
Formal Refactoring for UML Class Diagrams

Tiago Massoni, Rohit Gheyi, Paulo Borba

1Informatics Center – Federal University of Pernambuco (UFPE)
PO Box 7851 50.732-970 Recife – Brazil

{tlm,rg,phmb}@cin.ufpe.br

Abstract. Refactoring UML models for evolution is usually carried out in an
ad hoc way. These transformations can become an issue, since it is hard
to ensure that the semantics of models is preserved. We provide a set of
semantics-preserving transformations for UML class diagrams annotaded with
OCL. Using the proposed transformations, software designers can safely de-
fine larger transformations and detect subtle problems when refactoring models.
Semantics-preserving transformations can also be useful from design pattern
introduction to MDA. We prove that our transformations are sound using a se-
mantic model that is based on Alloy, which is a formal modeling language. Due
to Alloy’s ammenability to automatic analysis, our approach may additionally
bring such analysis to class diagrams.
Keywords: model refactoring, class diagram, OCL, Alloy

Resumo. Refatorar modelos UML para evolução é normalmente uma atividade
realizada de forma ad hoc. Estas transformações podem apresentar problemas,
já que é difı́cil assegurar que a semâtica dos modelos é mantida. Desta forma,
propomos um conjunto de transformações que preservam a semântica de dia-
gramas de classe UML com OCL. Ao aplicar as transformações propostas, pro-
jetistas de software podem, de forma segura, definir transformações maiores,
além de detectar problemas sutis ao refatorar modelos. Refatoração de mode-
los podem ser úteis tanto em MDA quanto para introduzir padrões de projeto.
A corretude das transformações propostas é garantida através de um modelo
semântico para UML baseado em Alloy, uma linguagem de modelagem formal.
Como Alloy permite a realização de análises automáticas de modelos, nossa
abordagem pode trazer benefı́cios similares para diagramas de classe.
Palavras-chave: refatoração de modelos, diagrama de classes, OCL, Alloy

1. Introduction

The need to evolve is natural when thinking about software in the real world. How-
ever, the originally defined structure usually does not accommodate adaptations, demand-
ing new ways for reorganizing software, in order to allow smoother and cheaper evo-
lution. Modern development practices, such as refactoring, improve the design of pro-
grams while maintaining its observable behavior, mainly preparing software for evolu-
tion. Additionally, as in other engineering fields, modeling can be a useful activity for
tackling significant problems early in software development. As an accepted standard, the
UML [Object Management Group 2003] plays a significant role. Applying refactoring to
UML models can help lowering the maintenance burden, since models can be restructured
for a better understanding of the intended properties, laying the groundwork for further

19º Simpósio Brasileiro de Engenharia de Software

166
152

changes. The introduction of a number of design patterns to a structural model can be
accomplished by the application of model refactoring.

Commonly, no support is offered to verify whether applied refactorings preserve
the semantics of UML models. In particular, class diagrams annotated with invariants
using the Object Constraint Language (OCL) [Warmer et al. 2003]. Simple mistakes can
lead to incorrect transformations that might, for example, introduce inconsistencies to a
model, usually hard to detect in an ad hoc fashion (as showed in Section 2). In current
practice, even using refactoring tools, programmers have to rely on compilation and a
good test suite to ensure that the observable behavior is maintained [Fowler 1999]. In
case of model refactorings, most rely on informal argumentation.

In this paper, we propose a set of small semantics-preserving transformations for
UML class diagrams annotated with OCL, decribed in Section 3. In order to prove their
soundness, we define a translational semantics for class diagrams and OCL. We use Al-
loy [Jackson et al. 2001] as the underlying semantic model (Section 4). Alloy is a formal
object-oriented modeling language founded on relational logic. Alloy is suitable for do-
main modeling [Larman 2001], employing sets and relations as a simple semantic basis
for objects and its relationships. In addition, Alloy models can be automatically analyzed,
by means of the Alloy Analyzer tool [Jackson et al. 2000].

These transformations can formally derive model refactorings, which can be use-
ful for introducing design patterns with the benefit of abstraction. Moreover, the in-
creasing interest in the OMG’s Model-Driven Architecture [Soley 2000] has drawn at-
tention to model transformations, preferentially in an automatic fashion. We are es-
pecially interested in transformations regarding structural properties of domain models,
which can be represented by UML class diagrams annotated with OCL. In this context,
these transformations can be mostly useful for carrying out PIM-to-PIM [Soley 2000]
semantics-preserving transformations. Other possible application lies on automatic syn-
chronization between models and source code refactoring [Massoni et al. 2005], de-
velopment of improved tool support for refactoring, or even comparing whether the
specification of two software components are equivalent from based on syntatic condi-
tions [Gheyi et al. 2004]. Also, translating class diagrams annotated with OCL to Alloy
offers automatic simulation and analysis for UML [Massoni et al. 2004], given a transla-
tor tool and the Alloy Analyzer [Jackson et al. 2000]. Using Alloy as the semantic model
supports an equivalence notion [Gheyi et al. 2005b] that is sufficiently flexible to compare
class diagrams with distinct elements and structures.

