

-- (break) <contradict, S>

Similarly we can define an instance of the <responsibility> association between
REQUIREMENT and SUBSYSTEM classes in the Design sub-model (see Figure 2).
The association between functional requirements and architectural components can be
instantiated as <RB> (read RB as Realized By).

5.3 Applying guidelines for defining the Traceability Matrixes (TM)

Having structured all the gathered information, we can now create traceability
matrixes according to the third stage of the requirement traceability process. Applying
the Guidelines TM1 and TM2, we can, for example, create a traceability matrix
between instances of the REQUIREMENT and ORGANIZATION classes (Table 3), of
the Requirement Management sub-model (Figure 1).

Table 3. Traceability matrix between functional requirements and organizational
information

<resource>

[O
R

G
1]

 I
nc

re
as

e
M

ar
ke

t S
ha

re

[O
R

G
2]

 H
ap

py

C
us

to
m

er
s

[O
R

G
3]

C
on

tin
uo

us

Su
pp

ly
[O

R
G

4]
M

ed
ia

It
em

s
[O

R
G

5]
R

un
ni

ng

Sh
op

[O
R

G
6]

 R
un

 S
ho

p

[O
R

G
7]

Im
pr

ov
e

Se
rv

ic
e

[O
R

G
8]

H
an

dl
e

B
ill

in
g

[O
R

G
9]

 H
an

dl
e

C
us

to
m

er
 O

rd
er

s

[O
R

G
10

]
O

rd
er

 b
y

In
te

rn
et

[O
R

G
11

]
E

nh
an

ce

C
at

al
og

ue

[O
R

G
12

]
E

tc
...

[RF1] Browse Catalogue M M M M

[RF2] Keyword Search M M M M

[RF3] Place Order M M M

[RF4] Process Internet
Orders

 H H H H

[RF5] Etc... L L L L L

By analyzing that matrix, we can conclude that the number of relationships
between one requirement and all organizational information determine the most critical
requirements. We can also conclude that the organizational information not related to
the requirements in the traceability matrix can be disregarded. Moreover, if some
organizational information is changed, the impact in the system requirements can be
analyzed.

19º Simpósio Brasileiro de Engenharia de Software

65
51

Table 4 presents a traceability matrix between instances of the POSITION and
ARGUMENT classes of the Rational model (Figure 3), created according to the third
stage of the requirement traceability process (section 3).

This matrix shows that the Joint Venture style fully supports, Availability and
Adaptability, whereas the NFR Security is only addressed in a moderate fashion. By
analyzing that matrix, we can conclude that non-functional requirements have a strong
influence in the proper choice of the architectural style. Therefore, if some non-
functional requirement is added or excluded in a newer version of the Medi@ system, it
may impact in the fulfillment of the system’s quality requirements hence, a new
selection of an architectural style may be required in order to better satisfy the non-
functional requirements. This kind of impact analysis is very important to be conducted.

Table 4. Traceability matrix between positions and arguments

<resource> [POS1]Pyramid [POS2] Joint Venture [POS3] Co-optation

[ARG1] Availably <support, P> <support, S> <contradict, P>

[ARG2] Security <support, P> <support, P> <contradict, P>

[ARG3] Adaptability <support, P> <support, S> <support, S>

Table 5 presents a traceability matrix between instances of the REQUIREMENT
and SUBSYSTEM classes of the Design sub-model (Figure 2).

Table 5. Traceability matrix between functional requirements and architectural
components

<responsibility>

[S
U

B
1]

 F
ro

nt
 S

to
re

[S
U

B
2]

 B
ac

k
St

or
e

[S
U

B
3]

 J
oi

nt
 M

an
ag

er

[S
U

B
4]

 O
rd

er
 P

ro
ce

ss
or

[RF1] Database Querying RB
[RF2] System Evolution RB
[RF3] Get Identification Detail RB
[RF4] Add Item RB
[RF5] Etc… RB

Through that matrix, we can easily find the subsystem where a specific
requirement is implemented. Thus, if some requirement is to be changed, the software
engineers will spend less time looking for the subsystem(s) to be changed. They can
query the traceability matrix, find the target subsystem(s) and perform the costs analysis
of the required change before taking the decision for implementing it.

