
An MDA Domain Specific Architecture to Provide
Interoperability Among Collaborative Environments

Rita Suzana Pitangueira Maciel1,2, Carlos Guimarães Ferraz1, Nelson Souto Rosa1

1Universidade Federal de Pernambuco, Centro de Informática
50732-970 Recife, Pernambuco, Brazil

2Faculdade Ruy Barbosa
41940-320 Salvador, Bahia, Brazil

e-mail {rspm, cagf, nsr@cin.ufpe.br},{rsuzana@frb.br}

Abstract. A Domain Specific Architecture (DSA) is generic architecture for a
family of application system, a problem or a task area. Middleware specific
services are tailored to the requirements of particular domain. Through a
development process that uses the Object Management Group Model-Driven
Architecture (MDA), this paper presents the InterDOC, a domain-specific
architecture that includes specific middleware services to provide
interoperability in the collaborative authoring domain. The MDA’s UML
profile Enterprise Distributed Object Computing (EDOC) is used to achieve a
platform-independent specification that could be mapped into various specific
environments, and to domain-conceptual modelling.

Resumo. Uma Arquitetura para Domínio Específico é uma arquitetura
genérica para uma família de aplicações, um problema ou uma determinada
área. Serviços específicos de middleware satisfazem os requisitos de um
determinado domínio. Através de um processo de desenvolvimento que utiliza
MDA(Model-Driven Architecture) da OMG(Object Management Group), este
artigo apresenta uma arquitetura para domínio específico baseada em
serviços de middleware para prover a interoperabilidade no domínio da
autoria colaborativa. O perfil UML EDOC(Enterprise Distributed Object
Computing) é utilizado para obter uma especificação independente de
plataforma que pode ser mapeada para vários ambientes específicos, e para a
modelagem conceitual.

1. Introduction
The number of tools to support software development has grown a lot in the last decade.
However, the design and implementation of complex applications still continue to be
expensive and the final users’ satisfaction is still low compared to the accomplishment
of the specified functional requirements. Much of the cost and effort resides in the
continuous process of rediscovering and reinvention of core concepts and key
components across the software industry. In other words, to each new application to be
developed, little is reused in relation to the experience of the development of
applications of the same domain (Fayad, 1999).

19º Simpósio Brasileiro de Engenharia de Software

134
120



Several approaches for software development are being proposed to capture a
domain and to reuse in future developments. Domain-specific architectures (Taylor,
1995) and specific middleware services (Schmidt, 2001) are some approaches proposed
to facilitate the development of applications of a same domain. The modeling of the
stable aspects of the domain is an important and fundamental aspect of these
approaches.

Modeling is an essential and crucial issue in software construction. However, in
most of software development methodologies, models are only used in the initial phases
of the development process. Several models became outdated due to software evolution
and maintenance. Another issue is that, as the technology becomes more and more
complex, modeling is increasingly necessary in software development in order to be
productive (Broy, 2004).

In Model-Driven Engineering (MDE) (Guelfi, 2003), models are not only used
as software documentation, but also as a building tool. They became the development
process backbone. Each development process phase takes a number of input models that
produce some output models. Hence, the process of building an application can be seen
as a series of model transformations until the final system. The Model-Driven Software
Development (MDSD) (Frankel, 2004) enables reuse at the domain level, and
potentially increases quality as models are successively improved, reduces costs when
using an automated process, and increases software longevity. The aim is that models
become assets instead of expenses (Mellor, 2004).

One of the most known initiatives in this scenario is the Model-Driven
Architecture (MDA) (OMG, 2003), which is an approach to system specification and
interoperability based on UML models. MDA proposes the construction of a given
application based on generic models. Specific implementations should follow such a
model. The construction of a distributed application based on MDA starts with the
definition of a middleware-independent model called PIM (Platform Independent
Model). Then, a model named PSM (Platform Specific Model) is defined according to
the middleware the application will be implemented on (e.g., CORBA, CORBA/CCM,
EJB, DCOM).

Although collaborative authoring is a much-studied domain, its supporting tools
are not usually interoperable. Consequently, authors have to use a single environment to
obtain the benefits of computer-supported cooperation. This aspect is extremely
limiting, as authors need to adapt to new aspects of computer-aided collaboration while
she/he have to learn new mechanisms (e.g., editors, e-mail tools, interfaces) that may
not be familiar to them (Noel, 2004). In some situations, due to the huge effort to adapt
to a new environment, organizations discard the use of cooperative work supporting
environments in the authoring task.

The existence of a vast diversity of collaborative authoring tools makes the
implementation of interoperability an expensive task, due to both (1) the heterogeneity
of hardware and software platforms that host them and (2) the number of specific
solutions (frameworks, protocols, APIs, components, etc) that some environments make
available to enable this requirement (Li, 2003; Tietze, 2001). In addition, these solutions
create platform- or language-dependent
environments because they take domain information into little
consideration, i.e., they are very much related to low-level issues
such as windows system output, operating systems etc. A specific development and
implementation process could be necessary for each new collaborative authoring

19º Simpósio Brasileiro de Engenharia de Software

135
121



environment, in order to provide interoperability between them. In that case, the cost of
the development to provide such interoperability becomes very high.