2. Motivating Examples

In this section we show how apparently semantics-preserving transformations on models
may lead to unexpected changes in the structural business rules. These examples pro-
vide useful insight on the problem of model refactoring, which should restructure models
whereas maintaining the semantics stated by the original model. Figure 1 shows, in the
context of a simple banking application, an example of a transformation that leads to class
diagrams with different semantics if compared to the left-hand side (LHS) diagram. This
diagram states that customers may own more than one account, besides constraining ac-
counts to be handled by at most one bank card. Suppose a designer tries to restructure this
diagram by adding a straightforward association from Customer to BankCard, repre-

19º Simpósio Brasileiro de Engenharia de Software

167
153

senting an alternative path to relate customers and their cards, as reflected in the right-hand
side (RHS) diagram. The association relates exactly one card to each customer.

Figure 1. Introducing an association.

A deeper analysis of the possible snapshots (objects and links) of the LHS diagram
shows that Customer objects may exist with no cards. One possible snapshot is shown
in Figure 2, by means of a UML object diagram [Object Management Group 2003]. In
the refactored diagram, this scenario is ruled out, since every customer owns exactly one
card, demanding instances of BankCard whenever a customer exists.

Figure 2. A possible instance for the original diagram.

Additionally, Figure 3 depicts a similar transformation. On the LHS diagram,
accounts may be checking or savings, and the primary association represents a rela-
tionship between accounts. This association is intended to model a business rule defining
that savings account is the primary type of account, and checking accounts can only be
opened given there is an existing savings account for that customer. As such, the diagram
is restructured by pushing down the association to the subclasses, stating that checking ac-
counts depend on a savings account to exist. However, analyzing the LHS diagram, we see
that it possibly yields snapshots that associate two SavAcc objects, same for the ChAcc
class. These snapshots are not modeled in the refactored diagram, over-constraining the
solution space. This transformation does not preserve semantics considering class dia-
grams without OCL constraints.

Figure 3. Pushing down an association.

19º Simpósio Brasileiro de Engenharia de Software

168
154

These examples suggest that designers need a guide to define and apply refactor-
ings to class diagrams, backed by a formal semantics, to ensure that improvements do
not change the semantics of a model. We believe that a catalog of transformations that
are known to be semantics-preserving can lead designers to accomplish their goals in
restructuring models.

3. Semantics-Preserving Transformations for Class Diagrams

In this section, we present a set of transformations for UML class diagrams. These trans-
formations manipulate classes, associations, generalizations and OCL constraints, based
on UML 1.5 [Object Management Group 2003]. As the transformations must involve
equivalent diagrams, we first address an equivalence notion for domain models. With a
comprehensive set of simple transformations, we aim to provide powerful guidance on
the derivation of more complex transformations.

3.1. An Equivalence Notion

The common equivalence notion states that two class diagrams are equivalent if they have
the same semantics. This notion is useful, but not flexible enough to compare equivalent
models with auxiliary elements such as Vector in Figure 4(b), or with different forms of
representing the same concept, such as accs in Figure 4(a). These models are intuitively
equivalent, taking into consideration the relationship between banks and accounts, which
is maintained whether there is an intermediate collection or not. However, using this
common notion, they are not equivalent since they have different elements.

Figure 4. Comparing UML Class Diagrams.

In order to compare models in such scenario, we propose a flexible equivalence
notion. Our approach compares the semantics of two class diagrams only for a number
of relevant model elements (class, attribute and association1). The set of relevant element
names is called alphabet (Σ). The names that are not in the alphabet are considered
auxiliary, or not relevant for the comparison. For instance, suppose that Σ contains only
the Bank and Account names in the previous example. If both diagrams have the same
interpretations for those names in all valid snapshots, they are considered to be equivalent
under this equivalence notion. Other names, such as col, Vector and elems, are
regarded as auxiliary.

However, sometimes we might have model elements that, although relevant, can-
not be compared, since they are not part of both diagrams. For instance, suppose that
we include accs to Σ. In this case, we cannot compare the models in Figure 4, since
accs is not part of the model in Figure 4(b). Some structures may have been replaced by
other elements during refactoring activities, even though the resulting model maintains the
original semantics and expresses the same invariants. For instance, in Figure 4(b), accs

1Names are given only to navigable ends of an association

19º Simpósio Brasileiro de Engenharia de Software

169
155

is not part of the model, but can actually be expressed as the composition of col and
elems. In those cases, our equivalence notion can consider a mapping, called view (v),
establishing how an element of one model can be interpreted using elements of another
model. Views consist of a set of items such as n→exp, where n is an element’s name and
exp is an expression, specifying how the concept n can be expressed in terms of other con-
cepts. Notice that although the values of auxiliary names are not compared, they can be
used to yield an alternative meaning to relevant names. In the previous example, we may
choose a view containing the following item: accs→col.elems->asSet()2. Now we can
infer that both models are equivalent. Notice that accs is defined in terms of two names
that belong to Figure 4(b). More on the formalization of this equivalence notion in the
Prototype Verification System (PVS) [Owre et al. 2005] – which contains a formal speci-
fication language and a theorem prover – can be found elsewhere [Gheyi et al. 2005b].

