
Taming Heterogeneous Aspects with Crosscutting Interfaces
Christina von Flach G. Chavez1, Alessandro Garcia2,
Uirá Kulesza3, Cláudio Sant’Anna3, Carlos Lucena3

1Depto de Ciência da Computação – Universidade Federal da Bahia (UFBA)
Av. Adhemar de Barros, s/n – 40.170-110, Salvador – Brasil

2Computing Department, Lancaster University
South Drive, InfoLab 21, LA1 4WA, Lancaster - UK

3Depto de Ciência da Computação – Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
Rua Marquês de São Vicente, 225 – 22.453-900, Rio de Janeiro – Brasil

flach@ufba.br, a.garcia@lancaster.ac.uk,{uira,claudios,lucena}@inf.puc-rio.br

Abstract. Aspect-oriented software development promotes improved separation of concerns by
introducing a new modular unit, called aspect, for the modularization of crosscutting concerns.
As a new kind of modular unit, aspects should have explicit interfaces that describe the way
they interact with the rest of the system and how they affect other modules. This interaction
can be homogeneous, for example, by providing a logging behavior that affects all procedures
in a certain interface; or it can be heterogeneous, for example, by implementing the two sides
of a protocol that affects two different classes. In this paper, we present crosscutting interfaces
as a conceptual tool for dealing with the complexity of heterogeneous aspects at the design
level. Crosscutting interfaces have been incorporated by the aSideML modeling language in
order to enhance aspect description at the design level. Moreover, we present a modeling
notation for the description of architecture-level aspects that also supports the explicit
representation of crosscutting interfaces. Finally, we present a large-scale case study we have
performed using this modeling language that supports our arguments in favor of crosscutting
interfaces.

1. Introduction
There is an increasing level of complexity of software systems and the kinds of concerns they
address, imposing new challenges to the mainstream software engineering paradigms. The
object-oriented paradigm is not sufficient to modularize some common concerns found in most
complex systems. They have been called crosscutting concerns because they naturally cut
across the boundaries of other concerns [29, 39]. Aspect-Oriented Software Development
(AOSD) [1, 15] is an emerging approach with the goal of improving the separation of
crosscutting concerns throughout the software development lifecycle. AOSD considers
acknowledged contributions to separation of concerns and modularity provided by previous
technologies (mainly the object-oriented paradigm, but not constrained to it), while introducing
a new modular unit, called aspect, for the modularization of crosscutting concerns. The
expected benefits of AOSD are improved comprehensibility, ease of evolution and increased
potential for reuse in the development of complex software systems.

However, an aspect itself may be the locus of further complexity. Aspects can be
homogeneous, for example, by providing a logging behavior that affects all procedures in a
certain interface; but they may also be heterogeneous, for example, by implementing the two
sides of the subject-observer protocol that affects two different classes [4, 11, 14]. As a new
kind of modular unit, aspects should have explicit interfaces [31]. The aspect interface should
describe the way an aspect interacts with the rest of the system and how it affects other
modules. Moreover, since aspects may possibly affect several classes heterogeneously, the
aspect interface could be decomposed into two or more partial interfaces that aggregate the
different ways an aspect affects the rest of the system. Explicit aspect interfaces should ensure

19º Simpósio Brasileiro de Engenharia de Software

230
216

proper modularity and promote predictability of composition, enhancing comprehension and
reuse [4, 28, 32]. Finally, the notion of aspect interfaces should be supported from early stages
of design, not only at the implementation stage.

Despite of the importance of the subject, very little work has addressed issues related to the
definition of aspect interfaces. Kiczales and Mezini [28] have discussed the impact of aspect-
oriented programming on modular reasoning. However, they were concerned with the
influence of aspects on the specification of classical interfaces of components (classes) rather
than the definition of aspect interfaces. Mezini and Ostermann [32] have explored this issue,
but only in the context of a specific aspect-oriented programming language. Moreover, they do
not elicit the main principles underlying the definition of aspect interfaces. Similar limitations
are found in the definition of a behavioral interface specification language for AspectJ, called
Pipa [42]. In addition, existing aspect-oriented modeling languages [9, 10, 38, 40] lack explicit
support for aspect interfaces. In this context, there is an urgent need for understanding the
common properties of aspectual interfaces at a higher level of abstraction and supporting them
through modeling notations.

This paper introduces the notion of crosscutting interfaces as a conceptual tool for dealing
with the complexity of heterogeneous aspects at the design level. A crosscutting interface is a
set of structural or behavioral enhancements specified inside the aspect to affect
homogeneously one or more modules at some specified join points [5]. In addition, we have
incorporated crosscutting interfaces in a modeling language in order to enhance aspect
description at the design level [4]. Our modeling notation also allows the description of
architecture-level aspects that similarly include the explicit representation of crosscutting
interfaces. As a consequence, our approach provides, from an early stage of design, a
systematic foundation for minimizing the complexity caused by the handling of heterogeneous
aspects. Finally, we have also performed some case studies to support our arguments in favor
of crosscutting interfaces using our modeling language.

The remainder of this paper is organized as follows. Section 2 presents some background
and motivates the need for supporting crosscutting interfaces at different development stages.
Section 3 presents the definition and properties associated with crosscutting interfaces. Section
4 introduces our notation for specifying aspects and crosscutting interfaces at the architectural
and detailed design stages. Section 5 presents our evaluation of both the concept of
crosscutting interfaces and our modeling notations in terms of usability and usefulness.
Section 6 presents some additional discussion. Section 7 summarizes our contributions in the
light of related work. Section 8 presents concluding remarks.

2. AOSD: Basic Concepts and Modeling Notations
This section revisits the basic concepts associated with modularity and AOSD, and motivates
the need for adequate support for clear aspect interfaces at the design level.

2.1 Basic Concepts
Separation of concerns is a well-established principle in software engineering that addresses
the limitations of human cognition for dealing with software complexity. A concern is some
part of the problem that we want to treat as a single conceptual unit [13]. Modularity is also a
fundamental principle for managing software complexity [31]. Complex software systems
should be decomposed into a set of highly cohesive modules, each implementing well-defined
interfaces and dealing with a single concern. An interface is a well-defined prescription of how
the module, which realizes it, interacts with the rest of the system [31, 32]. The basic modules
used in object-oriented software development (OOSD) are classes and objects.

