
A Component-based Product Development Process for a
Workflow Management System Product Line

Itana Maria de Souza Gimenes1, Ruy Nishimura1, Edson Alves de Oliveira Junior1,
Fabrício Ricardo Lazilha2, Uirá Kulesza3, Carlos J. P. Lucena3

1Departamento de Informática

Universidade Estadual de
Maringá

Av. Colombo, 5790

87020-900 Maringá-PR Brazil
{itana,

edson}@din.uem.br

ruy@dc.unifil.br

2Departmento de Informática

Centro Universitário de Maringá
(CESUMAR)

Av. Guedner, 1610

87050-390 Maringá-PR Brazil
fabricio@cesumar.br

3Departmento de Informática

Laboratório de Engenharia de
Software

Pontifícia Universidade Católica
do Rio de Janeiro (PUC-Rio)

Brazil
{uira,

lucena}@inf.puc-rio.br

Abstract. The product line approach has been pointed out as a means to
improve software organization’s productivity. It offers both technical and
managerial support to design applications for a specific domain from a well-
defined infrastructure. A specific application can be developed from this
infrastructure by customizing its variable aspects. This paper presents a
process to develop members of a component-based product line for Workflow
Management Systems (WfMS). The activities of the process are described
within the context of a case study that develops a WfMS to manage service
orders in a software house. Aspects and research issues relevant to the
product development process are discussed.

Resumo. A abordagem de linha de produto tem sido indicada como uma das
formas de aumentar a produtividade nas organizações. Ela oferece apoio
técnico e gerencial para projetar aplicações de um domínio específico a partir
de uma infra-estrutura bem definida. Uma aplicação específica pode ser
obtida por meio da resolução de aspectos variáveis definidos nesta infra-
estrutura. Este artigo apresenta um processo para desenvolvimento de
aplicações específicas a partir de uma linha de produto baseado em
componentes para sistemas de gerenciamento de workflow (WfMS). As
atividades do processo são descritas no contexto de um estudo de caso que
visa desenvolver um WfMS para gerenciar ordens de serviço em uma software
house. Aspectos e questões de pesquisas relevantes sobre o processo de
desenvolvimento de produtos são discutidos.

1. Introduction
The product line (PL) approach [Clements and Northrop 2001] has been providing
suitable solutions to improve productivity in software development. However, there are
still several open issues [Bosch 2004]. According to the Product Line Practice of the
Software Engineering Institute (PLP/SEI) [Clements and Northrop 2001] there are three

19º Simpósio Brasileiro de Engenharia de Software

293
279

main processes in the product line context: artifact development (domain engineering),
product development (application engineering) and management. Current PL research
results have been more related to domain engineering whereas there are fewer works
related to the process of product development. However, the combination of results
from component-based techniques and generative programming provides important and
complementary concepts and mechanisms that can be used to enhance the PL approach.
The main issue dealt with in this paper is concerned with the product development
process following a component-based approach.

A product line for Workflow Management Systems (WfMS) [Gimenes et al. 2003] was
built to comply with an industrial need and the effort of the Workflow Management
Coalition (WfMC) [WfMC 1995] to provide customized WfMS made up of independent
and interoperable components. The WfMC established a generic architecture and a
reference model for WfMS to enable the customisation of workflow products according
to market needs. Organisations need workflow products that have similar features but
with some different aspects. They need simple and adaptable products which do not
have the complexity of the broad and general purpose ones. Examples are workflow
products with either traditional or web user interface, products for small versus large
enterprises and products with different task scheduling algorithms.

The artifact development process of the product line for WfMS was described in
Gimenes et al. (2003). The work presented in this paper describes the process for
product development. This process is used to produce members of the WfMS family
from the product line architecture and its components according to client’s
requirements. The process was designed based on: (i) terminology of the PLP/SEI; (ii)
principles of design and analysis of Catalysis [D’Souza and Wills 1999]; (iii) some
extensions of Kobra regarding variability management and the decision model
[Atkinson et al. 2001]; and (iv) UML (Unified Modelling Language) artifacts tracing of
the Rational Unified Process (RUP) [Kruchten 2000]. Thus, the results of the work
presented in this paper show both the evolution of a product line based on novel
technology and the application of proposed process in a practical case sudy.

This paper is organized as follows. Section 2 presents the existing product line (PL) for
WfMS. Section 3 presents an overview of the product development process whereas
Section 4 presents its activities illustrated with the case study developed. Section 5
presents lessons learned. Section 6 presents related work and discussion about relevant
issues regarding the product development process.