3.2. Laws

Next, we describe a number of primitive laws for class diagrams based on the equivalence
notion described before. Each primitive law, when applied in any direction, defines one
transformation that preserves semantics. They define templates that must be matched by
class diagrams in order to be applied, imposing syntactic conditions for the transforma-
tions that guarantee preservation of semantics.

Regarding classes, Law 1 states that we can introduce a generalization between
two classes that have no superclasses, provided the name of the new superclass is not
previously used in the model. As a well-formedness rule, a UML class diagram cannot
contain two classes with the same name (for simplicity, we do not consider packages).
We can also remove a generalization between them (from right to left) if the superclass
is not used elsewhere. Cds denotes all classes, attributes, associations, invariants and
generalizations that are part of the model but not depicted in the law representation (we
take a closed-world assumption, considering that all model elements are included into
Cds). We write (→), before the condition, to indicate that this condition is required when
applying this law from left to right. Similarly, we use (←) to indicate that it is required
when applying the law in the opposite direction, and we use (↔) to indicate that the
condition is necessary in both directions.

We use ads to denote the set of attribute declarations and associations of a class
(associations whose opposite end is navigable from the class). The boolean operation
oclIsKindOf tests whether the target object is subtype of the type indicated by the
parameter. The inv invariant indicate that A and B define a partition of C (in practice, C
is an abstract class or interface). Law 1 also deals with the introduction or removal of
a generalization for any number of classes, using similar OCL invariants. C->forAll
is short for C.allInstances->forAll (analogous simplified expressions are used
throughout the text). The (←) condition guarantees that there is no attribute, association
or invariant including C, except inv, as C must be taken as auxiliary. Similarly, we have
defined laws for introducing an empty class or a subclass.

An additional condition for all names in Σ that are not on the opposite diagram,
v must contain exactly one valid item for it. We consider this condition for laws that

2the asSet operation is used for converting the resulting expression to set type, since composition of
associations in OCL denotes a bag type

19º Simpósio Brasileiro de Engenharia de Software

170
156

Law 1 〈introduce generalization〉

where
inv: self.oclIsKindOf(A) or self.oclIsKindOf(B)

provided
(↔) if C belongs to Σ, then v contains the C→A->union(B) item;
(→) Cds does not declare any class named C;
(←) C does not appear in Cds, ads or ads’.

introduce or remove elements, such as Laws 1 and 2. In order to improve readability, we
do not express them in those laws. This law is also valid for introducing an interface.

Next, we present laws for associations. Law 2 states that we can introduce a
new association (or attribute) with opposite end named t, along with its definition as an
OCL invariant in the form seft.t = exp. The exp expression can be self.t itself or an
expression not containing t, defined in terms of existing associations. We can also remove
an association that is not being used.

Law 2 〈introduce association with definition〉

provided
(↔) if t belongs to Σ then (v contains the t→exp item and t does not appear in exp);
(→) (1) A and its family does not declare any association or attribute named t; (2) t

does not appear in exp, or exp=self.t; (3) exp ≤ t in Cds and inv.
(←) t does not appear in Cds or inv.

The exp ≤ t expression denotes that exp is a subtype of t’s type. Constraints
involving Σ and v must be carefully introduced. When introducing or removing an asso-
ciation whose name belongs to Σ, we must guarantee that the t→exp item belongs to the
view. Also, the target class B may be A itself. The family of a class is the set of its super
and subclasses in Cds, whether direct or indirect. There is one implicit condition applying
this law from left to right is that the new invariant seft.t = exp must be well typed. From
this law, we can derive another law which introduces an association without a definition.
In this case, exp is made self.t itself, which results in a tautology, and t is not in Σ.

19º Simpósio Brasileiro de Engenharia de Software

171
157

We establish Law 3 for moving an association within a family of classes. We
can pull up an association from a class to its superclass by adding an invariant stating
that this association only relates objects of the subclass. Similarly, we can push down an
association if the source model includes an equivalent invariant. In this case, we have to
make sure that decreasing t’s type does not introduce type errors. A similar law can be
proposed for pulling up associations in the opposite direction.

Law 3 〈pull up association to superclass〉

where
inv1: (not self.oclIsKindOf(B)) implies self.t->isEmpty()

provided
(←) there is no expression containing t, where t �≤ B→C and t ≤ A→C, in Cds or inv.