However, the modules and the composition mechanisms provided by OOSD may not be
sufficient for separating some concerns found in most complex systems. These concerns have

19º Simpósio Brasileiro de Engenharia de Software

231
217

been called crosscutting concerns since they naturally cut across the modularity of other
concerns. Aspect-oriented software development (AOSD) [1, 15] has been proposed as a
technique for improving the separation of crosscutting concerns. AOSD addresses the
modularization of these concerns by providing a new abstraction, called aspect, which makes it
possible to separate and compose them to produce the overall system. Thus, an aspect-oriented
(AO) system is composed of two kinds of modules: classes and aspects. The predominant
definition for aspects is the one that comes from the AspectJ programming language [2]
aspects are implementation-level modules that specify and localize: (i) refinements and
redefinitions of behaviors at well-established points localized in the other system’s modules,
(ii) additions of members (state elements and behaviors) to other system’s modules, and (iii)
modifications of type relationships with existing modules. In AspectJ’s terminology, (i) is
implemented by means of pointcuts and advice, and (ii) and (iii) are implemented by means of
inter-type declarations [2].

2.2 Aspect-Oriented Modeling and a Motivating Example
Following the above implementation-level definition, aspects must also be supported at
preliminary development phases, such as the architectural definition stage and the detailed
design stage. Indeed, both homogeneous and heterogeneous aspects may show up early in
software development, and aspect-oriented modeling is essential to support their specification.
Aspect-Oriented Modeling (AOM) [40] is a critical part of AOSD that focuses on notation and
techniques for specifying, visualizing and communicating aspect-oriented solutions along the
path from requirements to implementation with Aspect-Oriented Programming (AOP).
Different views of an aspect are useful for different tasks. In order to model a system and
communicate its properties, a high-level view is suitable.

This subsection motivates the need for clear aspect interfaces at the design level by means
of a simple well-known example: the design of the Observer pattern [17] using the AODM
approach [38]. The design is abstracted from the pattern implementation in AspectJ [25].
Conceptually, the Observer design pattern emphasizes the use of two key participants:
Observer and Subject. The Subject participant knows its observers and realizes an interface for
attaching, detaching and notifying Observer objects. The Observer participant defines an
updating interface for objects that should be notified of changes in a subject. The design-level
specification of the Observer aspect should clearly define these two participants as two
modules that interact with each other via well-defined interfaces. The Observer aspect is a
classical example of heterogeneous aspect.

Aspect-Oriented Design Model (AODM) [38] is an UML extension that enhances the
existing UML specification with aspect-oriented concepts that reproduce the crosscutting
characteristics of the AspectJ language. The AODM defines: (1) a special stereotype for
standard UML classes (named <<aspect>>) to capture the semantics of aspects, (2) a new
stereotype for standard UML operations (named <<pointcut>>) to capture the semantics of
AspectJ’s pointcuts, (3) a new stereotype for standard UML operations (named <<advice>>)
that capture the semantic of AspectJ’s advice, and (4) a new stereotype for UML collaboration
templates (named <<introduction>>) to describe inter-type declarations.

Figure 1 illustrates how an aspect-oriented implementation for the Observer design pattern
[25] is modeled using the AODM. In the example, the Observer design pattern is used to make
a color label (playing the Observer role) change its color whenever a button (playing the
Subject role) is clicked. One abstract aspect named SubjectObserverProtocol implements the
Observer pattern and a concrete aspect named SubjectObserverProtocolImpl implements a
particular instance of this pattern for the Button and ColorLabel classes.

19º Simpósio Brasileiro de Engenharia de Software

232
218

Figure 1. Using the AODM notation to describe the Observer aspect [38]

The AODM provides a visual notation for AspectJ’s programs, where boxes that represent
aspects are polluted with very detailed, implementation-specific information that is only useful
for AspectJ. Note that, although the collaboration templates stereotyped with <<introduction>>
provide some means to modularize inter-type declarations in a per-participant basis, the
specification of join points (pointcuts) and advice are not properly modularized. Therefore, it
lacks adequate support for dealing with heterogeneous aspects.

According to the AODM language, all pointcuts and advice are top-level elements and
should be described in the aspect’s Operations compartment. As a consequence, the notation
does not provide means to express that both the pointcut stateChanges and the advice
advice_id01 are related to the Subject participant. Moreover, the aspect’s local operations are
supposed to be mixed with pointcuts and advice. This design reflects the poor separation of
concerns inside AspectJ’s aspects [4, 32] and leads to a poor separation of concerns inside
AODM design-level aspects as well.

This design also leads to a poor scalability: as the complexity of an aspect increases, the
aspect’s interface may become bloated. Although advice and pointcuts are recognized as
fundamental concepts of aspect-oriented languages, there is a recognized need for the
definition of higher-level module concepts on top of them [4, 32], especially for dealing with
heterogeneous aspects. Finally, the design does not provide a big picture for the solution that
abstracts from programming-specific details and emphasizes high-level relationships between

19º Simpósio Brasileiro de Engenharia de Software

233
219

aspects and classes. From the diagram presented in Figure 1 it is very difficult to capture even
basic information such as Button plays the Subject whilst ColorLabel plays the Observer. In this
context, explicit aspect interfaces are necessary for dealing with multi-abstraction aspects and
improving comprehensibility at the design level. The idea of crosscutting interfaces is essential
for the modularization of the different ways that a heterogeneous aspect affects the different
parts of a system.

3. Crosscutting Interfaces
The design of modular AO systems is fundamental for managing software complexity.
According to our viewpoint, the concept of crosscutting interfaces is an important step in this
direction. This section provides a conceptual framework for crosscutting interfaces, which
consists of a set of definitions (Section 3.1) and a set of fundamental properties (Sections 3.2
through 3.4). This framework was abstracted from both the aspect models of existing AO
programming languages [2, 27, 30, 32] and our extensive modeling of AO systems (Section 5).
According to the literature [31, 34], an interface is a well-defined prescription of how the
module, which realizes it, interacts with the rest of the system. Our definition of crosscutting
interfaces refines this traditional definition of module interfaces and adapts it to the AOSD
context as described in the following subsections.