The SR model describes the intentional relationships that are “internal” to actors,
such as means-ends relationship and task decomposition [Yu 1995]. By using
traceability matrixes one can easily find these means-ands relationship and task
decomposition. For details see [Pinto, Silva and Castro 2005].

In the sequel we present some related work as well as a comparison with our
approach.

19º Simpósio Brasileiro de Engenharia de Software

66
52

6 Related Work

Ramesh [Ramesh and Jarke 2001] introduces the reference model to trace requirements.
This model enables the user to extract and adapt their elements to construct his/her own
requirement model for a specific project. Our work considers the social aspects and
includes new concepts such as task, and resource relationship which improves the
semantic of the model. Gotel [Gotel 1996] presents one result of the empiric work
related to the identification and understanding of the problems and practices associated
with the requirements traceability. She divided the traditional requirement into pre-
requirement and pos-requirement traceability. Our proposal presents a reference-model
which aids of the identification, discussion and building of the traceability model.
Besides this, it expresses explicitly the external and organizational aspects. Toranzo
[Toranzo 2002] introduces one set of types relationship and structures the information
that will be traceable in levels (external, organizational and managerial) to improve the
semantic of requirement traceability. Our work goes beyond Toranzo’s work to include
a process to be followed during the development of the traceability model. Cysneiro
[Cysneiro Filho, Zisman and Spanoudakis 2003] presents an approach that can be used
to generate traceability relations between organizational models specified in i* and
software systems models represented in UML. Our work considers a reference model
which supports building traceability matrixes for agent based system. Haumer [Haumer
2000] extends the type of Pre-requirements Traceability defined by Gotel [Gotel 1996]
by recording concrete system usage scenarios using rich media (e.g. video, speech,
graphic) and interrelating the recorded observations with the conceptual models.
Besides the elicitation and validation phase, we consider the other phases of the
software development lifecycle, e.g. late requirement and architectural design phases.

All the above works contributed to improve the requirements traceability in
some aspects. Our proposal outlines a process to help the software engineer to find and
follow the necessary information to be traceable in a specific project using the Tropos
methodology. By using this process we can register the whole “history” of a
requirement in an agent-oriented system, from the motivations for the requirement
existence until its implementation and test routines.

7 Conclusions

It is well known that software traceability is a significant factor of efficient
software project management and software systems quality [Castor, Pinto, Castro and
Silva 2004]. In this work we outline a requirement traceability process to be used in the
context of Tropos.

In this paper, we have proposed an approach which aims to support traceability
through requirements specifications, system architecture models, static and dynamic
software design models and implementation artifacts of agent-oriented software
systems. Our purpose is to be able to perform an impact analysis before the
implementation of a requested change. This is possible because the requirements
impacted by the change can be detected since the links between these requirements and
other system’s artifacts, such as design and implementation ones, can be traced. Hence,
software quality can be improved since we can check if all stakeholders’ requirements
are addressed by the system. Moreover, estimating change and effort become more
accurate and consequently we can minimize the time and cost of software maintenance.

19º Simpósio Brasileiro de Engenharia de Software

67
53

Nowadays, we are working on the traceability of the means-ends analysis used
in the Tropos approach. Our requirement traceability process is still evolving and
further guidelines to support both the detailed design and implementation phases need to
be defined. Instantiating all the classes of the three reference models (Requirement
Management and Design sub-models and Rational model) for each phase of Tropos is
also required. To support this requirement traceability process, a proper CASE tool still
needs to be developed.

8 References

Booch, G., Rumbauch, J. and Jacobson, I. (1999) The Inified Modeling Language User
Guide. Addison-Wesley: Reading, MA.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A. (2004)
“Tropos: An Agent -Oriented Software Development Methodology'”, in Autonomous
Agents and Multi –Agent Systems 8 (3): 203-236, May 2004.

Castor, A., Pinto, R., Castro, J. and Silva, C. (2004) “Towards Requirement
Traceability in TROPOS”, in Proc. of the VII Workshop on Requirements
Engineering (WER’04), Tandil, Argentina.

