
Using Risk Analysis and Patterns to Tailor Software
Processes

Júlio Hartmann, Lisandra M. Fontoura, Roberto T. Price

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil

e-mail: {jhartmann,lisandra,tomprice}@inf.ufrgs.br

Abstract. This paper discusses an approach to tailor software development processes
and methodologies based on organizational patterns and risk criteria. The purpose of
the approach is to adapt an organizational pattern language to the context of a given
project. The most suitable organizational patterns to the requirements of the project
should be chosen analyzing the risks and the criticality context of the project.
Organizational patterns which describe preventive techniques for the identified risks
can be selected by a systematic retrieval system. The process designer evaluates the
selected patterns and takes the adaptation decisions. PMT-Tool, a tool that supports the
approach, is briefly described.

1. Introduction

There is a vast literature on software development methodologies. Each methodology
was usually developed considering a given context, with its own goals, by people with
different backgrounds and experiences, and frequently the basic assumptions are not
clearly stated on the texts about them. It is very hard for a process designer to select,
elaborate or combine an appropriate software development methodology for a given
project. Research of systematic approaches for helping the process designer or the
project manager on executing these tasks is required.

Despite all the effort on development methodologies and processes, many software
projects still fail to meet its goals, finishing late, out of budget, or without a satisfied
user. Some of them fail entirely or are canceled before ever delivering any results. One
explanation for the high failure rate is that project managers are not acting to assess and
manage the risks involved in these projects [21]. Risk management is a collection of
methods aimed at minimizing or reducing the effects of project failure [1].

Risk management involves risk evaluation and risk control [5]. Risk evaluation can
be subdivided in risk identification, risk analysis, and risk prioritization [4]. Risk
identification results in a list of the possible risks of a project. The risk analysis is an
estimation of the probability and the consequence of each of the identified risks [16]. In
the risk prioritization, the identified risks are ordered by their importance [4]. Risk
control is the process of elaborating and implementing risk resolution plans, monitoring
the status of the risks, and developing and documenting strategies to deal with them
[16]. Risk resolution is the elimination or minimization of a risk, by executing actions
described on the risk management plan [4].

This work uses a risk-driven approach to aid the selection of appropriate
methodological constructs for a given project in the form of an organizational pattern
language. A pattern describes the essential part of a solution to a recurring problem in a

19º Simpósio Brasileiro de Engenharia de Software

341
327

given context. Organizational and process patterns capture successful management
practices of software development [14], and can be used to shape a new organization’s
development process, or to improve an existing one. A pattern language is a collection
of patterns which build on each other to generate a system [10]. In this work,
organizational patterns are used to describe resolution techniques to software risks.

There are several documented organizational and process patterns and pattern
languages, such as [9], [11], [3], [13], [29] and [17]. This work sets means of structuring
a pattern repository, by classification and association of patterns. Risk resolution rules
are used to associate each pattern to the risks it is intended to tackle. Each rule is used in
association with a given project context. The project criticality context is established in
this work, in a similar approach to Cockburn [7] and Boehm [6], by analyzing three
criteria: the defects criticality (the possibility of loss caused by a defect), the number of
people affected, and the skill level of the development team. Other criteria could be
defined, such as the priorities of the project, in terms of productivity and tolerance or of
legal suitability [8], but the three criteria were selected in this work for being more
meaningful for balancing between agile and plan-driven methodologies [6].

A tool (PMT-tool) for the selection of patterns by the process designer was
developed, in which the project’s own pattern language is created by selecting the most
appropriate patterns from the repository, aided by a selection mechanism. The selection
system uses the complete pattern repository and a prioritized risk list as its input. The
risk list is obtained through risk identification, risk exposure analysis, and risk
prioritization. The resulting selection is a suggested list of organizational patterns that
may be applied as actions to prevent or minimize the identified risks. The process
designer chooses some of the suggested patterns and adds them to its project pattern
language. The project pattern language can be browsed by the project team members,
who use it as a source of learning for resolving and preventing risks in the software
project. Specific documents and workflows for the project processes may be manually
produced from the resulting pattern language, but are outside the scope of this work.