B→C express a binary association type. We also define laws for manipulating
OCL invariants. Law 4 establishes that we can add or remove an OCL invariant as long
as it can be logically deduced from other invariants in the same model. When introducing
an invariant, inv’ must be well typed.

Law 4 〈introduce OCL invariant〉

provided
(↔) inv’ can be deduced from the invariants in Cds and inv.

We have proposed other laws dealing with associations, OCL invariants and syn-
tactic sugar constructs, such as a law for converting composition to associations with
multiplicity constraints. Also, there are laws for introducing multiplicity constraints to
associations and attributes. Notice that our laws, such as Laws 2 and 3, are enunciated
with unconstrained multiplicities. However, it is important to mention that we can have
or deduce invariants stating multiplicities. We proved the soundness of these laws by
giving a translational semantics for class diagrams using Alloy. We prefer to propose
fine-grained transformations, because they are easier to be proven semantics preserving.

3.3. Applications

Although our laws define fine-grained transformations, in this section we show how to
derive a number of coarse-grained transformations, such as refactorings, by law compo-
sition, which consequently preserve semantics. The LHS diagram of Figure 5 shows part

19º Simpósio Brasileiro de Engenharia de Software

172
158

of a banking system in which each account (savings and checking) directly relates to a
customer, by a specific ownership association. However, software designers may want,
for instance, to apply a refactoring similar to Extract Interface [Fowler 1999] in this dia-
gram, resulting in the RHS diagram. The software designer can use our laws to formally
and safely transform it, as we will describe next.

Figure 5. Extract Interfact Refactoring.

Consider that Σ={ChAcc,SavAcc,owner,Customer} and
v={owner→chOwner->union(savOwner)}. It is important to mention that
we may not choose the right alphabet and view from the beginning in a sequence
of refactorings. However, we propose some theorems that allow us to increase or
decrease them only by checking syntactic conditions in this sequence, as described
elsewhere [Gheyi et al. 2005b].

We first apply Law 1 from left to right to introduce the Account abstract class.
We can apply this law since Account is a new name. As this name does not belong to
Σ, we do not need any item in v. Next, we are able to introduce the owner association
in Account, along with its definition (owner=chOwner->union(savOwner)), by
applying Law 2 from left to right. We can apply this law since there is no association or
attribute named owner in the Account’s family. Moreover, since owner belongs to Σ,
v has an item similar to its definition. Notice that the type correctness conditions are also
satisfied.

Since Account is an abstract class, owner just relates objects from checking and
savings accounts to customers. Applying some predicate calculus and relational operator
laws, besides the definition of owner previously introduced, we can add, by applying
Law 4 from left to right, definitions for the chOwner and savOwner associations. We
can deduce that chOwner is owner restricting its type from ChAcc to Customer. We
are now able to replace every occurrence of chOwner and savOwner in all invariants
in the diagram, except in their definition, by applying the same law.

Finally, since chOwner and savOwner do not appear in the diagram except in
their definition, and they are not in Σ, we can remove them and their definition using
Law 2 from right to left. As described before, notice that in some steps, when using Laws
1 and 2, we have to make sure that, when introducing or removing elements, the view
must remain valid.

Our laws can be useful not only to refactor models stepwisely, but also to de-
rive general coarse-grained transformations. For instance, the previous process can be
generalized, stating the Extract Interface refactoring similarly to the laws. Since this
refactoring is derived using primitive laws, it also preserves semantics. In addition, our

19º Simpósio Brasileiro de Engenharia de Software

173
159

laws can be useful for indicating when a transformation may not be semantics preserving.
Law 3, for example, shows more evidence on the transformation depicted in Figure 3. An
UML diagram without OCL invariants cannot express the invariant demanded by the law,
explaining why the diagrams present conflicting snapshots.

4. Translational Semantics for Class Diagrams

In this section, we propose a translational semantics for domain models as class diagrams,
in terms of Alloy, a formal modeling language. The essence of a translational approach to
semantics is to translate constructs in a language under study into another that has a well-
defined semantics [Greenfield et al. 2004]. Translation can be a effective way to provide
semantics in a number of contexts, such as compilation or code generation. In this work,
the translation of class diagrams to Alloy models can be used to define transformations
by reasoning about UML model elements on Alloy’s semantics. After providing a brief
overview of Alloy, we present how the translation to Alloy was designed and employed
to prove the soundness of our laws.

4.1. Alloy

Alloy [Jackson et al. 2001] is a formal modeling language based on first-order logic, al-
lowing specification of – primarily structural – invariants in a declarative fashion. In gen-
eral, models in Alloy are described at a high level of abstraction, ignoring implementation
details. We base our translation rules on Alloy 3 [Jackson 2005].