3.1. Definitions
Crosscutting interfaces are defined as named sets of crosscutting features that characterize the
crosscutting behavior of aspects with respect to other modules [4]. We use the term
crosscutting feature whenever we refer to any structural or behavioral enhancement specified
inside the aspect to affect one or more modules at some specified join points [5]. The concept
of interface presented here should not be tied up with the idea of object-oriented interfaces and
their specific models in programming languages, such as Java; yet, the definition of interfaces
as provided here should be related to the more general idea of modular interfaces and their
properties [31].

Crosscutting interfaces modularize sets of related crosscutting features. Without proper
means for separation and structuring, crosscutting features tend to be mixed with each other
and with other aspect features, such as local attributes and methods. The natural consequences
are reduced comprehensibility of aspects as well as difficulties for predicting their
composition, especially for heterogeneous aspects. As the interfaces of conventional modules,
crosscutting interfaces are sub-contracts between the aspectual module, which implements
them, and each module affected by that aspectual module. However, the notion of crosscutting
interfaces is different from the traditional notion of interfaces because each crosscutting
interface also embodies the definition of how an aspect partially crosscuts other system
modules. The aspect interface (or aspectual interface) therefore, consists of one or more
crosscutting interfaces.

Crosscutting interfaces follow six fundamental properties, which are described below.
Note that each property either holds or refines the definition of a classical property of module
interfaces [31]. Crosscutting interfaces also entail new properties. They are classified into three
categories according to their nature: (i) interface realization, (ii) interfaces and crosscutting,
and (iii) interface specialization. In this context, the term crosscutting denotes a relationship
between an aspect and one or more modules, so that the aspect may affect the modules
structure and behavior at well-defined points. The term normal interfaces denote interfaces of
conventional modules, other than aspects.

19º Simpósio Brasileiro de Engenharia de Software

234
220

3.2. Interface Realization
Property #1 - Multiplicity. Each homogeneous aspect implements only one crosscutting
interface. However, similarly to the realization of normal interfaces by conventional modules,
each aspectual module can also realize more than one crosscutting interface. One aspect can
define more than one crosscutting interface because it may affect heterogeneously different
categories of modules in the system.

Property #2 – Distinct Realizations. One or more components can realize the same
crosscutting interface. An interface, whether aspectual or not, is a contract between two
modules. As a consequence, it is a reusable abstraction and can be realized in distinct manners
by different aspects. Each aspectual module may provide different implementations to the
crosscutting interfaces it realizes.

3.3. Interfaces and Crosscutting
Property #3 - Quantification. A given crosscutting interface can affect one or more modules.
Each crosscutting interface affects these modules homogeneously. The modules can be either
aspectual ones or conventional ones. The interface prescribes the same changes to the
structures and/or behaviors of the target modules. In fact, this property of crosscutting
interfaces satisfies the quantification property of AOP [16] and is not satisfied by traditional
notions of module interfaces.

Property #4 – Contractual Crosscutting. A crosscutting interface can directly affect (crosscut)
normal interfaces in addition to the internals of a module itself. Crosscutting interfaces change
the definition of normal interfaces by adding new elements or refining their existing elements.
As a consequence, aspectual interfaces may alter the contract prescribed by each affected
normal interface. This property is not found in conventional definitions of module interfaces.
The crosscutting characteristic of aspectual interfaces means that a given aspect interface can
crosscut more than one normal interface. The next property is an important special case of this
property.

Property #5 – Chain of Crosscutting Interfaces. A crosscutting interface can affect other
crosscutting interfaces, not only normal interfaces. In this way, an arbitrary crosscutting
interface X can crosscut a crosscutting interface Y, which in turn can crosscut an interface Z,
producing a chain of crosscutting interfaces. This is a particularly important property for AO
design because heterogeneous aspects are often interactive and overlapping in real complex
systems (Section 5).

3.4. Interface Specialization
This property is related to a special kind of relationship between interfaces: specialization.
Property #6 - Extensibility. A crosscutting interface can be extended by other crosscutting
interfaces. The extending interface may add, refine or redefine some crosscutting features
defined in the parent crosscutting interface. This property is in line with the notion of
specialization of aspectual modules. The specialization of crosscutting interfaces is a property
required in several examples of heterogeneous and homogeneous aspects, such as code
mobility [19, 23], learning [20, 22], and design patterns [18, 24].

4. Notation
Crosscutting interfaces can be regarded as a conceptual tool for dealing with the inner
complexity of aspects at the design level. They can be supported by an aspect-oriented
modeling language that provides notation for specifying aspects at the design level. Moreover,
the description of architecture-level aspects may also benefit from the support for explicit

19º Simpósio Brasileiro de Engenharia de Software

235
221

representation of crosscutting interfaces. In this section, we introduce our notation for
specifying aspects and crosscutting interfaces at the architectural and detailed design stages.
Our notation follows the principles underlying the conceptual framework for crosscutting
interfaces (Section 3).

4.1 Crosscutting Interfaces and Design-level aspects
The aSideML [4] is an aspect-oriented modeling language that provides notation, semantics
and rules for specifying aspects and crosscutting at the design level. In particular, the language
supports the explicit definition of one or more explicit crosscutting interfaces that organize the
aspect’s join point description and crosscutting behavior.

The aSideML language enables the designer to build models that focus on keys concepts,
mechanisms and properties of AO systems, in which aspects and crosscutting are explicitly
treated as first-class citizens. These models help in dealing with the complexity of aspect-
oriented systems, by providing essential views of structure and behavior that emphasize the
role of crosscutting elements and their relationships to other elements. Some of these models
present a detailed design view of AO systems that may also serve as preliminary blueprints to
be evolved towards the implementation models of AO programming languages and tools.