2. The PL for WfMS
The design of the product line for WfMS [Gimenes et al. 2003] was mainly based on the
Catalysis method [D’Souza and Wills 1999]. Catalysis was used, as it is a general
purpose component-based development method, based on UML [Rumbaugh et al. 1999]
that encompasses important concepts such as the central role of software architecture,
frameworks and patterns. The fact that we represent all artifacts of the PL in UML
makes it easier for designers of traditional approaches to understand our specification
and also enable us to take profit of current support tools such as IBM Rational Rose
[IBM 2005].

19º Simpósio Brasileiro de Engenharia de Software

294
280

The artifact development process of the PL is composed of the following phases: (i)
requirement analysis; (ii) system specification; (iii) architectural design, and (iv)
component internal design.

In the requirement analysis, the domain model representing the objects and actions of
the domain were developed. The domain analysis was based on the generic architecture
and reference models for WfMS of the WfMC [WfMC 1995]. The similarities and
variabilities amongst product line members were identified and represented at the level
of use case model following the notation proposed in Jacobson et al. (1997).

In the system specification phase, the analysis of the system’s actions led to the
identification of the types and related actions. Sequence diagrams were designed for
each use case representing the interactions between objects. The correspondent
variation points were represented in the system specification phase based on the
notation proposed in Morisio, Travassos and Stark (2000) which extends UML with a
variability stereotype.

From the system specification several refinements were made to reach the level of
architecture of components. The product line architecture is presented in Figure 1.

Figure 1: Architecture of the PL for WfMS.

The components of the architecture and their respective variation points are described as
follows:
GraphicalInterfaceMgr: responsible for user interface management. One variation

point is the user interface being via web browser or conventional.

WorkflowArchitectureMgr: supports the definition and maintenance of workflow
architectures. This component makes the workflow definition more flexible as the
workflow types are not static. Variation points include the resource type, the tool
type, and the process language supported. Resource can be specialised into actor, tool
and material types. Tool type can be either internal or external. Different process
programming languages can be supported depending on the interpreter.

19º Simpósio Brasileiro de Engenharia de Software

295
281

WorkflowMgr: responsible for the instantiation and management of projects that are
associated with a workflow. A project includes an instantiation of workflow
architecture. For each workflow element in the architecture there is an object in the
workflow instance. No variation points were defined for this component.

WorkflowExecutionMgr: responsible for the control and management of workflows.
The main variation point in this component is the possibility of executing different
scheduling algorithms.

TaskScheduler: responsible for the scheduling of tasks. It allows the interaction
between the users and the tasks. Variation points include resources to be used: types
of resources and tools to be used (external or internal).

ResourceAllocationMgr: responsible for resource allocation (e.g. actors, tools and
material). In addition to the resource type and tool type, variation points include
resource allocation policies.

ExternalApplicationMgr: responsible for the management of external applications
during the workflow definition and task execution. Variation points include different
mechanisms to adapt external applications to the workflow.

ObjectMgr: responsible for the object management support. It maintains workflow
data such as: control data, information data and even a whole workflow. All other
components of the architecture use its services. This makes the architecture
independent from the object management system. Variation points include adapters
for different databases management systems.

Interpreter: responsible for the execution of a workflow script written in a process
programming language [WfMC 1995].

The specification of invariants, preconditions and post-conditions for the components
was also carried out based on OCL [OMG 2005a]. The product line architecture was
evaluated based on Rapide and its support tools [Computer Science Lab 1997].

Currently we are populating the architecture by either developing novel components
or reengineering components developed previously not following the PL approach.
Each component internal design also follows the Catalysis method. As far as we
progress in their design, the architecture is revaluated. The implementation of the
product line components is being carried out based on open source tools which include:
Java, the Swing (Java 2) toolkit [Sun 2005] and the JHotDraw framework [JHotDraw
2005]; CORBA JacORB [JacORB 2005], an Object Request Broker (ORB)
implemented in Java that has many functionalities not identified in similar products;
and, MySQL [MySQL 2005] together with the ObjectBridge framework [Apache 2005].

3. The Product Development Process
In this section, we describe the product development process defined to enable the
instantiation of the product line infrastructure described in Section 2. The definition of
the process was mainly based on the concepts of the PLP/SEI [Clements and Northrop
2001] and [Atkinson et al. 2001]. The PLP/SEI was chosen because it offers a
conceptual structure and terminology for product lines that we consider as a standard.
Kobra was adopted as a basis model both because it follows UML and is component

19º Simpósio Brasileiro de Engenharia de Software

296
282

based. These are also characteristics of our existing product line. Thus, the adaptation of
an existing product development process with similar basis was considered more
applicable. Kobra is referred to as an object oriented customization of PULSE [Bayer et
al. 1999] that contains a software engineering process easier to be adapted to
organizations. It follows two main activities: framework engineering and application
engineering. The representation of the artifacts in both activities is based on UML.
Variabilities are captured by decision models which guide the application engineering.
As described in Section 2, our product line already contains the artifacts that represent
its main infrastructure also based on UML. Thus, we inherit the structure of the decision
model from Kobra to conceive our product development process. A prototype to support
the product development was also built based on IBM/Rational Rose [IBM 2005].