This paper presents the domain-specific architecture (DSA) of InterDOC
(Environment for Supporting Interoperability among Collaborative Document
Authoring Tools). This architecture defines domain-specific middleware services to
provide interoperability in the collaborative authoring domain. To attain a generic and
platform-independent model, the reference architecture is specified as an MDA PIM.

The models of the InterDOC architecture are described based on MDA’s UML Profile
for Enterprise Distributed Object Computing (EDOC) (OMG 2002), using the concepts
of viewpoints defined in RM-ODP (Open Distributed Processing-Reference Model)
(ISO, 2005).

The rest of this paper is organized as follows: next section introduces the DSA
development process. Section 3 gives an overview of the Collaborative Authoring.
Section 4 MDA views of the InterDOC reference architecture (PIM). A platform-
specific model of InterDOC and its practical experiences is given in Section 5. In the
last section, we summarize the contribution this work together some steps for further
developments.

2. The DSA Development Process
Several proposals use MDA to model a specific domain (Wang, 2003; Guelfi, 2003a)
Even though they use MDA, they do not use the OMG profiles like EDOC, EAI
(Enterprise Application Integration, OMG), etc. The use of the profiles proposed by the
OMG guarantees, in a more extensive fashion, the interoperability of MDA-based
models. Methodologies and tools that assist in the development of applications and use
EDOC or other sub-profiles proposed by the OMG will have the same conceptual and
notational framework. This aspect facilitates the reading of models both by development
teams and by process automation tools.

The DSA is specified as an MDA PIM and EDOC is the profile used. EDOC
profile is based on UML 1.4, and its objective is to simplify the development of
component systems. EDOC presents a modelling framework that provides a platform-
independent and recursive collaboration based modelling approach that can be used at
different levels of granularity and different degrees of coupling, for both business and
systems modelling. A set of sub-profiles composed EDOC profile. The Business,
Entities and Component Collaboration Architecture (CCA) were the sub-profiles chosen
to compose our development process.

EDOC optionally proposes the use of the concept of viewpoint defined in the
RM-ODP to achieve a specification that addresses a number of distinct sets of concerns
(e.g. system behaviour, structure, semantics and infrastructure). RM-ODP divides a
system into five viewpoint specifications, namely Enterprise, Information,
Computational, Engineering and Technology views. The Enterprise view is concerned
with the business activities of the specified domain. It describes the purpose, scope and
policies of the domain where the specific middleware service should be used. The
Information view defines the information that needs to be stored and processed in the
middleware services. Computational View is concerned with the description of the
system as a set of objects that interacts at interfaces enabling system distribution. This
view describes the service’s interfaces and the components that provide the service’s
functionalities. The Engineering view is a viewpoint on the domain and its environment
that focuses on the mechanisms and functions required to support distributed interaction

19º Simpósio Brasileiro de Engenharia de Software

136
122



between objects in the system. The Technology View focuses on the system and its
environment that focuses on the choice of technology in that system (ISO 1995).

Although EDOC and RM-ODP framework offer a set of tools that permit the
specification of a system based on high abstraction models, they do not offer a guide to
orient developers in the application of these concepts. Together they provide a set of
definitions and notations, but not a process with well-defined steps to be followed
(Gervais, 2002). In order to guide the InterDoc development, a development process
was defined (Maciel, 2005). Three categories of model should be specified: Domain,
Design and Operational (Figure 1).

The Domain Model corresponds to the context (collaborative authoring domain)
in which the service should be applied. The scope and responsibilities of the application
are defined in this model via the functional requirements initially established for the
application. The services to be offer and the information handled by the application
should be defined in this model. The Design Model describes the Computational view
for the specified Domain model. This model identifies the service’s interface and the
components that provide the requirements established in the domain model,
independently of the platform. The non-functional requirements of the application
should be observed on this occasion to identify elements for the performance thereof.
The Domain and Design models form PIM as described in MDA.

PIM
Domain Model Design Model

PSM
Operational Model

Engineering
View

Technology
View

Mapping
Rules

Enterprise
View

Information
View

Computational
View

Application
Functional
Requirements

Process
Information’s
Necessity

Information
Model

Business
Process Model

Application Non-Functional Requirements

Component
Structures Models

Platform Facilities Specification

Figure 1. The Development Process Model (Maciel, 2005)

The Operational Model describes the application execution environment on a
specific platform and corresponds to the specification of Engineering and Technology
Views. The characteristics of the implementation platform chosen are considered in this
model to reflect the real execution environment. The Operational Model form PSM as
described in MDA. Our current InterDOC version is implemented in CORBA
Component Model (CCM), so the PSM reflects this choice. PSM will be detailed in
Section 4.

Our development process uses a subset of EDOC sub-profiles meta-models. The
application’s objectives, politics and restrictions specification, that is part of the
Enterprise view concepts, should be specified. EDOC doesn’t provide mechanisms to
represent enterprise community behaviour at highest levels of abstraction. Hence, we
use a set of UML use case diagram proposed in (ISO 2004), which identify the possible
process to model this aspect.