User-defined aSideML model elements can be structural or behavioral. The main
structural model elements are aspects, crosscutting interfaces, crosscutting features, base
elements (elements that aspects are supposed to enhance) and the relationships between them.
Aspects are defined as parameterized elements with one or more explicit crosscutting
interfaces to organize join point description and aspect crosscutting behavior. Aspects abstract
over the identity of the elements they will eventually crosscut, by declaring template
parameters to hold actual names of classes and methods. A new kind of relationship, the
crosscutting relationship, subsumes a relationship between an aspect and a base element; it
also performs a binding that defines the base elements and operations that replace the aspect’s
template parameters. The behavioral model elements and the detailed semantics of aSideML
aspects are presented in [4].

Figure 2 presents the design of the Observer pattern using the aSideML notation. The
aspect is drawn as a dashed rectangle, with a diamond symbol containing the aspect name.
Crosscutting interfaces are declared inside aspects and are drawn as solid-outline rectangles
with inner compartments separated by horizontal lines. Crosscutting features are listed in
different compartments, depending on the kind of enhancement they support. The Additions
compartment lists data and operations to be introduced in classes. The Refinements
compartment lists crosscutting operations to be combined before, after or before/after class
operations and the Redefinitions compartment lists crosscutting operations that override class
operations. In these two compartments, each operation name (op) is adorned with the _ symbol,
with three permitted combinations: _op, op_ and _op_. These adornments indicate that the
crosscutting operation provides behavior to be combined before, after or before/after the base
operation behavior. Finally, an optional compartment may be supplied to define placeholders
for required operations (Uses). The aspect is presented with a small dashed rectangle
superimposed on the upper right-hand corner of the rectangle for the aspect. This rectangle is a
template parameter box that contains lists of formal parameters, one list for each aspect’s
crosscutting interface. The first parameter of each list is the name of the corresponding
crosscutting interface.

19º Simpósio Brasileiro de Engenharia de Software

236
222

{Subject, stateChanges_}
{Observer, update}

Subject

Refinements
+ stateChanges_();

Additions
- observers: Vector = new Vector();
+addObserver(Observer obs): void;
+removeObserver(Observer obs):void;
+getObservers(): void;
+getData(): Object;

Observation

Observer

Uses
update()

Additions
- subject: Subject = null;
+setSubject(Subject s): void;
+getSubject(): Subject;

Button
+click: void

Button

ColorLabel
+colorCycle: void

ColorLabel

< stateChanges -> click >

<<crosscut>>

< update -> colorCycle >

<<crosscut>>

Legend:
aspect

crosscutting interface

crosscut

Figure 2: Design-level aspects and crosscutting interfaces in aSideML.

The Observation aspect presented in Figure 2 has two crosscutting interfaces, one for
each pattern participant. Observer is a crosscutting interface that modularizes crosscutting
features that enhance arbitrary objects so that these elements become observers. Observer
declares three additions – the attribute subject and two public operations, setSubject(Subject s)
and getSubject() – and one requirement – update(). The Subject crosscutting interface
modularizes crosscutting features that enhance arbitrary objects so that these elements become
subjects. Subject declares five additions and one refinement – stateChange_() – that denotes
behavior to be executed after the affected base behavior.

The Observation aspect is connected to the elements it affects (Button and ColorLabel) by
means of two crosscutting relationships (shown as a dashed arrow with the tail on the
crosscutting element and the arrowhead on the base element, and the keyword <<crosscut>>).
The crosscutting information is displayed as a comma-separated list of template parameter
matches. The crosscutting relationships connect the Observation aspect to Button (binding
stateChange to click) and ColorLabel (binding update to colorCycle). Observation enhances Button
by means of the Subject crosscutting interface; the structure of instances of Button includes new
attributes and operations listed in the Additions compartment and their behavior is enhanced at
the defined join point (click). Observation enhances ColorLabel by means of the Observer
crosscutting interface.

4.2 Crosscutting Interfaces and Architectural-level aspects
The very nature of the detailed design notation for crosscutting interfaces does not provide a
big picture of the AO system. Hence this section presents a model for specifying and
communicating AO software architectures, depicting a high-level view of the AO design and
respective crosscutting interfaces. An AO software architecture provides components for
aspectizing crosscutting concerns at an early stage of design. This architectural model provides
notation and semantics that enable architects of AO software to build models that focuses on
the key concepts and properties of AO systems at the architectural level. The main goal is to
prevent the architect from dealing with detailed design issues that are not relevant at the
architectural level.

Figure 3 illustrates the notation elements of the architectural model. The presentation of the
architectural model is based on the example of the Observer design pattern, as in the previous
sections. In our modeling approach, the architecture designers should concentrate on two main
issues. First, they work on the specification of the central components of the AO system. The
architect has modeling support to distinguish between normal components and aspectual
components. Aspectual components (or architectural aspects) are aspects [19, 21] at the

19º Simpósio Brasileiro de Engenharia de Software

237
223

architectural level. Architectural aspects are UML components [41] represented as diamonds.
Each aspectual component is related to more than one architectural component, representing its
crosscutting nature. Note that the architectural view of an aspect suppresses all information
about its inner elements.

Factory

Figure
Editor

Figure
Elements

Subject

Observation

Legend:
aspectual component

component
crosscutting interface
normal interface

crosscuts

Observer

Logging

loggedElements

Figure 3. Crosscutting Interfaces and Architecture-Level Aspects

Second, software architects define the interfaces of the architectural components in a
higher-level fashion. Figure 3 illustrates some architectural components and interfaces. Each
interface is displayed as a small circle with the interface name placed next to the circle. The
interfaces are attached to the architectural components, and are categorized in two groups:
normal interfaces and crosscutting interfaces. Normal interfaces are colored in white and
crosscutting interfaces in gray. Each architectural component has one or more interfaces
(Property #1), and different components can realize the same interface (Property #2).

Crosscutting interfaces in the architectural model specify which architectural components
an aspectual component affects; they do not declare how the components are affected. A
crosscutting interface is different from a normal interface. The latter only provides services to
other components. Crosscutting interfaces specify when an architectural aspect affects other
architectural components. An aspectual component conforms to a set of crosscutting interfaces.
The aspect interface crosscuts either internal elements of architectural components or other
interfaces. The first case means that the architectural aspect directly affects the internal
structure or dynamic behavior of the target component (Property #3). The second case means
that the aspect affects the contract defined by other interfaces (Properties #4 and #5). The
specialization of crosscutting interfaces (Property #6) is supported only in the detailed design
notations (see Section 5.1 for an illustrative example).