An overview of the process is presented in Figure 2. It is composed of the following
phases: (i) requirement analysis; (ii) product instantiation, and (iii) product packing. In
this section, we present an overview of the process whereas in section 4 we illustrate the
development of some activities, within the phases, for a case study.

Figure 2: Product Development Process.

The first phase or our process is the requirement analysis. As pointed out by Clements
and Northrop (2001), this phase affects both the specific process to produce the product
and the product line itself, as new requirements might be introduced. This phase is
composed of the following activities: requirements elicitation and product planning.
The requirements elicitation takes the requirements of the product line and the decision
model as input and produces the resolution of the decision model and the initial
requirement document for the specific product as output. This activity identifies the
differences between the specific product and the product line infrastructure. It resolves
most of the variabilities, thus, it impacts the instantiation of the product line
architecture. The participation of a product line specialist is important as he/she can
estimate the effort and cost of the product development. The product planning activity

19º Simpósio Brasileiro de Engenharia de Software

297
283

includes issues regarding scheduling, resource allocation, cost, monitoring and control
of the product development process.

The second phase is the product instantiation. It aims at resolving variabilities at the
architectural level. It takes as input the artifacts generated in the first phase, so the
variabilities are resolved according to the content of the document resolution of the
decision model. It generates as output an instance of the architecture for the new
product, the updated design and eventual new components. It is composed of the
following activities: (i) architecture instantiation; (ii) design; (iii) pre-existing
component selection; (iv) component implementation; (v) component test and validation
and (vi) project controlling and monitoring. In this phase, it is possible to find out that
requirements are not satisfied by the components of the product line. These
requirements can be supported by the acquisition of COTS (Commercial off-the-Shelf)
components, adaptation of legacy software or the development of a new component. In
any case, the design or adaptation of the component has to follow the product line
architecture. Moreover, the generalization of the component so that it could be
incorporated in further versions of the product line infrastructure must be considered.
The activity of monitoring and control provide managerial support for the product
instantiation.

The product packing phase involves: (i) component integration; (ii) product test and
validation, and (iii) project closing.

Variability management in the proposed process is guided by the UML artifacts of the
product line infrastructure which are represented following the RUP framework of the
IBM Rational Rose [IBM 2005]. Thus, the effect of decisions made at the use case
model is traced up to the product line architecture. It follows the use case realizations
and affects their respective classes, attributes, methods and sequence (or collaboration)
diagrams. This is an additional support proposed in our process that was not dealt with
in Kobra. It follows our guideline that by keeping the product line approach closer to
existing methods and tools, its introduction in industry becomes easier. In order to
support this tracing, new stereotypes were introduced to UML to represent the variation
points. Figure 3 represents the stereotypes developed to represent the variation points in
the use case model. They are described as follows:

a Use Case Variability or an Actor Variability is represented by a dot in the use
case ellipse;
the stereotype Use Case Variability Deleted indicates that an alternative use case
related to a variation point will not be implemented for the product;
the stereotype Variability Use Case Updated indicates that a use case related to
the variation point was modified;
the stereotype Variability Use Case Inserted indicates that a new use case was
included at a variation point.

In order to identify and trace the classes related to a use case, a script was implemented
in the IBM Rational Rose. By using this mechanism, at the end of the generation
process, we have the UML design documentation of the specific product updated. It
shows the changes made in the product line to achieve that product. This aspect is
important for further maintenance.

19º Simpósio Brasileiro de Engenharia de Software

298
284

Figure 3: Stereotypes developed for the Use Case Model.

4. Case Study
In this section, we present the case study used to assess the product development
process described in Section 3. Our case study consisted of the development of a
Service Order Management System (SOMS) for a software house. The system controls
enquiries for services, elaborated by the customer care personnel, such as maintenance
changes, addition of extra functionalities and bug fix requests. The features of the
system were obtained from a real software house, fictitiously named here XYZ due to
the company requests. Thus, the case study consists of generating the SOMS based on
the proposed product development process for the existing WfMS product line. It
explores the instantiation of the artifacts along the process. The issues regarding
implementation are not dealt with in this case study. The author of the proposed process
played the role of the product line engineer. A complete description of the artifacts
produced for the case study can be found in Nishimura (2004).

As all the artifacts and activities of the case study could not be fully described in this
paper, we chose to present a process excerpt related to the use case ExecuteWorkflow
and the activities requirement elicitation, architecture instantiation and design.