19º Simpósio Brasileiro de Engenharia de Software

137
123



Performer Artifact Responsible Party

ProcessFlowPort

Business Process Process Role

Port
(from CCA)

Activity
1..n

1..n

1..n

1..n 0..n0..n +responsibleFor 0..n0..n

0..n0..n
+usesArtifact 0..n0..n

0..1
0..n +performedBy

0..1
0..n

0..n

1..n

0..n

1..n

ProcessMultiPort

Figure 2.Business Profile Meta-model Subset.

The Business Process Profile is the EDOC sub-profile that should be used to
model the Enterprise view (Figure 2). This sub-profile permits design models that
present the structure and behaviour of the application in the environment where it is
inserted. The domains functionalities are described in terms of Business Process (BP)
that specifies a complete business task. A BP may contain Activities, which are the
pieces of work required to complete a task. Data flows connect different BPs, and
Activities in a BP, defining temporal and data dependencies between these elements.
These data flows are modelled as Port. A ProcessFlowPort represents data used in
Activity input/output. A ProcessMultiPort represents a set of related data. A
ProcessRole defines a placeholder for behaviour in a context. Performer, Artefacts and
ResponsibilityParty extends ProcessRole. Performer is specifically for identifying an
entity that performer the Activity to which it is associated. Artefacts are an entity that is
need by an Activity as a resource. ResponsabiltyParty is an entity that has responsibility
for the Activity to which it is associated.

The Entities Profile is the EDOC sub-profile that should be used to model the
Information View. A central concept of the Entities Profile is an EntityData. An
EntityData is a structure of data that represents one definitive concept of the application
domain. An EntityData is equivalent to an entity or a relation in the relational model.
CompositeData is a primitive data type (e.g. integer, string, char,etc) composed of
others types in the form of attributes.

Component Collaboration Architecture (CCA) is the EDOC sub-profile that
should be used for model Computational View (Figure 3).

Interface

OperationPort

ProcessComponent

PortOwner

Port

Data Element

FlowPort

0..1

n

+type
0..1

n

Init Role

Responsible Role

Protocol
1

0..1
+initiator

1

0..1

1

0..1
+responder 1

0..1

ProtocolPort

0
+uses

0

MultiPort

Figure 3 CCA Profile Subset.

PortOwner is an abstract metaclass used to group the meta-class that own ports.
ProcessComponents and Protocol. A Process Components (PC) represents an active

19º Simpósio Brasileiro de Engenharia de Software

138
124



processing unit that has a group of ports to interact with another PC. Each component is
detailed in terms of ports and its protocols. A Protocol specifies the messages the
component sends and receives in the collaboration with another component. A port
defines a point of interaction between ProcessComponents.

A Port is a generalization of FlowPort, ProtocolPort and OperationPort. The
simpler form of port is the FlowPort, which may produce or consume a single data type.
A FlowPort defines a data flow in or out on the behalf of the component or protocol.
More complex interactions between components use a ProtocolPort, which refers and
define the use of a Protocol, a complete conversation between components. Since a
Protocol has two roles (initiator and responder), the direction is used to determine which
role the ProtocolPort is taken on. OperationPorts represents request-reply semantics.

An Interface is a Protocol specialization that represents a standard object
interface. Each OperationPort or FlowPort in the Interface will map into a method. A
ProtocolPort that initiates the Interface will call the interface. A ProtocolPort that
responds will implement the interface.

The development process also suggests a set of diagrams that should be made to
specify the RM-ODP views and consequently the proposed models (Table I).

Table I – The Development Process Diagrams

3. InterDOC: Interoperating Heterogeneous Collaborative Writing
Environments

Several studies reveal that people write in a collaborative way because it is more
productive. Among the advantages of collaborative writing there are getting several
viewpoints, getting different expertise, reducing error and obtaining a better, more
accurate text. The disadvantages are related to the management of the task that involves
a group (Kim, 2001). Usually in a group a leader is revealed, that initially accomplishes
a fast task planning. In this planning are defined the group’s memberships, their roles
(reviser, comment, etc), document’s format, document control (centralized, relay,
shared, etc) and even a writing strategy (single writer, separate writer, joint writing,

Enterprise View Standard UML and Business
Profile

Objective Definition Use Case Diagram
Main Policies and Restriction Text
Business Process Composition Class Diagram

Activity Composition Class Diagram
Activity Port Composition Class Diagram

Business Process and Activity
behavior

Activity Diagram

Information View Entity Profile
Entities Data Definition Class Diagram

Composite Data Definition Class Diagram
Computational View CCA Profile

Architecture Structure Class Diagram
Component Structure Class Diagram
Protocol Specification Class Diagram

Protocol Structure Class Diagram
Protocol Description Sequence or Collaboration

Diagram
Protocol Choreography Activity Diagram

19º Simpósio Brasileiro de Engenharia de Software

139
125



scribe, etc). In most of the processes all these aspects can be modified along the
production of the text.