The purpose of crosscutting interfaces here is to modularize parts of a concern which
usually crosscut other concerns in traditional kinds of architectural decomposition, such as
object-orientation. For example, Figure 3 shows the Subject interface in the Observation
component that modularizes the event observation mechanism and the reference to observers,
which are issues that usually crosscut the other concerns [18, 25].

5. Case Studies
The applicability of the concept of crosscutting interfaces and the usefulness and usability of
our modeling approach (Section 4) have been evaluated in the context of several case studies
[4, 12, 18, 19, 21, 22]. These case studies encompassed different characteristics, different
degrees of complexity, and diverse domains, such as the GoF design patterns [4, 18], multi-
agent systems [19, 21, 22], web-based information systems [12, 36, 37], and a Telecom
example [4]. Due to space limitation, from all these systems, we have selected two particular
case studies to be presented in this paper. For further details about the other case studies, the
reader should refer to [12].

19º Simpósio Brasileiro de Engenharia de Software

238
224

The first case study is the Observer pattern, which was presented in the previous sections.
It is a canonical example in the sense that it is frequently used by several modeling approaches
[38, 40] to illustrate their features. Moreover it represents crosscutting concerns relative to the
GoF patterns [18, 25], which are recurring design solutions used in every kind of application.
The second case study (Section 5.1) is a multi-agent system that has been chosen for a number
of different reasons: (i) it involves both domain-specific and application-dependent concerns;
(ii) it is not focused only on traditional crosscutting concerns (such as logging and tracing); and
(iii) it addresses concerns that have not been deeply investigated by the AOSD community.

5.1 Expert Committee
This section presents the modeling of a multi-agent system (MAS), named Expert Committee
(EC) [19, 21], using the notation for crosscutting interfaces presented in Section 4. First, we
present the architectural model for the software agents in the EC system, and then the detailed
design of some architectural components. Figure 4 introduces the model of the AO agent
architecture that encompasses the components for aspectizing common crosscutting concerns
in MASs, such as learning and collaboration. Each crosscutting agent property is modularized
by an individual architectural aspect [19]. For simplicity, some additional normal and aspectual
components are omitted.

Knowledge
Updating

Agent
Kernel

Services
Message

Reception

Interaction

Goal
Creation

Execution
Autonomy

Autonomy

Role
Binding

Collaboration

Message
Sending

Environment

Role
Knowledge

Sensory

Information
Gathering

Expertise

Learning

Decision
Making

Configuration

Registration

NamingMessaging

Figure 4. The Aspect-Oriented Architecture of EC Agents

The AO architecture is composed of two main normal components. The Environment
component represents the agent location and the system services, such as naming service,
registration, communication, and so forth. The Kernel component encapsulates the basic
services provided by the agent for its clients; these services are non-crosscutting. As a result,
this component realizes the Services normal interface to make those basic agent functions
available to the external entities. This component is also responsible for modularizing the
knowledge elements, such as actions, plans, goals, and beliefs. The KnowledgeUpdating
interface is used to alter and evolve the internal agent knowledge.

There are also aspectual components that separate the crosscutting agent-related concerns
from each other and from the Kernel component. Most of the aspectual components crosscut
multiple agent components in different ways, capturing their crosscutting characteristic. As a
result, they realize more than one crosscutting interface and also affect other architectural

19º Simpósio Brasileiro de Engenharia de Software

239
225

aspects. For example, the MessageSending interface crosscuts the Kernel component and the
Collaboration architectural aspects.

Figure 5 shows a partial representation of the AO design of the EC system using the
aSideML modeling language. Due to space limitation, we illustrate only the detailed design of
the Kernel, Learning and Collaboration components; parameters and attribute types were also
omitted. Note that these architectural components are refined as a set of classes and aspects
with additional design information. The figures present some of these classes and aspects, since
the others essentially follow the same pattern. A complete description of the design elements
can be found at [19, 21].

The Kernel component is refined as a set of classes, which represent the agent itself, and
knowledge elements (e.g. plans). The hierarchy, derived from the Agent class, contains the
methods that implement the agent actions and agent’s basic services (i.e. the intrinsic interface
Services presented in Figure 4). The Learning and Collaboration architectural aspects are
decomposed in terms of abstract aspects, concrete aspects, and auxiliary classes (omitted for
simplicity). Each crosscutting interface is refined as a set of additions, refinements, and uses
definitions, which are all realized by the attached aspect. Learning aspects are heterogeneous
aspects that encapsulate the entire implementation of the learning concern. Their heterogeneity
is mastered by the Expertise interface and the InformationGathering interface. These crosscutting
interfaces are defined by the Learning abstract aspect and specialized by the ReviewerLearning
aspect (Figure 5). The specialization of crosscutting interfaces was useful to model the EC
system since it has a number of both abstract and concrete aspects.

<events -> judgeProposal><events -> addPCparticipant>

{InformationGathering, events_}

Expertise

Additions
- learningRate

Learning

init(…)
learn(…)
adaptKnowledge(…)

learningComponents
events

Information
Gathering

Refinements
+events_(...)

Uses
getPapers(...)

{RoleBinding, roleInit_}

Role
Knowledge

Additions
- papersToReview
- deadlines
+getPapers(...)

...

Reviewer

init(…)
getGoal(…)
getPlan(…)

protocol Role
Binding

Refinements
+agentInit_(...)

Expertise

Additions
- paperInterest
- proposalEval

+getInterest(...)
+getProposalEval()

Reviewer
Learning

init(…)
learn(…)
recalculateTD(…)

TDtable Information
Gathering

Refinements
+events_(...)

Uses
getInterests(...)
updateInterests(...)

Agent

UserAgent

researchInterests
publications
addPCparticipant()
getInterests()
updateInterests()

Plan
goal
agent
…
execute ()
…

CVUpdatePlan
execute ()
updateCV()
getEntry()
...

JudgementPlan Judgement
ReceptionPlan
execute ()
evaluateResponse()
...

. . .

RevisionProposal
paper
deadlines
isAccepted()
…

goals
plans
agents
addAgent()
…

execute ()
judgeProposal()
emitJudgement()
...