Section 2 explores related work. In section 3 it is explained how to structure a
knowledge repository about software development methodologies, with patterns, risks,
and risk resolution rules. In section 4, the approach for performing a project risk
analysis is explained. Section 5 explains the systematic selection mechanism of the
PMT-Tool, while section 6 explores the tool in further detail through a case study.
Section 7 concludes the paper and describes some future work.

2. Related work

James Coplien has made available in his web site [11] a large organizational pattern
language. The pattern language navigational structure is presented in a graph form. Each
node in the graph represents a pattern, while the arcs represent the linked dependencies
between the patterns. By clicking on a node, the user navigates to the textual description
of the pattern, which also includes hypertext links to the related patterns. The patterns
include process descriptions such as Early and Regular Delivery and Scenarios Define
Problem, as well as role descriptions such as Architect Controls Product and Mercenary
Analyst. Team practices and values such as Code Ownership, Compensate Success, and
Public Character are also included in the pattern language. Coplien’s patterns capture
recurring best practices applied to its organization environment. Some of his patterns
can be reused to target project risks in a different software project, but because of the

19º Simpósio Brasileiro de Engenharia de Software

342
328

pattern language extension it is a hard work to select the appropriate patterns, and the
selection has to be done empirically by the project manager or by the process designer.

Vasconcelos and Werner [30] use process patterns to form a knowledge base about
software processes. Their approach is supported by a tool called Memphis – a reuse-
based software development environment - which helps to consider different
alternatives when processes are composed. However, the tool does not help with the
decisions the process designer has to make in order to choose between the process
alternatives.

The Open (Object-oriented Process, Environment and Notation) [18] approach uses
a process meta-model from which a project specific process is instantiated. It allows a
high degree of flexibility for the process user, who has to make several decisions on the
instantiation process.

RUP (Rational Unified Process) [26] is a commercial product, and can be
considered a full instance of the Unified Software Development Process [20], including
material available in HTML in a web site. It is a pre-tailored process, so it is possible to
change portions of it, such as expand, modify or remove steps from specific activities,
or even remove entire activities. But it should be considered a tailorable method rather
than a tailorable methodological framework [18]. Both the Open and the RUP
approaches do not help with the decisions the process engineer has to make on
designing a specific software development process.

Alistair Cockburn [7] proposes a selection framework for choosing an appropriate
methodology for a given project. The author states that having multiple methodologies
is appropriate and necessary. The adequate methodology can be chosen by two
dimensions: the project staff size and the system criticality. Boehm and Turner [6]
extend Cockburn’s framework and use risk criteria in order to balance between agile
and plan-driven methodologies. This work uses a similar framework in order to select
patterns that are appropriate to the context of a given project.

3. Structuring an organizational pattern repository

This section shows how to establish an organizational pattern repository. The
repository acts as a knowledge base about software development methodologies. The
patterns are selected from the repository in order to resolve certain risks of a software
development project. The repository considers alternatives of solutions to the same
single problem.

First, the patterns should be described textually using a common format. This
work uses a format which is based on James Coplien´s [10] work, and enforces the use
of separated fields on the textual descriptions. Each pattern is described by the
following fields: Name, Classification, Problem, Context, Forces, Solution, Relations,
Rationale and Source.

The patterns are classified using two criteria. This classification is helpful to the
process designer when using the selection mechanism. She can search for patterns in all
of the categories or may narrow the search for a specific category where she is seeking
for advice.