The collaborative authoring process is normally divided into the planning,
authoring, proofreading, edition and closing phases among others. Due to the
particularities of the phases that constitute this process, supporting the entire
collaborative document creation process has been recognized as a complex task (Noel,
2004). Tools support either specific phases or tasks of collaborative authoring. For
applications such as CSCW (Computer Supported Cooperative Work) and CSCL
(Computer Supported Collaborative Learning), collaborative authoring is a secondary
functionality among several others performed by the application. Nevertheless, the
collaborative authoring of documents is the main activity in applications like
cooperative editors. Applications that support any phase of the collaborative authoring
process will be referred to CASA (Collaborative Authoring Supporting Application).

Due to their quantity and diversity, CASAs are not usually interoperable. Hence,
authors have to make a choice: to use one or several environments to write documents.
By using a single environment, authors opt to obtain the benefits of computer-supported
cooperation. However, this choice is extremely limiting, as authors need to adapt to new
aspects of computer-aided collaboration while she/he have to learn new mechanisms
(e.g., editors, e-mail tools, interfaces) that may not be familiar to them (Noel, 2004). By
using several environments, all the context information (e.g. groups, author’s roles,
permissions, shared workspaces, realized activities, etc) has to be managed without an
automated support, or inserted several and repeated times in each different environment.

Researches reveal that in the majority of collaborative authoring process (75%),
an author writes the initial draft of the document, and the collaboration actually starts in
the subsequent phases when other authors revise, make notes, make comments and/or
edit the document (Kim, 2001). The collaboration effectively starts in the asynchronous
activities of a document construction. Hence, the use of groupware tools is largely
asynchronous (Steves, 2001).

InterDOC allows various asynchronous activities of the authoring process to be
executed in different tools. InterDOC should be an intermediary layer positioned
between the CASAs and their repositories, promoting interoperability among various
environments. Groups of authors can hold synchronous or asynchronous sessions for
planning, drafting, revision and editing documents in their favourite environments. In
any phase of the authoring process, InterDOC should support the availability of
documents to any group of authors that use distinct environments, or even an individual
work tool.

Figure 4 shows a plan for the InterDOC model of use. Each domain (Domain 1
and Domain 2) represents a different community and may adopt a specific protocol.
These communities are interconnected through a long-distance network. Five layers
made up the model of use: CASA applications, Interaction with Applications, Services,
Communication between Domains and Interaction with Repositories layer.

Each domain has its CASAs (Client A, B, C and D applications) that are not
interoperable in terms of collaborative authoring tasks. In order to allow their
interoperation, applications may interface to InterDOC (interfaces for
registering/searching and for document retrieval and availability). The type A/C client-
application illustrates the category of applications that have been developed according
to the InterDOC reference model. The type B/D client-application illustrates the

19º Simpósio Brasileiro de Engenharia de Software

140
126



category of legacy applications, where the interface components were subsequently
developed and where external calls are necessary for communication with InterDOC.

The layer of Interaction with Applications is formed by components that
implement the interfaces between the applications and InterDOC, for provisioning
documents and information relating to the authoring tasks. The Service layer consists of
InterDOC objects that implement functional requirements of InterDOC. InterDOC
provides functionalities for controlling access to documents, supporting definition of
authors and group information, supporting the authoring activity process and notifying
authors of activities to be executed. The layer of Communication between Domains
consists of elements that are responsible for communication between InterDOC
instances hosted in different domains. When necessary, messages will be formatted for
the interoperability protocol used by the domain (e.g. SOAP (Simple Object Access
Protocol) and GIOP (General Inter-Orb Protocol).

Legenda: 1 – Documents retrieval and Availability
2 – Register/Search activities
3 – Communication between distinct domains
4 – Access to shared Documents and Informations
5 – InterDOC specific services

Client
Application

A

Client
Application

B

Interface
Components

Interface
Components

Domain 1 Domain 2

1 2 1 2

InterDOC

CASA

Application

Communications
between
domains

4 4

ActivitiesRepositories

Client
Application

C

Client
Application

D

Interface
Components

Interface
Components

2

InterDOC

Shared
Documents

and Activities

Not Shared
Documents

Shared
Documents

Not Shared
Documents

Interactions
with
Applications

4

1 12

Services

5 5 5 5 5 5 5 5

Interactions with
Repositories

Protocols of
Interoperability

3

Figure 4. InterDOC Model of use (Maciel, 2004).

The layer of Interaction with Repositories has components for the interface with
the repositories that are responsible for the validation and provisioning of information to
be stored.

For InterDOC, collaborative authoring is divided into two main phases: Planning
and Writing. The Planning phase refers to the time an author of the group provides basic
information for the description of the authoring project of a document, e.g., group of
authors, roles of authors in the group, location of shared repository and so on. The
Writing phase is when authors make versions of the document available to other authors
to perform activities on them.

4. InterDOC: The Domain Specific Architecture
This section presents DSA through some diagrams proposed by our approach. As an
MDA PIM, the Domain and Project Model comprise the DSA.

4.1 Domain Model
The Enterprise and Information Views compose the Domain Model. The Enterprise
view describes interactions among different InterDOCs and interactions between the

19º Simpósio Brasileiro de Engenharia de Software

141
127



applications, repositories and the InterDOCs. The Information provides the description
of objects that InterDOC handles.