<<crosscut>>

<<crosscut>>

<<crosscut>>

<roleInit -> new> <<crosscut>>

<roleInit -> execute>
Kernel

Figure 5. Refining the Architectural Aspects and Crosscutting Interfaces

The Collaboration component aggregates collaboration protocols and roles played by the
agents during their collaborative activities. Each role is represented by a design aspect and, as a
consequence, the Collaboration component is realized by a set of inner role aspects. It is
composed by four inner aspects, each one for a specific agent role: Author, Reviewer,
PCMember, and Chair. Figure 5 illustrates the Reviewer aspect. Each inner aspect implements
the RoleBinding interface and the RoleKnowledge interface. The first interface determines the
events in which a given role is bound to the agent; the events_ refinement specifies the binding
behavior. The second interface defines a set of additions which comprise the role-specific
knowledge introduced to the agent playing that role.

19º Simpósio Brasileiro de Engenharia de Software

240
226

5.2 Analysis
This section analyses the results of the application of our modeling approach in terms of

its usability and usefulness to master complex situations involving heterogeneous aspects.
First, through the application of our approach, we were able to easily specify aspectual
modules with multiple crosscutting interfaces both at the architectural and detailed design
levels. The notation is even suitable to support the modeling of heterogeneous aspects with
more than three crosscutting interfaces, such as the Interaction aspect (Section 5.1). It is
unlikely that we would have straightforwardly addressed this issue with other modeling
approaches, such as AODM [38] and Theme/UML [10], either because they do not directly
support crosscutting interfaces as modeling elements or because they do not enforce the
concept of crosscutting interfaces and the relevance of aspect interfaces.

Also, we observed that our design language was effective to cope with intriguing
crosscutting relationships (Section 3.3). We can see from Figures 4 and 5 that the presence of
contractual crosscutting (Property #4) and chains of crosscutting interfaces (Property #5) are
recurring in complex AO systems. With explicit support for crosscutting interfaces, it was
possible to express which exact part (interface) of a component, whether aspectual or not, a
given aspect is acting over. It is particularly interesting in the case of chains of crosscutting
interfaces because it is easier to understand the final result of the weaving process; it minimizes
the need for looking at the code to understand the inter-module composition. This may be
otherwise difficult to determine based on other existing modeling notations.

Finally, Figure 5 also shows that our notation is effective to represent the refinement of
elements in different compartments of a crosscutting interface. Note that the
InformationGathering interface, in the concrete aspect ReviewerLearning, specializes not only the
declaration of refinements, but also the specification of the elements in the Uses compartment.

6. Discussion and Lessons Learned
This section provides further discussion of issues and lessons we have learned in the evaluation
of our approach.
Mastering the Internal Complexity of Aspects. Heterogeneous aspects are very complex to be
represented in a single rectangle, since they aggregate numerous disparate members, such as
additions, refinements, redefinitions, and internal methods and attributes. Our notation, with its
support for representing crosscutting interfaces separately from the internal structure of
aspects, helped to organize these members in distinct inner rectangles, enhancing the design
comprehension. In addition, instead of providing a single aspect interface, decomposing the
aspect interface into two or more partial interfaces that aggregate and provide boundaries for
related sets of join points and crosscutting behavior further enhances understandability and
promotes predictability of composition.
Design Guidance. The explicit modeling of crosscutting interfaces helps the software architects
and designers in achieving good design decisions. The definition of crosscutting interfaces
allows the software engineers reasoning about the aspect design in terms of separate, well-
structured design elements. In addition, when there is an aspect realizing two interfaces with no
coupling between them, it potentially means that this aspect should be decomposed in two
loosely-coupled aspects. Otherwise, the designer will come up with a non-cohesive aspectual
module.
Language-Independent Approach. Several existing modeling languages are strongly tied up to
AspectJ constructs, such as the AODM approach [38]. As a result, design models look like
snapshots of the AspectJ code. Our notation is language agnostic because it encompasses a set
of generic operators, namely additions, refinements, and redefinitions. These operators are
commonly found in several programming languages. Redefinitions, for example, can be

19º Simpósio Brasileiro de Engenharia de Software

241
227

implemented as around advice without proceed in AspectJ [2], and by using override
integration in Hyper/J [27].
Traceability. We found that the aSideML language provides traceability by explicitly linking
elements of the architectural model (Section 4.2) to their corresponding elements in the
detailed design model (Section 4.1). Our proposal allows the software developers to traceably
refine architectural interfaces into design interfaces and vice-versa; crosscutting interfaces are
supported in both models. Our detailed design notations are also straightforwardly transformed
to specific aspect models of well-known programming languages, such as Caesar [32], AspectJ
[2], and Hyper/J [27]. With respect to Caesar, for example, our design models are more directly
mapped to code because this language has explicit support for aspect interfaces [32].
Considering AspectJ, although it does not support aspectual interfaces, all the other modeling
elements have a 1-to-1 mapping to their counterparts in the AspectJ code, as discussed in
Section 2.1. For further details about the traceability between aSideML and specific aspect
models, including Hyper/J, the reader should refer to [4, 8].
Scalability. Our architectural notation is scalable in several senses. First, it supports the
description of the main structure and relationships of more than twenty aspects and normal
components in a single sheet of paper. It also copes with the complexity of modeling multiple
crosscutting interfaces. Finally, the notation also supports the expression of aspects affecting
each other both at the internal structure and at the interface-level.
Maturity. In our experience, the support for crosscutting interfaces is a natural step to make AO
modeling languages more mature and modular. The aSideML modeling language, with its
support for crosscutting interfaces, has reached this maturity and, more than that, has been
applied into a number of case studies. A number of adaptations into the aSideML language
have been carried out in response to the flaws and inconsistencies detected in our experiments.
In addition, the conceptual framework presented in Section 3 and our modeling notations are
defined on the basis of a systematic extension to the UML metamodel [4, 6] and a consistent
theory of aspects for AOSD [5]. In order to enable the use of the aSideML language in the
modeling of other aspect-oriented systems, we are implementing a tool based on the Eclipse
platform [35] that supports the modeling of aspects and crosscutting interfaces as well as the
structural code generation to specific aspect-oriented languages.