 4.1. Requirement Elicitation
The requirement elicitation was supported by interviews with the XYZ manager,
manuals and by observing some of the company service order procedures in vivo. The
interviews were guided by questionnaires elaborated from the artifacts of the product
line. The results obtained were registered in the artifact called Initial Requirements.
This artifact contains: objective, context, general overview, an analysis of the problem,
a description of the functionalities required for the product and technical constraints.
Throughout the interviews it was observed that the most important issues to the
company’s managers were: task planning, assignment and execution control; task
resource allocation and scheduling; and control over the service orders. They were
mainly worried about task delays and inappropriate resource allocation. Thus, the
required functionalities listed for SOMS were: definition of workflow architectures;

19º Simpósio Brasileiro de Engenharia de Software

299
285

workflow instantiation; task definition and programming; resource allocation; definition
of criteria for task progress, workflow execution; and task monitoring and control
(mainly tasks delay alerts).

The Decision Model is represented as a table in which the rows contain the decision to
be taken to resolve the variabilities. The columns represent the attributes of the decision
as follows:

ID: each decision has a unique identifier.
Question: a question formulated according to the variabilities of the product
line artifacts.
Variation Points: the decisions are related to the variable element of an
artifact.
Alternatives: each decision may provide a set of alternative solutions to
resolve the variability.
Effects: set of effects that results from the possible solution. They describe
how the artifacts of the product line have to change to comply with the
product requirements.

Table 1 shows the decisions with respect to the use case ExecuteWorkflow. The scripts
referred to in the table were implemented to allow the tracing in the IBM Rational Rose,
as mentioned before.

Table 1: Decision Model for the use case ExecuteWorkflow.

ID Question Variation
Point

Alternatives Effect

WE1 Which is
the

scheduling
algorithm?

WorkflowE
xecutionM

gr

serial or
priority
control

If serial:
1) change “ExecuteWorkflowWithPriorityControl” use case

stereotype to “Variability Use Case Deleted”;
2) remove stereotypes from “WorkflowExecuteSerial” use

case;
3) execute script “VariabilityHandler.ebs”;
4) remove “PriorityControlMgr” class;
5) remove “PriorityControlScheduling” class;
6) remove “ExecuteWorkflowWithPriorityControl” use case.

If priority control:
1) change “ExecuteWorkflowSerial” use case stereotype to

“Variability Use Case Deleted”;
2) remove “WorkflowExecutionWithPriorityControl” use case

stereotypes;
3) execute script “VariabilityHandler.ebs”;
4) remove “SerialScheduling” class;
5) remove “ExecuteWorkflowSerial” use case.

WE2 Communi-
cate with
users?

Communic
ateWithUs

ers

Yes or No Yes:
1) remove “Variability Use Case” stereotype from

“CommunicateWithUsers” use case;
2) resolve the decisions “WE3”, “WE4” and “WE5”. One of

these must be “Yes”;
3) execute script “VariabilityHandler.ebs”;

No:
1) change “CommunicateWithUsers” use case stereotype to

“Variability Use Case Deleted”;
2) resolve the decisions “WE3”, “WE4” and “WE5” with “No”

response;
3) execute script “VariabilityHandler.ebs”;
4) remove “CommunicationMgr” class;

19º Simpósio Brasileiro de Engenharia de Software

300
286

5) remove “CommunicateWithUsers” use case.

WE3 Communi-
cate via

tele-
conference

?

Communic
ateViaTele
Conferenc

e

Yes or No Yes:
1) remove stereotype “Variability Use Case” from the use

case “CommunicateViaTeleConference”;
2) execute script “VariabilityHandler.ebs”;

No:
1) change “CommunicateViaTeleConference” use case

stereotype to “Variability Use Case Deleted”;
2) execute script “VariabilityHandler.ebs”;
3) remove “TeleConference” class;
4) remove “CommunicateViaTeleConference” use case.

WE4 Communic
ate via e-

mail?

Communic
ateViaEM

ail

Yes or No Yes:
1) remove “Variability Use Case” stereotype from

“CommunicateViaEMail” use case;
2) execute script “VariabilityHandler.ebs”;

No:
1) change “CommunicateViaEMail” use case stereotype to

“Variability Use Case Deleted”;
2) execute script “VariabilityHandler.ebs”;
3) remove “EMail” class;
4) remove “CommunicateViaEMail” use case.

WE5 Communi-
cate via
Chat?

Communic
ateViaCha

t

Yes or No Yes:
1) remove “Variability Use Case” stereotype from

“CommunicateViaChat” use case;
2) execute script “VariabilityHandler.ebs”.

No:
1) change “CommunicateViaChat” use case stereotype to

“Variability Use Case Deleted”;
2) execute script “VariabilityHandler.ebs”;
3) remove “IRC” class;
4) remove “CommunicateViaChat” use case.