The language assumes a universe of objects partitioned into subsets, each of which
associated with a basic type. An Alloy model is a sequence of paragraphs of two kinds:
signatures, used for defining new types; and formula paragraphs, such as facts and pred-
icates, used to record invariants. Analogous to classes, each signature denotes a set of
objects. These objects can be mapped by the relations (associations) declared in the sig-
natures. A signature paragraph may introduce a collection of relations.

As an example, we show an Alloy model for part of the banking system, where
each bank contains a set of accounts and a set of customers. An account can only be a
savings account. The next Alloy fragment declares four signatures representing system
entities, along with their relations and invariants:

sig Bank { fact BankInvariants {
accs: set Account, Account = SavAcc
custs: set Customer all a:Account | #a.˜accs=1

} }
sig Customer, Account {}
sig SavAcc extends Account {}

In the declaration of Bank, the set keyword specifies that the accs relation
maps each object in Bank to a set of objects in Account, exactly as an unconstrained
association in UML. SavAcc denotes one kind of account. In Alloy, one signature can
extend another one by establishing that the extended signature is a subset of the parent
signature. For example, the set of SavAcc objects is a subset of the Account objects.

A fact is a formula paragraph, used to package invariants. Differently from OCL
invariants, a fact does not introduce a context for its formulae, allowing global invariants

19º Simpósio Brasileiro de Engenharia de Software

174
160

on models (such as set cardinality). Facts’ formulae are declared as a conjunction, estab-
lishing general invariants about the declared signatures and relations. The first formula
of the BankInvariants fact states that every account is a savings account; the second
one states that every account is related to one bank by accs. The all keyword is the
universal quantifier. The # symbol is the cardinality set operator. The expression ˜accs
denotes the transpose of accs. The join of relations3 a and ˜accs is the relation yielded
by taking every combination of a and ˜accs elements, joining the tuples with common
values. The type of a must match the domain type of ˜accs (both Account). The for-
mula guarantees that each account relates to exactly one bank. The semantics of an Alloy
model is the set of all assignments of objects and links to signature and relation names
that satisfy all constraints [Jackson 2005].

4.2. Semantics

We provide a semantics for UML class diagrams by translation to correspondent Alloy
models. Alloy constructs can semantically represent a number of UML constructs, con-
tributing with a semantics to a subset of UML that may be automatically analyzed. Fur-
thermore, translating a representative subset of OCL expressions into Alloy is relatively
straightforward, since both languages are used for expressing invariants in domain mod-
els, based on first-order logic, exhibiting similar expressiveness [Edwards et al. 2004].
OCL, however, presents syntax and type system closer to programming languages, which
usually restrains simplicity. Due to this property, we limit our translational semantics to a
core subset of the language, based on the most important logical and set operations, which
is sufficient to express other constructs in invariants for domain models.

In order to define translation rules between UML and Alloy, we do not consider
a number of UML constructs (we focus on domain models), such as operations (meth-
ods) and their effects, besides timing constraints (e.g. {frozen}). Moreover, Alloy has
also been used for modeling properties over state transitions [Dennis et al. 2004], which
shows the language’s usefulness in behavioral modeling as well. We believe that related
UML constructs can be similarly analyzed by means of analogous translation. In order to
simplify the translation, binary associations must include role names for each navigable
end. Regarding OCL, we only consider class invariants, due to the reasons previously
explained. Since recursive operations have an undefined semantics in OCL, we do not
deal with those in our translation. Also, numeric types (except integer) are ignored, as
our focus lies on domain models. The keyword self is mandatory when expressing
context-dependent invariants.

Our translation rules are divided into two categories: from UML diagrammatic
constructs to Alloy constructs and from OCL invariants with core constructs to logically-
equivalent Alloy formulae. Regarding OCL constraints, we based our translation on
the OCL specification version 1.5 [Object Management Group 2003]. Basic set theory
and relational calculus guided the translation rules, neglecting OCL constraints that may
present undefined semantics (such as recursion). Figure 6 depicts a class diagram describ-
ing an extended version of the banking system. The invariant over Customer states that
a customer identifier must be unique, while the invariant over Account states that it is
an abstract class.

3In Alloy, set elements are designed as singleton unary relations.

19º Simpósio Brasileiro de Engenharia de Software

175
161

Figure 6. Extended Class Diagram for the Banking System.

Regarding diagrammatic constructs, each class and interface is translated to a sig-
nature in Alloy. Regarding interface, a formula is introduced for ensuring that the sig-
nature has no direct instances. In addition, each binary association is translated to two
relations declared with the set qualifier. Similarly, attributes also translate to relations.
A relation is created for each navigable association end, using the opposite role name.
This rule is required due to the limitation in representing navigability constraints with
binary relations in Alloy (a binary relation is bidirectional by definition). In our example,
Customer and BankCard can be represented in Alloy as follows:

sig Customer { sig BankCard {
card: set BankCard, owner: set Customer
id: set String }

}

In case we have two navigable ends for an association, each signature declares a
relation for its opposite navigable end, as exemplified by owner and card. A constraint
is added, stating that a relation is the transpose of its opposite counterpart.

fact BankInvariants {
card = ˜owner
all c:Customer | #c.card=1
all a:Account | #a.˜accs=1 ...