4.1.1 Enterprise View
In this view the communities must be identified, as well their behaviour and the main
constraints.

InterDOC has a single community type: the Authorship community. The
Authorship community involves the authors and the applications used for writing
documents. The main InterDOC’s constraints refer to the community that registers a
project to be the same that hosts the repository of documents for the group.

Based on several studies that propose collaborative authoring requirements
(Cerrato, 1999; Kim, 2001; Noel, 2004; Ribeiro, 2004) as well several CASAs
requirements, ten business-oriented objectives, representing the community behaviour,
were identified: Create a Project, Define a Group, Define Author, Define Role, Define
Activity, Delegate an Activity, Register an Activity, Notifies Authors, Retrieve
Documents, Communication with other Domains.

Two scenarios, Design a Project and Writing, which specify each InterDOC
phase (situations described in Section 3) was identified, and each business-oriented
objective was modelled as a use case. Each use case represents one process, and focuses
on a particular slice of the behaviour of the system being modelled, related to a
particular scenario. The use cases: Create a Project, Define a Group, Define Author,
Define Role, Define Activity belong to the Design a Project scenario.

The functionalities that InterDOC realized are described in terms of Business
Process. The scenarios were mapped in two BPs: Design a Project and Writing (Figure
5). A BP may contain Activities, which are the pieces of work required to complete a
task. An Activity may be composed by other activities or by input Data flows that are
necessary to realize an activity, and output Data flows that is generate through the
activity. This Data Flows are modelled as ProcessFlow ports.

The InterDOC BP and Activities are decomposed up all the objectives specified
in the Enterprise View (use cases) were reached. InterDOC only possesses three levels
of decomposition: (1) Business Process into Activity, (2) Activity into others Activity and
(3) Activity into ProcessFlowPorts.

Figure 5 presents the first level decomposition, the Business Process
Composition diagram of Design a Project and Writing. Form a Group_Act and
Register a Project_Act Activity composes Design a Project BP. Delegate Activity_Act,
Execute Delegate Activity_Act and Notify_Act composes Writing BP.

Register Project_Act
<<Act ivity>>

Form a Group_Act
<<Activity>>

Design a Project_BP
<<Business Process>>

Execute Delegated Activity_Act
<<Activity>>

Delegate Activity_Act
<<Activity>>

Notify_Act
<<Activity>>

Writing_BP
<<Business Process>>

Figure 5. Design a Project and Writing Business Process Composition – Fist level.

Figure 6(a) presents the Form a Group_Act composition into three others
Activities: Search_Author Act, Search_Role_Act and Create_Group_Act. Finally,

19º Simpósio Brasileiro de Engenharia de Software

142
128



Figure 6(b) presents an example of the decomposition last level: the Activity Port
Composition Diagram of Create_Group_Act.

Create a Group Activity has four ProcessFlowPort. As input, the activity needs
Author and Role information’s. As output, it generates the group information and
identification.

Activity diagrams describe the dynamic aspects of the Business Process and
Activities (out of scope of this paper). It shows a sequence of steps that should be
accomplished for the execution of an activity.

Search_Author_Act
<<Act ivity>>

Search_Role_Act
<<Activity>>

Create_Group_Act
(from Plan a Project)

<<Activity>>

Form a Group_Act
<<Activity>>

Author_Reference_Input Port
Author_ID

<<ProcessFlowPort>>

Role_Reference_Input Port
Role_ID

<<ProcessFlowPort>>

Group_Reference_OutPut Port
Group_ID

<<ProcessFlowPort>>

Create_Group_Act
<<Activity>>

Group_Informarion_Input Port
Group_Name
Group_Description

<<ProcessMult iPort>>

Form a Group Create a Group

Figure 6 (a)Form a Group Activity Composition Diagram-Second Level.(b) Create a Group
Activity Port Composition Diagram – Third Level.

4.1.2 Information View
The Information view models entities and their relationships. Entities represent concepts
of the problem domain. The resulting models present the structure of used objects that
represents the business concepts of the domain in the computational environment.

Entitydata and their relationships should be specified through a class diagram.
InterDOC proposes the following Entitydata: Project (a certain authorship project);
Repository (storage of project information); File (file stored in the repository);
Document and Comments (specializations of File to represent documents and their
respective comments); Activity (activities that the authors accomplish in a document);
Author (user-author); and Group (authors’group and Role).

A project has a repository of associated files and belongs to a certain group of
authors. Authors can play different roles in different projects. The role associates certain
actions to them. Actions are registered in the environment. After revising a document,
an author can save in the repository a new version of it. Authors revise documents
producing comments (or annotations) or versions of these documents. Therefore, a
document can be a version of another one, and a comment is associated to a document.

4.1.3 Computational View
The Computational view is a viewpoint on the system and its environments that enable
distribution through functional decomposition of the system into objects that interact at
interfaces. The component’s structure, as well the interfaces and the data that these
components handle, are described in the models of this view.