By Process Discipline: the patterns are classified accordingly to the process
discipline they tackle. The process disciplines that are used for classification in this
work correspond to the Rational Unified Process (RUP) disciplines, because it is a
well known and a reasonable complete process [22]: Business Modeling,

19º Simpósio Brasileiro de Engenharia de Software

343
329

Requirements, Analysis and Design, Implementation, Test, Deployment,
Configuration and Change Management, Project Management, and Environment.
By Mechanism: an organizational pattern is further classified by the mechanism it
uses to describe a solution to the organization of software development work. The
mechanisms established in this work are process, role, technique and team values. A
process pattern is an organizational pattern that structures its solution as a sequence
of activities, i.e. a workflow. A role pattern describes one or more roles that people
play in developing software. A technique describes the specific procedures people
use to accomplish certain tasks [7]. Some of them apply to a single person
(designing a class or test case), while others are aimed at groups of people (code
ownership, planning sessions). The team values govern the methodological
elements. An example of a team value is the Extreme Programming forty-hour week
convention [2].

While there may be other classification possibilities, the two criteria described
above have been selected because they represent the target problem of the pattern
(process discipline) and the type of solution it describes (mechanism). The tool
discussed on section 5 allows the configuration of a user-defined classification criterion
for the patterns.

The next section presents a systematic approach for identifying and analyzing the
risks of a software project. Section 5 will show how the pattern selection mechanism
works. For the selection system to work, the pattern repository has to relate the patterns
with the risks they intend to solve. This is achieved through risk resolution rules. A risk
resolution rule relates risks with patterns that may be applied for minimizing or solving
the risk. Each rule is associated with a project context where it works best, and it has an
accuracy factor. A project context is established in terms of three criteria, as further
explained on the next section: system criticality and, staff size, as suggested by
Cockburn [7], and the team skill level as suggested by Boehm [6]. The accuracy factor
(AF) is a 0-10 grade that is used to tune the selection mechanism. It can be adjusted by
users of the tool after they have experimented with the patterns. Examples of risk
resolution rules are presented on the next section.

4. Analyzing the project risks and its criticality context

Several studies have been conducted in order to identify the main risks of software
projects. Some of these studies consider only the risks the process designer has control
of, while others consider all risks. In this work we compared and compiled the risks
identified by Keil [21], Boehm [4], Addison [1] and the CMMI [27], in order to obtain a
comprehensive risk list for software projects. The details of the comparison are further
discussed in another article [15].

The risk list for software projects was classified using an adapted criterion from the
risk classification framework presented by Keil [21]. Using this classification, the risks
can be:

Customer risks: these risks are originated from the involvement of the customer
with the system that is being developed.
Requirements risks: one of the most important parts of the process, because if the
software does not satisfies its requirements, it is not going to fulfill the customer
needs.

19º Simpósio Brasileiro de Engenharia de Software

344
330

Planning risks: these risks monitor the initial planning of the software project.
Execution risks: the execution risks describe situations that may occur while the
software is being developed, and may substantially impact the final quality of the
software.

The risks compilation is shown on Table 1. In this work, the project management
risks have been separated in planning and execution risks, because some of them must
be resolved at the beginning of the project, while others must be monitored and tackled
during the execution of the project.

The risk list of Table 1 is used in this work as a common checklist of most
frequently occurring risks, for identifying the risks of a software project. The risk
identification process should not be limited to this list, however, and may consider
many more risks. To perform risk identification, team members should be interviewed
and group sessions should be held with the project team and other people associated
with the project, in order to identify all the things that could go wrong with the project
[1]. The result can be a long list of risks which should be organized in the four
categories of Customer, Requirements, Planning and Execution. The risk classification
may be used with the pattern classification as parameters for the pattern retrieval
system, as will be explained in the section 5.

Table 1: The risk checklist

Customer Requirements

Lack of user involvement Misunderstanding the requirements
Failure to gain user commitment Scope and goals are not clearly defined
Failure to manage end user expectations Requirements instability
Conflict between user departments

Planning Execution

Lack of top management commitment to
the project

Introduction of new technology

Lack of required knowledge/skill in the
project personnel

Gold plating

Insufficient/inappropriate staffing Wrong development of functions or user
interfaces

Non-realistic schedule and budget Subcontracting
Lack of a methodology for the project System use of resources and performance

Infeasible design

After the risk identification, the risks should be analyzed and prioritized using the
risk exposure technique (RE) [15]. The risk exposure, also called risk impact or risk
factor, is the product of the probability of a non-satisfactory result to occur, and the loss
associated to this non-satisfactory result [5]. This work uses a 0 to 10 scale in order to
measure the probability and the loss of each risk. Coppendale [12] suggests some simple
rules to determine the risk probability and loss:

Probability: 0 (zero) represents a probability of up to 5% of the risk occurring. 5
represents a probability of about 50%, while 10 represents a probability of 95% or
more.