}

For example, the second formula in BankInvariants states that there is exactly one
object of BankCard mapped by each customer. In addition, generalization is translated
to Alloy’s extends. The SavAcc class is translated to a similar signature declared in
Section 4.1.

OCL invariants are translated into equivalent Alloy formulae, being universally
quantified on self. This limits expression of invariants in OCL (such as number of
instances of a class), since universally quantified formulae can be true either if the formula
is valid or the quantified set is empty. Even though Alloy allows global invariants without
quantification, we do not intend to fix the problem, as we provide a semantics for OCL.

Next, we show an Alloy fragment that translates the invariants from the Account
and Customer contexts. Set membership results from translating oclIsKindOf,

19º Simpósio Brasileiro de Engenharia de Software

176
162

whereas isUnique is translated to an equivalent quantified formula. The translation
can create a separate fact for each OCL context, although not shown here for simplicity.

all self:Account | (self in ChAcc) or (self in SavAcc)
all self:Customer | all disj c,c’:Customer | c.id != c’.id

The in operator denotes set membership, while ! denotes negation. The disj
keyword states that the declared variables are distinct. Table 1 formulates the translation
rules for a core of OCL formulae and expressions, where X,Y denote collections, P,Q
denote formulae, a,b denote variables and r an attribute.

Table 1. Translation rules from a core OCL to Alloy.
OCL Alloy

X->forAll(a|P) all a:X | P
P and Q P && Q

X.allInstances X
a equals b a = b

not(P) !(P)
X.oclIsKindOf(Y) X in Y
X.isUnique(r) all disj a,a’:X | a.r != a’.r
X->isEmpty() no X

X.size() #X

Currently, the translation is performed systematically, but manually. Neverthe-
less, the process was designed to be decidable, allowing automatization. Both lan-
guages can be defined by meta-modeling, and transformations can be implemented
as a correspondence between meta-model elements, using an approach similar to
OMG’s Model-Driven Architecture [Soley 2000]. XML-based representations, such as
XMI [Object Management Group 2001], can certainly help obtaining Alloy paragraphs
from UML classes and OCL invariants. Furthermore, OCL constraints can be translated
into Alloy formulae as source-to-source transformations, involving a parser for OCL and
manipulation of abstract syntax trees.

4.3. Soundness

We have proposed a comprehensive set of laws for Alloy, which were specified and proved
in PVS based on an Alloy’s semantics and equivalence notion [Gheyi et al. 2004]. Our
approach to prove class diagram laws is to translate into Alloy and use our Alloy laws
to reason about UML laws. In fact, the UML laws presented here can be reduced to
equivalent Alloy laws. Next we present a formal argumentation stating that our laws are
sound.

As described in Section 3.1, we compare two class diagrams with respect to a
set of important names. For example, Law 1 present diagrams with the same model
elements, except for class C and an invariant stating that it is an abstract class. Notice
that classes A and B are disjoint in the LHS diagram. The same constraint is preserved in
the RHS diagram, since subclasses from the same parent class are disjoint. Moreover, on
the RHS diagram, objects of classes A and B are instances of class C, and C is an abstract

19º Simpósio Brasileiro de Engenharia de Software

177
163

class. These constraints are preserved in the LHS diagram, if C is an important name
(considering C in Σ). In this case, this law has a condition establishing that v has the
C→A->union(B) item; hence satisfying both constraints. Therefore, both models have
the same semantics.

Furthermore, both models in Law 2 have the same elements and invariants, except
for the t association and an invariant with its definition. If t is in Σ, there is a condition
stating that v has an item for t that is equivalent to the invariant introduced on RHS
diagram. Therefore, both models have the same meaning. In Law 3 both diagrams have
the same structures, except for the t association and an invariant. On the RHS diagram,
t relates objects from class A, which is the parent class of B, to objects in class C. On
the LHS diagram, t relates objects from class B to class C. However, there is an explicit
invariant on the RHS diagram stating this same constraint. Therefore, both diagrams have
the same semantics. Finally, Law 4 preserves semantics since it introduces or removes an
invariant that is deduced from the model.

5. Related Work

Recent approaches for defining UML model transformations have been proposed. Evans
et al. [Evans 1998], for example, define transformations for manipulating class diagrams,
which are sound according to a formal semantics. Some of these transformations weaken
constraints, resulting in more abstract models. In a similar approach, a semantics for UML
class and state diagrams — in terms of extended first-order set theory — allows defini-
tion of abstraction and refinement transformations [Lano and Bicarregui 1998]. These
approaches do not state in which conditions the transformations can be applied, also not
considering OCL invariants. This can be harmful, since simple transformations can lead
to inconsistencies or type errors. Another work [Gogolla and Richters 1998] introduces
a number of semantics-preserving transformations for class diagrams. These transforma-
tions express complex UML constructs in terms of primitive ones and OCL invariants,
removing syntactic sugar, which is similar to a subset of our laws. However, none of
those formalize an equivalence notion, which is an important contribution.