As DSA defines middleware specific-services, the first decision to be taken,
before computational view modelling process, is the definition of which services should
be offered to the CASA applications. Based, on the Enterprise View, all Activity that
composes the Business Process (second level activities) is mapped into a middleware

19º Simpósio Brasileiro de Engenharia de Software

143
129



service. Therefore, InterDOC has five services Form a Group, Register Project,
Notification, Delegate Activity and Execute Delegate Activity services.

Figure 7 shows an overview of the InterDOC’s component structure model in
terms of Process Components (PC).Each PC will execute one or more services
identified. Initially four PC was identified:

InterDoc
<<Pro cessCo mpo ne nt>>

ApplicationClient
<<CORBAComponet>>

IAplication

AuthorGroupServer
<<ProcessComponent>>

AuthoringActivitiesServer
<<ProcessComponent>>

Repos itoryClient
<<ProcessComponent>>

DocumentSharingServer
<<ProcessComponent>>

IRepository IInterDomain

InterDomainsComunicationServer
<<ProcessComponent>>

ProjectRegServer
<<ProcessComponent>>

Figure 7 InterDoc Component Structure.

• ProjectManagerServer: perform register a project service;
• AuthoringActivitiesServer: perform the execute and delegate activities services;
• ActivitiesNotificationServer: perform the notification service;
• AuthorGroupService: perform the form a group service;

Later, two others PC, that perform InterDOC non-functional requirements,
were identified:

• InterDomainCommunicationServer: it is a wrapper service component that
formats messages for the interoperability protocol used by the domain;
• DocumentSharingServer: it manages the access to the information that is stored
in the repositories.

Further, the InterDOC reference architecture defines two client-side components
that use its services: the CASA components (ApplicationClient ProcessComponent) and
the Repository component (RepositoryClient ProcessComponent).

In InterDOC, Interface defines the interactions between InterDOC components
and external elements (CASA, Repository and another InteDOCs). Protocol was used
for interactions between InterDOC components. The interfaces are conceived through
the Facade design pattern.

For each service there is an EDOC Interface and each service has a
ProtocolPort that performs a third level activity defined in the Enterprise View.

The Protocol structured diagram describes the data involved in a Protocol and
the ports type. This diagram details the protocol’s internal view. Each port has an

19º Simpósio Brasileiro de Engenharia de Software

144
130



association to a Composite Data derived from the Entities Data defined in the
Information View. Figure 13 shows the protocol structure for the Create_New_Project.
This Protocol is composed of four Flows Ports. In this diagram shows the components
that initiates (ApplicationClient) and responds (ProjectManagerServer) the Protocol.

Collaboration, Sequence and Activity diagrams should be use to describe the
dynamic aspects of a protocol (not discussed in this paper). It is necessary to describe
the messages sequence between two or more components, and describes the protocol
choreography to put the actions of the ports within one component in a sequence.

RegisterProject Service
<<Interface>>

Create_New_Project
<<Protocol Port>>

Group Identification
Group_name

<<CompositeData>>

Registration Project Informations
Project Name
Project Description
StartDate
FinishDate
Project_Owner_ID
Supported Extensions
Project Workspace

<<CompositeData>>

Project_Identification
Project_ID

<<CompositeData>>

DeclinedResponseType
DenieData

<<CompositeData>>

Project Informat ion
<<FlowPort>>

Group
<<Ent ityData>>

AplicationClient
<<ProcessComponent>> <<Responds>>

<<Responds>>

GetDeclinedProjectReference
<<FlowPort>>

Project Reference
<<FlowPort>>

ProjectManagerServer
<<ProcessComponent>>

<<Initiates>>

<<Initiates>>

Figure 8 Create_New_Project Protocol Structure Diagram.

4.2 InterDOC PSM – The Service Current Implementation
The current implementation platform for InterDOC is CORBA Component Model
(CCM). CCM was chosen because it is an OMG’s open standard and, like EDOC,
utilizes components as the unit for software development.

4.2.1 Engineering and Technological Views
The specification of the Engineering View is derived from the Computational View and
it defines the rules for mapping components selected into CCM. The UML profile for
CORBA/CCM, up to the moment of writing this paper, is in the process of final revision
to become an OMG standard. CCM stereotypes and some mapping rules are based on
this profile proposal.

The Technological View specifies the structure of the components in the given
technology. Each identified component should be modeled to present the services that it
offers to the other components. Figure 9 shows one of the existing relationships between
the components ApplicationClient and PlanningServer. Therefore, in according with
Table 1, the RegisterProject Interface becomes a CORBA Interface. Its ProtocolPort is
mapped as CORBAUses (application client-side) and CORBAProvides (InterDOC
server-side) that compose the protocol.

PlanningServer
<<CORBAComponent>>RegisterProject

register_project()
select_group()

<<CORBAInterface>>
11 11

<<CORBAProvides>>
ApplicationComponent

<<CORBAComponent>> 11 11

<<CORBAUses>>

Figure 9 Register a Project CCM Interface.

19º Simpósio Brasileiro de Engenharia de Software

145
131



The last step to be taken in the Operational Model, before the coding phase, is
the mapping of CCM interface diagrams into an interface definition language (IDL).