7. Related Work
The idea of crosscutting interfaces has been originally defined in [4, 7]. Other researchers have
already proposed similar abstractions. However, their work focuses on discussing those
abstractions only at the implementation level. Lieberherr et al [30] proposed an AOP model, in
which aspects are captured by aspectual components. The functionality captured by an
aspectual component is written in terms of its own class graph, called participant graph (PG),
referring to abstract join points when needed. The participants forming the PG play the role of
crosscutting interfaces. Also in the implementation level, Caesar [32] has been proposed. It
defines an AOP model based on the notion of Aspectual Collaboration Interfaces (ACI). ACI is
an interface that provides support for: (a) expressing an aspect as a set of collaborating
abstractions, comprising the modular structure of the world as seen by the aspect, and (b)
structuring the interaction between two parts of an aspect: aspect implementation, and aspect
binding into a particular code base. Then, ACI can be regarded as crosscutting interfaces.

For the design level, Composition Patterns [9] is the most referenced AOM approach.
Interestingly, it has its roots on Subject-Oriented Design, a design counterpart for Subject-
Oriented Programming [26]. Clarke’s Composition Patterns are based on the Subject-Oriented
Design Model [9]. Therefore, Composition Patterns specify crosscutting concerns in a subject-
oriented manner that is inappropriate for the design of AO programs in AspectJ in several

19º Simpósio Brasileiro de Engenharia de Software

242
228

ways. To overcome these limitations, Clarke’s research on Composition Patterns approach has
evolved to Theme/UML [10], with the goal of providing a “generic AOSD design language”.
In [10], the authors provide a mapping from Composition Patterns (or Crosscutting Themes in
Theme/UML) to the programming elements of AspectJ. Composition patterns are UML
templates for design subjects that expect classes and operations as template parameters.
Pattern classes are the placeholders to be replaced by real class elements. Although pattern
classes provide some sort of separation of concerns inside the “theme”, the notation does not
enforce the concept of crosscutting interfaces and the relevance of aspect interfaces.

Stein’s AODM [38], on the other hand, presents a design model that complies with the
semantics of AspectJ. He proposes a set of extensions that supplements the UML with means
for the design of aspect-oriented programs with AspectJ exclusively. The use of collaboration
templates to modularize inter-type declarations provides very limited support for crosscutting
interfaces. Our approach is language independent and provides full support for crosscutting
interfaces, as previously discussed.

Pinto et al [34] have proposed DAOP-ADL, an architecture description language used to
describe software architectures composed of components and aspects as first-order elements.
The specification of a component in DAOP-ADL is composed of two interfaces: (i) a provided
interface – which describes the component services; and (ii) a required interface – which
specifies the output messages and events that a component is able to produce. The aspect
specification in DAOP-ADL contains: (i) an evaluated interface – which defines the messages
that the aspect is able to intercept; (ii) a required interface – which specifies the output
messages required to the aspect provides its service; and finally (iii) a target events interface –
responsible to describe the events which the aspect can capture. The composition between
components and aspects in DAOP-ADL is supported by a set of aspect evaluation rules. They
define when and how the aspect behavior is executed. Thus, DAOP-ADL somewhat makes
explicit the interfaces of an aspect by defining its evaluated and target events interfaces. The
aspect evaluation rules are responsible to realize those interfaces to specific components.
However, opposed to the aSideML language, the use of DAOP-ADL has been restricted to a
specific platform proposed by its authors. In addition, it does not fully support all the important
properties for crosscutting interfaces presented in Section 3.

8. Final Remarks
In this paper, we presented crosscutting interfaces as an important conceptual tool for taming
the complexity of heterogeneous aspects at the design level. First, we presented a conceptual
framework for crosscutting interfaces at the design level that includes a set of definitions and
fundamental properties (Section 3). A subset of these properties has been already reified by
some well-known aspect-oriented programming languages (Section 7). We also proposed a set
of notations in the aSideML language (Section 4) that conforms to and implements our
conceptual framework for crosscutting interfaces. Our language uniformly supports aspect
interfaces at both the architectural stage and the detailed design stage.

It is important to highlight that, especially in a young research area such as AOSD, other
researchers may identify further properties for crosscutting interfaces or may intend to refine
the properties and definitions presented here. However, these properties constitute a first
important survey and may be regarded as a first approach towards the identification of
fundamental properties of design aspects, their interfaces and relationships. Besides, they have
emerged from practical modeling demands while developing real case studies.

Acknowledgements. This work has been partially supported by CNPq-Brazil under grant No.
479395/2004-7 for Christina. Alessandro is supported by European Commission as part of the

19º Simpósio Brasileiro de Engenharia de Software

243
229

grant IST-2-004349: European Network of Excellence on Aspect-Oriented Software
Development (AOSD-Europe), 2004-2008. This work has been also partially supported by
CNPq-Brazil under grant No. 140252/03-7 for Uirá, and under grant No. 140214/04-6 for
Cláudio. The authors are also supported by the ESSMA Project under grant 552068/02-0.

9. References
[1] Aspect-Oriented Software Development. http://aosd.net
[2] AspectJ Team. The AspectJ Programming Guide. http://eclipse.org/aspectj/.
[3] Buschmann, F. et al. Pattern-Oriented Software Architecture: A System of Patterns. 1996:

Wiley and Sons.
[4] Chavez, C. A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis,

Computer Science Department, PUC-Rio, April 2004.
[5] Chavez, C., Lucena, C. A Theory of Aspects for Aspect-Oriented Development.

Proceedings of the SBES’2003, Manaus, Brazil, October 2003, pp. 130-145.
[6] Chavez, C., Lucena, C. A Metamodel for Aspect-Oriented Modeling. Workshop on

Aspect-oriented Modeling with the UML, 1st International Conference on Aspect-
Oriented Software Development, Netherlands, 2002.

[7] Chavez, C.; Lucena, C. Design Support for Aspect-oriented Software Development. In:
Workshop on Advanced Separation of Concerns in Onject-Oriented Systems (OOPSLA
2001), Tampa, USA, October 2001.