19º Simpósio Brasileiro de Engenharia de Software

345
331

Loss: 0 (zero) represents no increase in the time or in the cost of the project, while
10 represents a very representative impact in the time or in the cost of the project,
such as a 100% increase.

When each of the identified risks is quantified, they are ordered by the risk
exposure. The process designer should define the criterion for prioritization of the most
important risks, establishing the Risk Prioritization Factor (RPF). This means that only
the risks with RE >= RPF will receive immediate attention. The pattern systematic
retrieval system described in the next section allows for the process designer to
configure the required RPF.

After prioritizing the risks, preventive actions should be selected and elaborated
[15]. PMT selects organizational patterns from a pattern repository as suggested actions
the process designer or the project manager should apply to prevent, resolve or
minimize each of the prioritized risks. The pattern selection is driven by the risk
analysis results, with the application of risk resolution rules. PMT also uses an analysis
of the context of the project, because it is important to consider it when selecting a
methodology, as discussed by Cockburn [7] and Boehm [6]. The context of a project is
identified in terms of three criteria:

Defects criticality: The possibility of loss associated with the occurrence of a
defect. It ranges from a loss of comfort (1) to the loss of many human lives (5).
According to Cockburn [7], the more critical a system, the more density is needed
on the methodology, i.e. the intermediate artifacts produced must be more carefully
detailed, reviewed and checked against each other.
Team size: The number of people involved is also an important factor considered by
Cockburn [7]. The larger the project team, the larger the methodology needed, i.e.
more intermediate documents must be produced to coordinate the work.
Team skill: Barry Boehm [6] extends Alistair Cockburn´s classification of people in
levels of understanding [8], and uses it as an important factor to balance between
agile methodologies, such as Extreme Programming [2], and plan-driven
methodologies, such as the ones which follow the CMM model [25]. The
classification is: -1. People who are unable or are unwilling to collaborate; 1B.
People who can perform on a plan-driven environment, executing simple tasks by
following procedural steps, but cannot contribute to an agile team; 1A. People who
can contribute both to an agile team and to a plan-driven team; 2. People who can
lead a small team of developers and tailor a method to fit a precedented new
situation; 3. People who can revise a method, breaking its rules to fit an
unprecedented new situation. Boehm uses the percentage of level 1B people in the
project as one factor for balancing the methodology. PMT uses a measure of the
team skill by considering the percentage of people classified in all levels of
understanding, from 1B to 3. A team skill of 1 means a high skilled team with most
people in levels 2 or 3, while a team skill of 5 means most of its staff is in level 1B.

The project criticality context is established in PMT by identifying the values for the
three-dimensions shown above. This analysis helps the approach to select patterns that
are more likely to succeed in an agile environment and those in a plan-driven one. If the
project is near the origin of the three dimensions, meaning a small high skilled team
working on a low criticality project, the most appropriate patterns will typically
represent practices of agile methodologies. For a project with a high level of defects

19º Simpósio Brasileiro de Engenharia de Software

346
332

criticality, and a large team with less than average skill, the retrieval system will choose
organizational patterns that reflect practices of plan-driven methodologies. For projects
that do not match any of the extreme opposites in the three-dimensional space, the
approach helps to balance the methodology by selecting the patterns that are more
adequate to the criticality context of the project and which target its most important
risks.

In the next section the pattern retrieval system is examined. The retrieval is based on
risk resolution rules, which must be recorded in the repository with the patterns and the
risk checklist. Each rule associates one or more patterns with one or more risks they
intend to prevent, resolve or minimize. A rule is also associated with the project
criticality context where it works best. A rule also has an accuracy factor (AF) which
measures how much the associated patterns help to resolve the associated risks, helping
to tune the selection system. A factor of 0 (zero) would mean the patterns do not help at
all, while a factor of 10 means the patterns can be applied to completely eliminate the
associated risks.