Laws for top-level design elements of UML-RT (Real Time) have been proposed
by recent work [Sampaio et al. 2003]. They propose laws for both structural and be-
havioral constructs (capsules), not intended to be primitive, as ours. They assume that
relationships are directed and constraints involve only relationships as attributes, not con-
sidering global invariants. In contrast, our laws consider global constraints, focusing on
models at high level of abstraction.

Model refactoring has been exploited as an application of transformations for
UML. Sunyé et al. [Sunyé et al. 2001] presents primitive refactorings for class and state
diagrams, grounded on OCL constraints at the metamodel level. However, these trans-
formations do not consider OCL invariants. Furthermore, the equivalence notion based
on metamodel elements does not compare models with different elements, as our notion
does. More recently, a work discusses implementation of model refactorings as rule-based
transformations [Porres 2003], not regarding preservation of semantics.

There have been a number of efforts on proposing formal semantics for UML
and related modeling languages, in order to clarify the semantics of its diagrammatic con-
structs, supporting tool development. For example, related approaches [Evans et al. 1999]

19º Simpósio Brasileiro de Engenharia de Software

178
164

give a formal semantics to a subset of UML class diagrams. We defined a translational
semantics for leveraging to UML class diagrams transformations proposed for Alloy
[Gheyi et al. 2005a].

Bordeau and Cheng [Bourdeau and Cheng 1995] define a similar translational ap-
proach for a related modeling notation. They automatically map models to algebraic
specifications, allowing formal reasoning on the semantics of the translated specification.
In contrast, Alloy admits a more direct translation from UML, since both are similarly
suitable to domain modeling [Dennis et al. 2004]. Also, automatic simulation and analy-
sis in Alloy may be more appealing to software architects and designers.

Our translational semantics allows generation of instances and counterexamples
to claims over class diagrams, by means of the Alloy Analyzer tool [Jackson et al. 2000].
Recent work in this subject shows how the analysis can be leveraged to a comprehensive
subset of class diagrams by using our translational semantics [Massoni et al. 2004].

6. Conclusion
In this paper, we have proposed semantics-preserving transformations for UML class di-
agrams annotated with OCL that are proven sound according to a translational semantics
in Alloy, helping avoid incorrect transformations and detect subtle problems. The nov-
elty of our work is twofold: defining semantics-preserving transformations for UML, and
proposing a comprehensive set of small transformations that can be composed to derive
more complex transformations, such as structural model refactorings.

The given translational semantics has also offered an abstract equivalence notion
for class diagrams. In this notion, we are able to compare whether two class diagrams are
equivalent, even if these diagrams present distinct classes and associations, or structures.
Moreover, our translational semantics makes it possible to leverage to class diagrams
automatic simulation and analysis from the Alloy Analyzer. The tool yields automatic in-
stances for a translated diagram, regardless of input test cases, as well as analyzes specific
properties on a diagram. The latter can be useful for identifying otherwise subtle changes
in semantics [Massoni et al. 2004].

Our transformations are very simple to apply because they require simple syntactic
conditions, allowing straightforward implementation for transformations. In the context
of MDA, derived refactorings can be used to enhance PIMs aiming at smoother impact of
requirement changes. In an on-going work, we formalize the relationship between model
and program transformations, defining correspondent refactorings [Massoni et al. 2005].
Therefore, transformations can be applied to PSMs and source code, based on PIM model
refactorings derived from the primitive laws.

Our translational semantics is limited in the sense that Alloy cannot represent
implementation-oriented class diagram constructs. For instance, attributes are mapped
to simple binary relations, disregarding properties such as visibility and default value.
Further, the translation is systematic, yet currently manual. However, regarded as fu-
ture work, tool support will carry out source-to-source translation between metamod-
els of both languages, and OCL to Alloy invariants. Moreover, we intend to propose
more transformations. A comprehensive set of transformations for Alloy has been pro-
posed [Gheyi et al. 2004]. These transformations were specified and proved in PVS, in-
creasing confidence on the results, based on an Alloy’s semantics and equivalence notion

19º Simpósio Brasileiro de Engenharia de Software

179
165

codified into PVS [Gheyi et al. 2005a]. As future work, we intend to follow a similar
approach for proving transformations for class diagrams.

Acknowledgments

We would like to thank all anonymous referees, whose appropriate comments helped
improving the paper, and members of the Software Productivity Group. This work was
partially funded by CAPES and CNPq.