The issues related to requirements of the Decision Model were resolved. Table 2 shows
the resolution of the decision model with respect to the use case ExecuteWorkflow. It
indicates that the serial scheduling algorithm was chosen and that the managers opted
for no communication between SOMS users.

 Table 2: Resolution of the decision model for the use case ExecuteWorkflow.

ID Question Variation
Point

Resolution Effect

WE1 Which is the
scheduling
algorithm?

WorkflowExe
cutionMgr

serial
1) change “ExecuteWorkflowWithPriorityControl” use case

stereotype to “Variability Use Case Deleted”;
2) remove “WorkflowExecuteSerial” stereotypes;
3) execute script “VariabilityHandler.ebs”;
4) remove “PriorityControlMgr” class;
5) remove “PriorityControlScheduling” class;
6) remove “ExecuteWorkflowWithPriorityControl” use case.

WE2 Communi-
cate with
users?

Communicat
eWithUsers

No
1) change “CommunicateWithUsers” use case stereotype

to “Variability Use Case Deleted”;
2) resolve decisions “WE3”, “WE4” e “WE5” with “No”

response;
3) execute script “VariabilityHandler.ebs”;
4) remove “CommunicationMgr” class;
5) remove “CommunicateWithUsers” use case.

WE3 Communi-
cate via

teleconferen
ce?

Communicat
eViaTele-

Conference

No
1) change “CommunicateViaTeleConference” use case

stereotype to “Variability Use Case Deleted”;
2) execute script “VariabilityHandler.ebs”;
3) remove “TeleConference” class;

19º Simpósio Brasileiro de Engenharia de Software

301
287

4) remove “CommunicateViaTeleConference” use case.

WE4 Communi-
cate via e-

mail?

Communicat
eViaEMail

No
1) change “CommunicateViaEMail” use case stereotype to

“Variability Use Case Deleted”;
2) execute script “VariabilityHandler.ebs”;
3) remove “EMail” class;
4) remove “CommunicateViaEMail” use case;

WE5 Communi-
cate via
Chat?

Communicat
eViaChat

No
1) change “CommunicateViaChat” use case stereotype to

“Variability Use Case Deleted”;
2) execute script “VariabilityHandler.ebs”;
3) remove “IRC” class;
4) remove “CommunicateViaChat” use case;

Figure 4 shows the use case model after the variability being resolved. In this model
only the functionalities regarding serial scheduling are kept and no communications are
represented anymore.

Figure 4: Use case model for ExecuteWorkflow.

4.2. Architecture Instantiation
As a follow up of the decisions taken with respect to the use cases variabilities, the
architecture of the new product is obtained. Note that this is possible due to the tracing
mechanism implemented in the IBM Rational Rose which follow the main framework
RUP template available in this tool. Figure 5 shows the component architecture SOMS
after variabilities resolved (see Figure 1). The component ExternalApplicationMgr of
the product line architecture was removed as a result of decisions made for the use case
DefineWorkflowArchitecture and DefineWorkflow. This component was not
considered important from the point of view of the stakeholder.

Our case study has dealt with the following types of variabilities [Anastasopoulos and
Gacek 2000]: positive, negative and optional. Taking the workflow manager component
(WorkflowMgr), the following are examples of variabilities resolved: (i) positive – the
addition of the functionality for material; (ii) negative – the removal of the functionality
for tool allocation; (iii) alternative – the choice of the serial scheduling algorithm.

4.3. Design
The design activity updates the class diagram according to the resolved decision model.
The updates in the class diagrams may result in alterations in the sequence diagram.

19º Simpósio Brasileiro de Engenharia de Software

302
288

Figure 6 shows the class diagram for SOMS that already has all the variabilities
resolved. Following the excerpt of the case study related to the use case
ExecuteWorkflow, we can see that as a result of the choice of the serial scheduling
algorithm the classes PriorityControlMgr, PriorityControlScheduling,
CommunicationMgr, TeleConference, EMail and IRC were removed. As a
consequence, the sequence diagrams were also updated to reflect the decisions made
regarding actions sequence and collaborations.

It is important to mention that although we didn’t come across to difficult cases of
design tracing in this case study, the problem of specifying interacting features makes
this issue much more difficult. This is a current open problem in product lines. It is an
area where UML specifications become difficult due to the necessity of constraints
specification in addition to stereotypes.

Figure 5: SOMS Architecture.

5. Lessons Learned
In this section, we present the lessons learned from the development of the product
development process and the overall product line for WfMS. These lessons take into
account the benefits of the proposed process and the difficulties faced.