Table 2 presents examples of risk resolution rules. The examples of rules and of
patterns have been elaborated from practices described in existing published
methodologies, from the experience of the authors, and from previous work [15].

Table 2: Examples of risk resolution rules. Each rule is applied in a project context (PC)
and has an accuracy factor (AF).

Comments Defects Criticality Team Size Team skill

A Agile characteristics 2 (Discretionary Money) 1 (1-6) 4 (High)
B Plan-driven

characteristics
5 (Many lives) 4 (41-500) 2 (Low)

Risk(s) PC Pattern(s) AF

1 Lack of top management
commitment to the project

A SprintPlanningMeeting
PlanningGame

7

2 Lack of top management
commitment to the project

B SeniorManagementReview 5

Different rules may target the same risk in different contexts (PC column). As an
example, the rule number 1 targets the risk of lack of top management commitment to
the project, in the context of a project with agile characteristics – low criticality of
defects, and a small and skilled team. The participation of the senior management
during iteration planning meetings can be used to minimize this risk [15], such as in the
Extreme Programming practice of “Planning Game” [2], or the Scrum practice of
“Sprint Planning Meeting” [28]. The rule number 2 targets the same risk in a different
context – a project in the plan-driven home ground - with the CMM practice of the
senior management reviewing the project commitments with the project manager [25].

5. The Pattern Selection Mechanism

This section describes the systematic selection mechanism implemented on the PMT-
Wiki tool. The tool records and maintains a pattern repository with the characteristics
presented on section 3. It also helps with the risk identification, risk exposure analysis

19º Simpósio Brasileiro de Engenharia de Software

347
333

and prioritization, and the project context analysis, as described in section 4. The tool
uses the repository, the project analysis results, and the risk resolution rules in order to
perform the selection of patterns, resulting on a suggested list of organizational patterns
that the process designer may apply in order to tackle the risks of the project. The
pattern selection is complemented with exploratory browsing on the pattern repository.

The PMT-Tool tool is implemented in Java using a MySQL relational database to
store its data. The user interface is all web-based, facilitating the exploratory browsing
of the organizational patterns, because the relationships between the patterns are
navigated through hypertext links.

The retrieval system assumes the pattern repository – called the base pattern language
- is already recorded. The organizational patterns in the base pattern language have a
textual description, a classification and are related to each other. There is also: a
recorded list of risks, a list with different combinations of project criticality contexts,
and the risk resolution rules.

A retrieval session may start with the process designer recording a new project on the
tool, or using a previously recorded project. For a new project, the project context must
be established and the risks must be identified and prioritized using the risk exposure
and the risk prioritization factor (RPF), as further explained in section 4. The risk and
context information may be updated for an existing project before a new retrieval
session starts.
 The selection system is configured with parameters. The risk prioritization factor
(RPF) is mandatory. As explained on section 4, the risks of the project are identified and
are ordered by the risk exposure (RE), but only the risks with a RE value greater than
the RPF are considered by the selection mechanism. The other parameters use the
classification of the patterns and of the risks, as described on sections 3 and 4, and are
optional. The patterns are classified by the target process discipline, the pattern solution
mechanism type, and possibly a user-defined classification. The risk type can also be
used as a parameter to the selection system. The classification parameters help the
process designer to narrow the search to solve a problem in a specific area where he or
she is seeking for advice.