References

[Bourdeau and Cheng 1995] Bourdeau, R. and Cheng, B. (1995). A Formal Semantics for
Object Model Diagrams. IEEE Transactions on Soft. Engineering, 21(10):799–821.

[Dennis et al. 2004] Dennis, G. et al. (2004). Automating Commutativity Analysis at the
Design Level. In Inter. Symposium on Software Testing and Analysis, pages 165–174.

[Edwards et al. 2004] Edwards, J. et al. (2004). A Type System for Object Models. In 12th
Foundations of Software Engineering, pages 189–199. ACM Press.

[Evans et al. 1999] Evans, A. et al. (1999). The UML as a formal modeling notation. In
UML’98 - First International Workshop, pages 336–348. Springer.

[Evans 1998] Evans, A. S. (1998). Reasoning with UML Class Diagrams. In 2nd IEEE
Workshop on Industrial Strength Formal Specification Techniques, pages 102–113.
IEEE CS Press.

[Fowler 1999] Fowler, M. (1999). Refactoring—Improving the Design of Existing Code.
Addison Wesley.

[Gheyi et al. 2004] Gheyi, R., Massoni, T., and Borba, P. (2004). Basic laws of object mod-
eling. In Third Specification and Verification of Component-Based Systems (SAVCBS),
affiliated with ACM SIGSOFT 2004/FSE-12, pages 18–25, Newport Beach, United
States.

[Gheyi et al. 2005a] Gheyi, R., Massoni, T., and Borba, P. (2005a). A Rigorous Approach
for Proving Model Refactorings. Submitted for publication.

[Gheyi et al. 2005b] Gheyi, R., Massoni, T., and Borba, P. (2005b). An Abstract Equiv-
alence Notion for Object Models. In A. Mota, A. M., editor, Electronic Notes in
Theoretical Computer Science, volume 130, pages 3–21. Elsevier.

[Gogolla and Richters 1998] Gogolla, M. and Richters, M. (1998). Equivalence Rules for
UML Class Diagrams. In UML’98 - First International Workshop, pages 87–96.

[Greenfield et al. 2004] Greenfield, J. et al. (2004). Software Factories: Assembling Appli-
cations with Patterns, Models, Frameworks, and Tools. Wiley.

[Jackson 2005] Jackson, D. (2005). Alloy 3.0 Reference Manual. http://alloy.mit.edu/beta/-
reference-manual.pdf.

[Jackson et al. 2000] Jackson, D. et al. (2000). Alcoa: the Alloy Constraint Analyzer. In
22nd International Conference on Software Engineering, pages 730–733. ACM Press.

[Jackson et al. 2001] Jackson, D. et al. (2001). A Micromodularity Mechanism. In 9th
Foundations of Software Engineering, pages 62–73. ACM Press.

19º Simpósio Brasileiro de Engenharia de Software

180
166

[Lano and Bicarregui 1998] Lano, K. and Bicarregui, J. (1998). Semantics and Transforma-
tions for UML Models. In UML’98 - First International Workshop, pages 107–119.

[Larman 2001] Larman, C. (2001). Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall.

[Massoni et al. 2004] Massoni, T., Gheyi, R., and Borba, P. (2004). A UML Class Diagram
Analyzer. In 3rd International Workshop on Critical Systems Development with UML,
affiliated with 7th UML Conference, pages 143–153.

[Massoni et al. 2005] Massoni, T., Gheyi, R., and Borba, P. (2005). A Model-driven Ap-
proach to Program Refactoring. Submitted for publication.

[Object Management Group 2001] Object Management Group (2001). XMI specification.

[Object Management Group 2003] Object Management Group (2003). Unified Modeling
Language Specification Version 1.5.

[Owre et al. 2005] Owre, S. et al. (2005). PVS language and prover reference. At
http://pvs.csl.sri.com.

[Porres 2003] Porres, I. (2003). Model refactorings as rule-based update transformations.
In 6th UML Conference, volume 2863 of LNCS, pages 159–174. Springer.

[Sampaio et al. 2003] Sampaio, A. et al. (2003). Class and Capsule Refinement in UML for
Real Time. In 6th Brazilian Workshop on Formal Methods, pages 16–34.

[Soley 2000] Soley, R. (2000). Model Driven Architecture. OMG Document 2000-11-05.

[Sunyé et al. 2001] Sunyé, G. et al. (2001). Refactoring UML Models. In 4th UML Confer-
ence, volume 2185 of LNCS, pages 134–148. Springer.

[Warmer et al. 2003] Warmer, J. et al. (2003). The Object Constraint Language: Getting
Your Models Ready for MDA. Addison Wesley, 2nd edition.

19º Simpósio Brasileiro de Engenharia de Software

181
167

	AnaisSBES
	Sessões Técnicas SBES (ST)/ Technical Sessions (TS)
	ST3 – Modelagem
	Formal Refactoring for UML Class Diagrams