5. Pratical Experiences
Initially, in order to test InterDOC services, application client components for two
CASAs were developed. One of these applications is a collaborative editor that has the
interoperability as one of its initial non-functional requirements. InterDOC provided the
achievement of this requirement. The other application, a legacy one, is also a
collaborative editor (Schunemann, 2003) implemented in CORBA 2.3 and it did not
provide interoperability functionalities (Figure 10).

In the two situations, it was possible to observe that the developers needed to
discuss which information that their applications manipulated has to be mapped onto the
InterDOC’s services request. Having made this, the components were developed
according to the architecture and made available for use in the applications. No
discussion was needed about internal InterDOC´s mechanisms or platform-specific
characteristics. Hence, developers only focused on domain-specific information instead
of platform-implementation aspects.

InterDoc
Area

Chat

User’s
Logged

List

Text
Editor
Area

Multiscroll
bar Area

Figure 10 InterDOC Service’s Interface in a Collaborative Editor

Several experiments were realized to test InterDOC services. One of this
experiments was collaborative writing project whose objective was produce a final
report of publications and activities accomplished in a certain research project. Two
students and one advisor made up the group. Domain A is the university local area
network and the Domain B is each author’s homes. Collaborative on-line sessions, was
realized in the editor showed in figure 12. The index of the report was written by all the
three participants. The invitations (dates and time) for on-line sessions were sent
through the InterDOC’s notification service. This service has used the community e-
mail system.

After defining the report index, the topics were distributed among the authors, so
that they could be able to write them in asynchronous sessions. The delegation and the
registration of these activities were accomplished through InterDOC. As the
collaborative editor only accepts document in text format, the report was formatted in
MS-Word. A Java application that integrates all InterDOC’s interfaces and that calls

19º Simpósio Brasileiro de Engenharia de Software

146
132



MS-Word was used in those asynchronous sessions. Even with an individual work tool,
it could be observed that the context stored at the time of the project registration (group,
authors, roles, repository, etc), and at the subsequent phases of the activities (document
versions, accomplished activities, documents blocked, etc), was preserved.

6. Conclusion and Future Works
This paper presented the InterDOC’s DSA that provides middleware domain-

specific services for the interoperability among CASAs. The goal (to final users) is to
enable the authoring process for ones who use different collaborative applications.
Meanwhile, the proposed architecture also decreases the cost in the execution of this
process. The goal (to application developers) is to provide mechanisms to achieve
interoperability without increasing the application development life cycle. Since, both
DSA and middleware specific-services embody knowledge of a domain, they have the
potential to increase system quality and decrease the cycle-time and effort required to
develop particular types of distributed applications.

The specification of middleware domain-specific services using a model-driven
architecture, as a mechanism for attaining interoperability among heterogeneous
environments, instead of frameworks or simply APIs, makes the model more open.
Consequently, evolutionary and extendable due to the fact those developers of
applications know their external (interfaces) and internal mechanisms (specific
services). The reference architecture permits different implementations to be obtained in
heterogeneous computer environments. The adoption of a common architecture, for the
provisioning of interoperability, also avoids the need to develop specific interoperability
mechanisms for each different application involved in the process, and for each new
application that a group member wishes to use.

The modeling of the well-established aspects of a domain is an important and
fundamental aspect to develop solutions that reuse developers´ experiences,
components, frameworks, middleware specific-services, or any other artifact relative to
the software development.

Specific-services domain modeling requests a great effort that certainly would
not be rewarded if the use was restricted to a specific middleware platform. The
approach of specifying those services through an MDA PIM, allows the description of
the domain that the service can be applied to, enabling wider service applicability. Since
the service specification is based on MDA, the interoperability is reached at the design
level. Portability is reached once a PIM can be translated into several PSMs and
platform-specific coding.

The approach of specifying those services through several views (RM-ODP
views), allows the description of the domain that the service can be applied to, enabling
larger service applicability. In addition, using EDOC allow information and behaviour
of the target domain to be seen as high-level business process components and activities
from the initial models, facilitating the domain decomposition from the service
perspectives.

The use of profiles proposed by OMG guarantees, in a more extensive fashion,
the interoperability of models proposed by MDA. Methodologies and tools, that assist
in the development of applications and use EDOC or other sub-profiles, will have the
same conceptual and notational framework. This aspect facilitates the understanding of
models both by development teams and by process automation tools.

19º Simpósio Brasileiro de Engenharia de Software

147
133



The development process proposed was used in the components implementation
of two Collaborative Authoring Supporting Applications (CASAs). In this experience it
was possible to verify that, in spite of EDOC being an extensive UML profile, the
combination of the sub-profiles used, as well as the diagrams chosen to comprise the
process, resulted in a smooth process that does not overburden the developer.

The PSM specification in a J2EE platform has begun and as it is completed, tests
will be carried out in different domains, with different InterDOC implementations to
validate our ideas according to the InterDOC’s model of use presented in this paper.

References

BAECKER, Ron et al. (1994) Sasse: The Collaborative Editor (video tape transcript).
In: Conference Companion on Human Factors in Computing Systems (CHI´94),
April, Massachusetts.