The first step of the pattern selection algorithm is to evaluate each of the risk
resolution rules that are associated to the prioritized risks. For each rule, two factors are
evaluated:

Risk exposure: the average risk exposure for the risks associated with the rule. The
risk exposure is a 0 to 100 value, because it is the probability (0-10) multiplied by
the loss (0-10).
Context proximity: the rule is associated to a project context where it works best,
but this context may be different than the context of the target project. A project
context is evaluated using three criteria (a 1-5 value each), as explained in section 4:
the system criticality, the team size and the team skill. The context proximity
evaluates how close the context of the rule is to the context of the project. The
proximity is calculated using the formula p = 100 – (2 (d12+d22+d32) * 100/8),
where d1, d2 and d3 are the distance from the context of the rule to the context of
the project in each axis, ranging from 0 to 4, because the minimum value for each
criterion is 1 and the maximum value is 5. The formula uses the Pythagoras theorem
to calculate the distance in the three dimensional space, and converts the result to a
value in the range 0-100. The result is rounded down to the nearest integer value. An

19º Simpósio Brasileiro de Engenharia de Software

348
334

exact match (zero distance) would mean proximity of 100, while the maximum
distance (d1=d2=d3=4) will result in zero (0) proximity.

The two factors above are evaluated for each rule, resulting in a rule evaluation table,
as exemplified by Table 3. The resulting score for each rule is calculated by multiplying
the risk exposure value, the context proximity value and the accuracy factor of the rule.
The resulting table is ordered by the scores of the rules. The target result, however, is
not a list of rules, but a list of patterns ordered by relevance of application to the given
project. Therefore, the next step of the retrieval algorithm is to create a pattern
comparison table.

Table 3: Calculating the resulting score for each risk resolution rule

Rule #
Exposure

(0-100)
Proximity

(0-100)
AF

 (0-10)
Score

(0-100000)
1 65 59 7 26,845
2 82 23 6 11,316
3 91 68 8 49,504

A pattern comparison table lists all the patterns that are associated to at least one risk
resolution rule, and the resulting score of the pattern. For patterns that appear only once
on the rules list, the score of the pattern is the score of the associated rule. When a
pattern appears in more than one of the applied rules, the resulting score for the pattern
is the sum of scores of the rules in which it appears. The resulting table of patterns, as
exemplified by Table 4, is ordered by the score column and presented to the process
designer in descending order - the top scores appear first.

Following a hypertext link on the pattern name, the user may navigate to the
complete textual description of each pattern. Another hypertext link exists on the score
column, which details the information about the score of the corresponding pattern, such
as which rules were applied, which risks the pattern is intended to solve, and how the
score was calculated.

Table 4: An example of a resulting list of suggested patterns for the process designer

Pattern
Score

(0-100,000)
EarlyAndRegularDelivery 89,023

SprintPlanningMeeting 49,302
ScenariosDefineProblem 11,983

A retrieval session is executed on the context of a specific software development
project. The tool creates a separated workspace for the process designer to elaborate an
organizational pattern language for the project. This workspace is named in PMT the
project pattern language, which is a separated system of patterns. It helps the process
designer to document the methodology of the project in the form of organizational
patterns. The pattern repository is named the base pattern language. After a retrieval
session, the process designer may select some of the suggested patterns for inclusion on
the project pattern language. A pattern relationship will also be transferred, in case both
of the patterns it relates are included on the target pattern language.

After the project workspace (the project pattern language) is populated with patterns,
new retrieval sessions may be executed. The process designer may experiment with
different parameters for the selection, such as decreasing the risk prioritization factor

19º Simpósio Brasileiro de Engenharia de Software

349
335

(RPF) in order to consider more risks to be targeted. The patterns that have already been
included in the project pattern language will not be considered for selection on further
retrieval sessions.

The retrieval mechanism of the PMT-Wiki tool is complemented with exploratory
browsing on the pattern repository. The process designer can navigate on the repository
using hypertext links representing the relationships between the patterns, and
empirically selecting patterns for inclusion on the project pattern language.

Another possibility is the selection of all the patterns which belong to the same
pattern source. This operation is helpful when the process designer wants to use all the
patterns of a given methodology as a start, such as the Scrum patterns [3]. After
populating the project pattern language with them, the process designer may
complement the methodology by targeting the risks that are still unaddressed with a
pattern retrieval session.