UML Models: our approach to the artifact and product development process is based on
UML. The artifacts of the PL are represented as UML models to which the variability
stereotypes were added to represent the differences between products. This approach
allowed us to resolve the questions of the decision model and, at the same time, to trace
the decisions to the artifacts of the product line. Thus, at the end of the product
development, an updated UML model of the specific product is obtained. So, UML
acted both as a design language and as a DSL (Domain Specific Language) to support
the application engineering. As far as maintenance is concerned this is an adequate
approach because a proper documentation of the specific product can be used to support
further changes throughout the product operational life cycle. Kobra [Atkinson et al.
2001] and Gomaa (2005) also confirm this advantage. However, there are still subtle

19º Simpósio Brasileiro de Engenharia de Software

303
289

questions to be discussed in this view. There is currently a hot discussion of the
advantages of DSL over UML or vice-versa. It is worth reading Alan Will’s blog on this
matter, although it is informal [Wills 2005].

Figure 6: Instantiation of the Class diagram for SOMS.

Variability Management: this work did not use the feature model. We use the use case
model and decision models which contain the features and their variabilities, as
described in section 4. This approach is also followed in Kobra. However, in recent
works [Oliveira Junior 2005], where a variability management process was introduced,
the feature model turned to be essential as an initial path to trace variability as indicated
in most of the domain analysis works. We can always represent variability from the use
case models but the feature model offers an important higher abstraction level. The
current problem is that software engineers are not familiar with feature models yet.

Tool support: In our work, we use IBM Rational Rose as a support tool [IBM 2005].
We are aware that several tools to support the PL approach have been developed, such
as Ménage [Van der Hoek 2000], Holmes [Succi et al. 2001] and pure:variants [Beuche et
al. 2003]. However, they still lack support for the whole PL life cycle as well as are not
in accordance with popular tools that developers have been using such as IBM Rational
Rose [IBM 2005], Together [Borland 2005] and Argo UML [Trigis 2005]. Our
experience has shown that the UML artifacts of the product line can be traced with
scripts of the IBM Rational Rose. We are aware that there are still difficult issues to be
dealt with such as how to specify and resolve constraints. However, we believe that, for
the success of the PL approach, it is important to minimize its impact on current
software development technology normally used by software engineers in industry.

19º Simpósio Brasileiro de Engenharia de Software

304
290

6. Related Work
There are still many discussions related to how novel is the product line approach
[Poulin 1997]. The PL approach encompasses existing techniques of reuse from several
areas such as domain engineering, software architecture, frameworks, patterns and
generative programming. The lessons learned from the development of this work show
that these techniques are complementary, thus, the PL constitutes a systematic approach
that aims at integrating these techniques to offer automated mechanisms to modelling
application domains and generating specific applications. Well-known methods for
domain analysis [Kang 1990] and [Arango 1994] are used as a basis for the
identification of concepts and functionalities required for a family of products in order
to represent them as a generic model that is the main infrastructure to support reuse.
These methods use the concept of features to represent the common functionalities and
variabilities of a domain. The product line approach is directly related to frameworks
[Pree 1995]. The idea of variability is analogous to hot spots. Moreover, frameworks
constitute building blocks of a PL infrastructure. Patterns [Buschmann 1996] can be
used both from the point of view of architectural styles as well to make the development
of components easier. The software architecture is the main asset of a PL, so methods
and techniques to design, represent and evaluate architectures are relevant to the PL
approach. Generative programming [Czarnecki and Eisenecker 2000] and [Batory 2004]
is based on similar concepts of those of PL. There have been workshops [Butler 2001]
to discuss how one approach can benefit from the other. It can be observed that the
domain modelling of both approaches are rapidly evolving as both take benefits of work
already available from domain engineering. Current PL approaches have attempted to
be closer to existing software development methods by adopting UML based concepts
whereas generative programming looks for DSL and generators. In our view the PL
approach can benefit from generative programming to improve the application
engineering process.

Some product lines methods are based on the specification of artifacts in UML
[Kruchten 2000] and [Gomaa 2005]. Thus, their product development processes are
supported by UML models which are modified to represent variability. We have
considered the use of the artifact models of Kobra [Atkinson et al. 2001] due to several
reasons which include: (i) it is based on UML; (ii) its architecture is component-based;
(iii) its decision model is relevant and helpful, in particular to support the interviews
between stakeholders and the product line engineer. In addition to adding a product
process to the existing product line, we have adapted Kobra’s artifacts to our needs and
also conceived the main ideas towards using a commercial tool to support application
engineering. PLUS [Gomaa 2005] was recently released. It takes a similar approach to
ours. However, it is mainly based on RUP whereas we inherit many concepts from
Catalysis, in particular regarding frameworks and architecture. The vertical and
horizontal partitioning of the architecture of the Catalysis method [D’Souza and Wills
1999] offers a better path to find the architecture components.