Castro, J., Kolp, M. and Mylopoulos, J. (2002) “Towards Requirements-Driven
Information Systems Engineering: The Tropos Project”. Information Systems
Journal, Elsevier, Vol 27, pp. 365-89.

Chung, L. K., Nixon, B. A., Yu, E. and Mylopoulos, J. (2000) “Non-Functional
Requirements in Software Engineering”, Kluwer Publishing.

Cysneiros Filho, G., Zisman, A. and Spanoudakis, G. (2003) “Traceability Approach for
I* and UML Models”, in Proceedings of 2nd International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems (SELMAS’03), Portland, May
2003.

Giorgini, P., Kolp, M., Mylopoulos, J. and Castro, J. (2005) Tropos: “A Requirements-
Driven Methodology for Agent-Oriented Software”. Book Chapter. In Agent-
Oriented Methodologies. ed.: Idea Group, p. 20-45.

Gotel, O. (1996) “Contribution Structures for Requirements Engineering”. PhD Thesis.
Department of Computing, Imperial College of Science, Technology, and Medicine,
London, U.K.

Haumer, P. (2000) A Framework to Improve Requirements Traceability. Ph.D thesis,
Informatik V. RWTH Auchen, Auchen, Germanyl, Octuber 2000.

Kolp, M., Giorgini, P. and Mylopoulos, J.(2002) “Information Systems Development
through Social Structures”, in Proc. of the 14th Int. Conf. on Software Engineering
and Knowledge Engineering (SEKE’02), Ishia, Italy.

Pinheiro, F. A. C. (2003) “Requirements Traceability”, Chapter of the Book
Perspectives On Software Requirements. Kluwer Academic Publishers.

Pinto, R., Silva, C. and Castro, J. (2005) “A process for Requirement Traceability in
Agent Oriented Development” in Proceedings of WER 2005. Workshop on
Requirements Engineering, Porto, Portugal, pp 221-232

19º Simpósio Brasileiro de Engenharia de Software

68
54

Ramesh, B. and Jarke, M. (2001) “Towards Reference Models For Requirements
Traceability”. IEEE Transactions on Software Engineering, vol. 27, pp. 58-93,
January 2001.

Toranzo, M. and Castro, J. (1999) “A Comprehensive Traceability Model to Support the
Design of Interactive Systems”, in WISDOM´99 - International Workshop on
Interactive system Development and Object Models, 1999, Lisboa. 1999. Also
described in NUNES, N., et all, Interactive System Design and Object Models In:
International Workshop on Interactive System Development and Object Models,
1999, Lisboa. ECOOP’99 - Workshop Reader. London: Springer verlag - Lecture
Notes in Computer Science LNCS, 1999. v.1743. p.267 – 287

Toranzo, M. (2002) “A Framework to Improve Requirements Traceability” (in
Portuguese: Um Framework para Melhorar o Rastreamento de Requisitos). Ph.D
thesis, Universidade Federal de Pernambuco, Centro de Informática, Brazil,
December 2002.

Wooldridge, M. (1999) Intelligent Agents, in G. Weiss, editor. Multiagent Systems, the
MIT Press, April 1999.

Wooldridge, M. J. (2002) Introduction to Multiagent Systems. John Wiley and Sons,
New York, NY, USA.

Yu, E. (1995) “Modelling Strategic Relationships for Process Reengineering”. Ph.D
thesis, University of Toronto, Department of Computer Science.

Zisman, A., Spanoudakis, G., Pérez-Miñana, E. and Krause, P. (2003) “Tracing
Software Requirements Artefacts”, in The 2003 International Conference on
Software Engineering Research and Practice (SERP 2003) in conjunction with The
International Multiconference in Computer Science and Computer Engineering, Las
Vegas, June 2003

19º Simpósio Brasileiro de Engenharia de Software

69
55

	AnaisSBES
	Sessões Técnicas SBES (ST)/ Technical Sessions (TS)
	ST1 – Requisitos
	Support for Requirement Traceability: The Tropos Case