BROY, Manfred. (2004) Architecture Driven Modeling in Software Development. In:
IEEE International Conference on Engineering Complex Computer Systems. April.
Italy. p. 3-12.

CERRATTO, Teresa. (1999) Instrumenting Collaborative Writing and Its Cognitive
Tools. In: Human Centered Process Conference, September, France. p.141-147.

DOURISH, Paul. EDWARDS, Keith; LAMARCA, Anthony. (2000) Extending
Document Management Systems with User-Specific Active Properties. ACM
Transactions on Information’s Systems, v.18, n.2, p.140-170.

FAYAAD, Mohamed; SCHIMDT, Douglas; et all. (1999) Building Applications
Frameworks – Object Foundations of Frameworks Design. EUA.Willey.

FRANKEL, David S. (2004) Software Industrialization and the New IT: A
Perspective on MDA. MDA Journal. January. http://www. mkpress.com/mda.

GERVAIS, Marie, (2002). Towards MDA-Oriented Methodology. In: Annual
International Computer Software and Applications Conference, August, England, p
265-270.

GUELFI, Nicolas; RIES, Benoît; et all. (2003). MEDAL: A Case Tool Extension for
Model-Driven Software Engineering. In: IEEE International Conference on
Software-Science, Technology Engineering, November, Israel, p. 33-44.

GUELFI, Nicolas; RAZAVI, Reza; et all. (2003). DRIP Catalyst: An MDE/MDA
Method for Fault-tolerant Distributed Software Families Development. In:
OOPSLA Workshop on Best Practices for Model Driven Software Development.
Canada.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION - ISO. (1995)
Basic Reference Model of Open Distributed Process, ISO/IECIS 10746. Parts 1-4.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION-ISO (2004).
Use of UML for ODP system specification. Working Draft. ISSO/IEC JTC1/SC7.

KIM, Hee-Cheol; EKLUNDH, Kerstein. (2001) Reviewing Practices in Collaborative
Writing. In: Computer Supported Cooperative Work (10), Netherlands: Kluver
Academic Publishers. p 247-259.

LI, Du et all. (2003) Using Familiar Single-Users Editors for Collaborative Editing.

19º Simpósio Brasileiro de Engenharia de Software

148
134



In: Hawaii International Conference on System Sciences (HICSS’03), 36 th, 2003,
Hawaii. January. 10 p.

NOEL, Sylvie; ROBERT, Jean-Marc. (2004) Empirical Study on Collaborative
Writing: What Do Co-authors Do, Use, and Like?. In: Computer Supported
Cooperative Work (13), Netherlands: Kluver Academic Publishers. p 63-89.

MELLOR. Stephen J. (2003) Model-Driven Development. IEEE Software. September
v. 20, n. 5, p 14-18.

MACIEL, Rita S. P. (2004). A Model-Driven Architecture for Interoperable
Collaborative Writing Environments. In: X International Workshop on Groupware
- Doctoral Colloquium, San Carlos. Costa Rica.

MACIEL, Rita S. P. CARREIRO, Bruno, et al. (2005) An MDA-EDOC Based
Development Process For Distributed Applications. In: 7th International
Conference on Enterprise Information Systems (ICEIS 2005), p 3-11.

OBJECT MANAGEMENT GROUP. (2002) UML Profile for Enterprise Distributed
Object Computing Specification. OMG Adopted Specification (ptc/02-02-05).

OBJECT MANAGEMENT GROUP. (2003) MDA Guide Version 1.0. 2003

RIBEIRO, Semíramis., MACIEL, Rita S.P. A Framework for Document-Based
Applications. In: ERBASE 2004 – 4th Regional School of Computing Bahia-
Sergipe. 2004. (In Portuguese).

SCHANTZ, R., SCHMIDT, D. (2001) Middleware for Distributed Systems: Evolving
the Common Structure for Network-centric Applications, Encyclopedia of Software
Engineering, Wiley & Sons.

SHUENEMANN, Hermann, MACIEL, R. S. (2002). A Tool for the Co-Authoring of
XML Documents. Undergraduate Final Report. Computer Science, Faculdade Ruy
Barbosa. 82 p. (In Portuguese).

STIEMERLING, Oliver; CREMERS, Armim. (2000)The Evolve Project: Component-
Based Tailorability for CSCW Applications. AI & Society, London. p. 120-141.

TAYLOR, Richard., TRACZ, Will. (1995) Software Development Using Domain-
Specific Software Architectures. SIGSOFT Software Engineering Notes, v. 20.
December, p 20-37.

TIETZE, Daniel. (2001) A Framework for Developing Component-based Co-
operative Applications. 178 p. Ph. D. Dissertation (Computer Science),
Technischen Universität Darmstadt, Germany.

WANG, H.; ZHANG, D. (2003). MDA-based Development of E-Learning System, In:
27th International Computer Software and Applications Conference, IEEE Press,
November, p. 684-689.

19º Simpósio Brasileiro de Engenharia de Software

149
135


	AnaisSBES
	Sessões Técnicas SBES (ST)/ Technical Sessions (TS)
	ST3 – Modelagem
	An MDA Domain Specific Architecture to Provide Interoperability Among Collaborative Environments