[8] Chavez, C.; Garcia, A.; Lucena,, C. Some Insights on the Use of AspectJ and Hyper/J. In:
Workshop on Aspect-Oriented Programming and Separation of Concerns, Lancaster,
UK, 2001.

[9] Clarke, S., Walker, R. J. Composition Patterns: An Approach to Designing Reusable
Aspects. Proc. of the 23rd International Conference on Software Engineering (ICSE),
Toronto, Canada, May 2001.

[10] Clarke, S., Walker, R. J. Generic Aspect-Oriented Design with Theme/UML. In Aspect-
Oriented Software Development, Addison-Wesley, pp. 425-458, 2005.

[11] Colyer, A., Clement, A. Large-scale AOSD for middleware. Proc. of the AOSD’2004,
March 2004, Lancaster, UK, pp. 56-65.

[12] Crosscutting Interfaces for Aspect-Oriented Modeling.
http://www.teccomm.les.inf.puc-rio.br/SoCAgents/CI/index.htm.

[13] Dijkstra, E. A Discipline of Programming. Prentice-Hall, 1976.
[14] Elrad, T. et al. Discussing aspects of AOP. Communication of the ACM, 44(10), October

2001, pp. 33-38.
[15] Filman, R., Elrad, T., Clarke, S., Aksit, M. Aspect-Oriented Software Development.

Addison-Wesley, 2005.
[16] Filman, R. What Is Aspect-Oriented Programming, Revisited. Workshop on Advanced

Separation of Concerns, 15th European Conference on Object-Oriented Programming,
Budapest, June 2001.

[17] Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, 1995.

[18] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., Staa, A. Modularizing
Design Patterns with Aspects: A Quantitative Study. Proc. of the AOSD’2005, Chicago
USA, March 2005, pp. 3-14.

[19] Garcia, A. et al. Aspectizing Multi-Agent Systems: From Architecture to Implementation.
Software Engineering for Multi-Agent Systems III. Springer-Verlag, LNCS 3390,
December 2004, pp. 121-143.

[20] Garcia, A. et al. The Learning Aspect Pattern. Proc. of the 11th Conference on Pattern
Languages of Programs (PLoP2004), Monticello, USA, September 2004.

19º Simpósio Brasileiro de Engenharia de Software

244
230

[21] Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. Doctoral Thesis,
PUC-Rio, Rio de Janeiro, Brazil, April 2004.

[22] Garcia, A., Lucena, C., Cowan D. Agents in Object-Oriented Software Engineering.
Software: Practice & Experience, Elsevier, 34 (5), April 2004, pp. 489-521.

[23] Garcia, A., Sant’Anna, C., Chavez, C., Lucena, C., Staa, A. Separation of Concerns in
Multi-Agent Systems: An Empirical Study. In Software Engineering for Multi-Agent
Systems II, Springer, LNCS 2940, Jan 2004.

[24] Garcia, A., Silva, V., Chavez, C., Lucena, C. Engineering Multi-Agent Systems with
Aspects and Patterns. J. of the Brazilian Computer Society, 1(8), July 2002, pp. 57-72.

[25] Hannemann, J., Kiczales, G. Design Pattern Implementation in Java and AspectJ,
Proceedings of OOPSLA’02, November 2002, pp. 161-173.

[26] Harrison, W., Ossher, H. Subject-Oriented Programming (A Critique of Pure Objects).
Proceedings of OOPSLA’93, 1993, p. 411-428.

[27] Hyper/J Web Page, http://www.research.ibm.com/ hyperspace/HyperJ/HyperJ.htm, 2001.
[28] Kiczales, G., Mezini, M. Aspect-Oriented Programming and Modular Reasoning. In

Proceedings of ICSE'05 (to appear), 2005.
[29] Kiczales, G. et al. Aspect-Oriented Programming. European Conference on Object-

Oriented Programming (ECOOP), LNCS 1241, Springer, Finland, June 1997.
[30] Lieberherr, K., Lorenz, D., Mezini, M. Programming with Aspectual Components.

Technical Report NU-CCS-99-01, College of Computer Science, Northeastern
University, Boston, MA, March 1999.

[31] Meyer, B. Object-Oriented Software Construction. 2.ed. Prentice Hall, 1997.
[32] Mezini, M., Ostermann, K. Conquering Aspects with Caesar. Proc. of the AOSD’2003,

Boston, USA, March 2003, pp. 90-99.
[33] Parnas, D. On the Criteria to Be Used in Decomposing Systems into Modules.

Communications of the ACM, 15 (12), December 1972, pp. 1053-1058.
[34] Pinto, M., Fuentes, L., Troya, J. DAOP-ADL: An Architecture Description Language for

Dynamic Component and Aspect-Based Development. GPCE 2003, pp. 118-137.
[35] Shavor, S. et al. The Java Developer’s Guide to Eclipse. Addison-Wesley, 2003.
[36] Soares, S. An Aspect-Oriented Implementation Method. Doct. Thesis, Federal Univ. of

Pernambuco, Oct 2004.
[37] Soares, S., Laureano, E., Borba, P. Implementing Distribution and Persistence Aspects

with AspectJ. Proceedings of the OOPSLA’02, 2002, pp. 174-190.
[38] Stein, D. An Aspect-Oriented Design Model Based on AspectJ and UML, Master Thesis,

University of Essen, January, 2002.
[39] Tarr, P. et al. N Degrees of Separation: Multi-Dimensional Separation of Concerns. Proc.

ICSE’99, May 1999, pp. 107-119.
[40] The 5th Aspect-Oriented Modeling Workshop. In Conjunction with UML 2004. October

11-15, 2004 Lisbon, Portugal. http://www.cs.iit.edu/~oaldawud/AOM/.
[41] Unified Modeling Language (UML) Specification: Infrastructure Version 2.0, Dec 2003.

www.omg.org/uml/.
[42] Zhao, J.,Rinard, M. Pipa: A Behavioral Interface Specification Language for AspectJ.

FASE 2003: 150-165.

19º Simpósio Brasileiro de Engenharia de Software

245
231

	AnaisSBES
	Sessões Técnicas SBES (ST)/ Technical Sessions (TS)
	ST4 – Aspectos
	Taming Heterogeneous Aspects with Crosscutting Interfaces