Many recent works have focused on the automating PL development processes
[Czarnecki and Eisenecker 2000] and [Greenfield and Short 2004]. These works address
not only the definition of a production plan to help the instantiation of the product line
architecture, but also investigate alternative means to automate the instantiation process.
The main goals of generative programming [Czarnecki and Eisenecker 2000], for

19º Simpósio Brasileiro de Engenharia de Software

305
291

example, are: (i) development of a proper means to specify members of a software
product line; and (ii) modeling of the configuration knowledge (mapping between
problem and solution space) in detail in order to automate it by means of a code
generator. In this way, approaches based on generative programming and software
factories [Czarnecki and Eisenecker 2000] and [Greenfield and Short 2004] have
emphasized the use of DSLs and code generators as an effective way to customize and
instantiate members of a software PL. We have not considered these ideas in our
product line as yet.

Model-driven development (MDD) [Greenfield and Short 2004] motivates the use of
appropriate models to capture different features of software systems. Models that follow
MDD approaches are used to generate executable code rather than only with the
representation of artifacts for documentation. Thus, in the context of product lines,
MDD approaches can bring benefits to allow the automation of product development
processes. However, many current works in MDD, such as Model Driven Architecture
(MDA) [OMG 2005b] have concentrated efforts on addressing only technical
variability. Thus, there is still a need for these approaches to address application domain
variability using DSLs. Important questions arise in this context, such as: (i) how to use
UML models as DSLs to specify application domain variability; and (ii) how to provide
new DSLs frameworks that can be integrated with the existing UML meta-model.

Currently, we are investigating the introduction of the feature model in the product
development process to work together with the existing artifacts [Oliveira Junior 2005].
Our goal is to use the feature model with two purposes: (i) to manage the PL
variabilities; and (ii) to automatically instantiate and customize the product line
components. In this latter case the feature model can be viewed as a configuration DSL
[Czarnecki and Eisenecker 2000]. Some integrated development environments (IDEs)
have initiated the incorporation of feature models. Together [Borland 2005] already
indicates that they can encompass support for product line in the future. For instance,
RequisitePro [IBM 2005] already offers support for feature modelling, although still
primitive. Thus, if the application engineering process is supported by UML models, it
may not be difficult to design a support tool for the Rational suite or similar tools. There
are market issues that may influence the future of this area. The overall gain is that, in
this area, both industry and academy are close to provide real improvements to software
development.

7. Summary
As the interest in the product line approach, both from academia and industry, grows
more works that show its advantages and drawbacks are necessary. This paper presents
the conception and application of a product development process for an existing product
line within an important domain, which is WfMS [Gimenes et al. 2003]. The process is
mainly based on Kobra [Atkinson et al. 2001], a relevant component-based product line
approach. It builds on this approach by providing details on how to develop its activities
and by investigating means to support artifact tracing with a commercial tool.
Moreover, the paper discusses important issues regarding the relationship between
product line and other areas of research.

19º Simpósio Brasileiro de Engenharia de Software

306
292

References
Anastasopoulos, M.; Gacek, C., Implementing Product Line Variabilities, IESE-Report No.

089.00/E, Version 1.0, Fraunhofer Institut Experimentelles Software Engineering,
Kaiserslautern, Germany, Nov. 2000.

Apache DB Project: ObJectRelationalBridge - http://db.apache.org/ojb - 2005.

Arango, G. Domain Analysis Methods. in: Software Reusability, Schafer, W.; Pietro-Diaz, R.;
Matsumoto, M. (Eds.), Ellis Horwood, New York, NY, 1994, pp. 17-49.

Atkinson, C.; Bayer, J.; Bunse, C.; Kamsties, E.; Laitenberger, O.; Laqua, R.; Muthing, D.;
Paech, B.; Wurst, J.; Zeitel, J. Component-Based Product-Line Engineering with UML.
[S.l.]: Addison-Wesley, 2001.

Batory, D. The Road to Utopia: A Future for Generative Programming, In: Domain Specific
Generation, Lengauer et al. (eds.), LNCS 3016, p1-18, 2004.

Bayer, J.; Flege, O.; Knauber, P.; Laqua, R.; Muthig, D.; Schmid, K.; Widen, T.; DeBaud, J.
PuLSE: A Methodology to Develop Software Product Lines, in 1999 Proc. Symposium on
Software Reusability - SSR99 Conference, May 1999.

Beuche, D.; Papajewski, H.; Schroder-Preikschat, W. Variability management with feature
models. In: Software Variability Management Workshop, 2003, Portland. Proceedings of the
ICSE-2003 Workshop on Software Variability Management. Portland, 2003. p. 72-83.

Borland USA, Together, http://www.borland.com/together - 2005.

Bosch, J. On the Development of Software Product line Components. In: Proceedings of
theThird International Conference of Product Line, Nord, R. (ed.), LNCS 3154, p146-164,
2004.