When the process designer believes she has completed tailoring the project pattern
language, she will allow the project team members to access it. Most of the project team
members will browse only through the patterns and the relationships that exist on the
separated workspace of the project, and will not need to know the existence of the
pattern repository. They might use the patterns as a source of learning in order to solve
the particular problems that occurs in the software development project. The process
designer will continue to monitor the risks of the project and may execute new retrieval
sessions and publish new patterns in the project pattern language in the case it shows to
be necessary.

6. A Case Study with the PMT-Tool

This section of the paper explores the PMT-Tool further, using a case study as an
example. The approach helped the design of a methodology to be applied by an offshore
software development organization. The case study was held at a subsidiary of a large
information technology company. The impressions of the application of the approach
and of the tool are discussed at the end of this section.

Figure 1: Creating the project

The approach was applied to aid the definition of the software development
methodology for a small-to-medium project (12 people). The development team was
distributed across two countries, with a project manager and three business analysts

19º Simpósio Brasileiro de Engenharia de Software

350
336

located in the United States, and a development manager and seven
programmer/analysts located in Brazil. The project was registered in the PMT-Tool,
which aided with the assessment of the project criticality context (Figure 1). The
resulting criticality context is: defects may cause loss of essential money (3), size is
small to medium (2), with a highly skilled team (2).

The next step was to perform risk identification, risk exposure analysis, and risk
prioritization. These activities were executed by the project manager with the help of
key project members. The risk checklist of section 4 was the primary source of risks.
Figure 2 shows the risks which were identified for the project. After the risk exposure
analysis was finished, the project manager decided to prioritize the risks with risk
exposure higher than 40. He reasoned that the costs of managing risks with risk
exposure lower than 40 were too high as compared to the small effort of dealing with
them in the case they happen to materialize during the project.

The risk of Introduction of new technology was assessed as the most important risk of
the project, because most of the Brazilian developers were new to the technology – they
had just been hired by the company. Due to the geographically dispersed nature of the
project, the risks of Lack of user involvement and of Difficulty of communication were
also highly scored.

The organization had a history for Conflict between user departments and for Failure
to gain user commitment, and these risks were also prioritized. The risks Lack of a
methodology for the project, Defects coming back and Misunderstanding the
requirements were also prioritized, because the project was new, the development
methodology was still immature, and the developers were not used with the application
domain.

The next step was to create a pattern language for the project, which was initially
empty. The task of designing a methodology using the PMT-Tool consists of selecting
patterns from the base pattern language (the repository), and adding them to the project
pattern language. The selection is performed by the process engineer, who uses the
selection mechanism of the tool to help him to select the appropriate patterns.

Figure 2: Risk Exposure Analysis

 The initial pattern retrieval session results are shown in Figure 3. The patterns with
the left checkbox marked were added to the project pattern language, after exploratory
browsing on their textual descriptions.

19º Simpósio Brasileiro de Engenharia de Software

351
337

Figure 4 shows an example of the score detail for the pattern
EarlyAndRegularDelivery. This pattern had a high score because two risk resolution
rules could be applied which included it as the solution. The highest scored rule applied
the pattern for minimizing the risk of Introduction of new technology. Another example
is the selection of the pattern ProductOwner. This pattern was selected in order to
resolve the risk of Conflicts between user departments. The patterns ScrumTeam and
HolisticDiversity – organizing the project in small, cross-functional, cross-geographical
teams - were selected to minimize the risks of Difficulty of communication and of Lack
of user involvement.

Figure 3: The suggested list of patterns

The last patterns represented processes and techniques found in modern agile
methodologies. Other patterns were selected which represented more rigorous
processes, such as StatusIsRecorded, ChangesToWorkProductsAreControlled, and
SoftwareConfigurationManagement. These patterns were elaborated from CMM [25]
Software Configuration Management (SCM) key process area, and were used to
minimize the risks of Defects coming back and of Lack of a methodology for the project.
The technique of Inspections was also selected to minimize these risks. A factor
contributed to the selection of these last patterns, which is the defects criticality of the
project – defects may cause the loss of essential money.