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerland, P.; Stal, M. Pattern-oriented software
architecture: a system of patterns. 1. ed. John Wiley & Sons, 1996. 476 p.

Butler, G. Generative Programming and Product Lines. Software Engineering Notes, vol. 26,
no. 6, ACM SIGSOFT, 2001, pp 74-76.

Clements, P.; Northrop, L. Software Product Line: Practices and Patterns. Addison Wesley
Longman, 2001.

Computer Science Lab. DRAFT Guide to Rapide 1.0 – Language Reference Manuals, Rapide
Design Team – Program Analysis and Verification Group. Stanford University, 1997.

Czarnecki, K., Eisenecker, U., Generative Programming. Methods, Tools, and Applications.
Addison-Wesley, 2000. 832 p.

D’Souza, D. F.; Wills, A. C. Objects, Components and Frameworks with UML – The Catalysis
Approach. Addison Wesley Publishing Company, 1999.

Gimenes, I. M. S.; Oliveira Junior, E. A.; Lazilha, F. R.; Barroca, L. M. A Product Line
Architecture for Workflow Management Systems with Component-based Development, in
2003 Proc. The IEEE Conference on Information Reuse and Integration, pp. 112-119.

Gomaa, H. Designing software product lines with UML: from use cases to pattern-based
software architectures. Addison-Wesley, 2005, 736 p.

Greenfield, J.; Short, K. Software Factories: Assembling Applications with Patterns,
Frameworks, Models & Tools", John Wiley & Sons, 2004.

IBM Rational Software – http://www-306.ibm.com/software/rational/ - 2005.

19º Simpósio Brasileiro de Engenharia de Software

307
293

Jacobson, I.; Griss, M.; Jonsson, P. Software Reuse – Architecture Process and Organization for
Business Success, New York: Addison-Wesley, 1997.

JacORB - http://www.jacorb.org - 2005.

JHotDraw - http://www.jhotdraw.org - 2005.

Kang, K. Feature-oriented domain analysis (FODA) - feasibility study. Technical Report
CMU/SEI-90-TR-21, SEI/CMU, Pittsburgh, 1990.

Kruchten, P. The Rational Unified Process – An Introduction, Second Edition. Ed. Addison-
Wesley Pub Co, 2000.

Morisio, M.; Travassos, G. H.; Stark, M. Extending UML to Support Domain Analysis, in 2000
Proc. IEEE International Conference on Automated Software Engineering, pp. 321-324.

MySQL - http://dev.mysql.com - 2005.

Nishimura, R. T. Geração de Produto em uma Abordagem de Linha de Produto para Sistemas
Gerenciadores de Workflow. Maringá, 2004. 125p. Master Dissertation, Departamento de
Informática, Universidade Estadual de Maringá, Maringá.

Object Management Group. OMG Document: UML 2.0 OCL 2nd Revised submission –
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14 - 2005.

Object Management Group. MDA – Model Driven Architecture, http://www.omg.org/mda/
visited at April 2nd 2005.

Oliveira Junior, E. A. Um Processo de Gerenciamento de Variabilidade para Linha de Produto
de Software. Maringá-PR, 2005. 157p. Master Dissertation, Departamento de Informática,
Universidade Estadual de Maringá, Maringá-PR.

Poulin, J. Software Architectures, Product Lines, and DSSAs: Choosen the Appropriate Level of
Abstraction, in Proc. 1997 WISR8.

Pree, W. Design patterns for object-oriented software development. Addison-Wesley, 1995. 268
p.

Rumbaugh, J.; Jacobson, I.; Booch, G. The Unified Modeling Language Reference Manual,
Addison-Wesley Pub. Company, 1999.

Succi, G.; Yeip, J.; Pedrycz, W. Holmes: an intelligent system to support software product line
Development. in: International Conference on Software Engineering, 23., 2001, Toronto.
Proceedings of the International Conference on Software Engineering, 2001, p.829-832.

Sun Microsystems. Java Technology - http://www.java.sun.com - 2005.

Trigis.org Open Source Software Engineering. http://argouml.tigris.org -2005.

Van der Hoek, A. Capturing product line architectures. in: International Software
Architecture Workshop. 4., 2000, Limerick. Proceedings of the 4th International
Software Architecture Workshop, 2000. p. 95-99.

Wills, A. C., http://blogs.msdn.com/alan_cameron_wills - 2005.

Workflow Management Coalition. Workflow Reference Model. Document number
TC00-1003, January, 1995.

19º Simpósio Brasileiro de Engenharia de Software

308
294

	AnaisSBES
	Sessões Técnicas SBES (ST)/ Technical Sessions (TS)
	ST6 – Processos
	A Component-based Product Development Process for a Workflow Management System Product Line