After the initial selection of patterns was made by the process designer, with the aid
of the systematic retrieval system of the PMT-Tool, more patterns were added to the
project pattern language. The process designer performed exploratory browsing on the
pattern textual descriptions and the pattern relationships. He evaluated other patterns
which were not included in the tool suggestions, and completed the project pattern
language with it. Other Extreme Programming [2] engineering practices were included,
such as UnitTests, WhenABugIsFound, IntegrateOften, and CollectiveCodeOwnership.
The management practices were completed with Scrum’s [3] Backlog, James Coplien’s
[9] CompensateSuccess, and XP’s [2] DailyStandupMeeting.

The tool web interface was considered easy to use by the project manager who
experimented with it. The exploratory browsing on the base pattern language was made
easy through the use of hypertext links. The pattern list can be filtered by either the

19º Simpósio Brasileiro de Engenharia de Software

352
338

pattern mechanism type (Role, Value, Technique, or Process), by the process discipline,
or by the pattern source. From one pattern, the user can easily navigate to the related
patterns by clicking in one of the pattern relationships.

Figure 4: Score detail example

The impression with the use of the tool was reported as being satisfactory. Clearly
there is still a lot of work to be performed by the process engineer. She still has to
browse through the pattern textual descriptions, and use her experience and careful
consideration when designing the methodology to be deployed. But she can count on a
systematic framework – built on past experiences – to aid her on this complex task. The
base pattern language consists of patterns extracted from several sources, forming a
comprehensible knowledge base about software development. Of course this repository
is not complete and has to be checked and updated. By starting to fill the project pattern
language with patterns which were targeted to minimize the main project risks, the
process designer saved her time – she didn’t had to browse though dozens of patterns.
By performing the project criticality context and the risks analysis prior to performing
the selection, she had to reason about the project risks and about how to deal with them.
The methodology design was driven by the project risks, either by counting on the
knowledge recorded in the PMT repository, or through the empirical work of the
process designer.

After the patterns had been selected by the process designer, the resulting pattern
language was complemented with other types of documents, such as sample documents
for use cases scenarios and test scripts, and also standards for coding and testing.
Specific configuration management procedures which included project specific
information, such as machines, passwords, and version control software specific
commands, were created to complete the methodology.

7. Summary and conclusions

This work presented Pattern-based Methodology Tailoring, an approach for aiding
the adaptation of development methodologies to the needs of a particular software
project, using known patterns and risk criteria. It structures a pattern repository as a
knowledge base about successful practices for managing the work of software projects.
The process designer performs an analysis of the risks and of the criticality context of
the project. The selection mechanism implemented in the PMT-Tool then suggests a list
of suitable patterns for the project which target the identified risks and context.

The selection mechanism of the PMT-Tool helps the process designer on performing
the methodology adaptation. However, the process designer role is fundamental, and her
careful empirical consideration and evaluation is necessary in order to tailor an adequate

19º Simpósio Brasileiro de Engenharia de Software

353
339

methodology for a given project. The tool is helpful because it suggests the most
suitable patterns to the project, accordingly to the data which is recorded in its
repository. It saves the time of the process designer to browse through dozens or even
hundreds of patterns which are available. It also influences her choices by selecting
patterns which target the project risks that she has assessed. This work provides a
structured framework for the process designer to think about the risks and the criticality
context of the project before designing the methodology, and to design the methodology
using organizational patterns as a form of documentation.

The PMT approach can be helpful to mix different techniques and processes of
software development. It guides the process designer on identifying the project
criticality context, which can be used as a framework to balance between agile and plan-
driven methodologies. Both agile and planned approaches have situation dependent
shortcomings that, if left unaddressed, can lead to project failure. The challenge is to
balance the two approaches to take advantage of their strengths in a given situation
while compensating for their weakness [6].

Organizational patterns can be an efficient documentation form, by describing the
essential part of a solution to a recurring problem, which can be adapted to solve a
particular problem of a software project. They may avoid process documents from
becoming inefficient paperwork that do not reflect the process that are actually
performed, have descriptions that are ambiguous or incomprehensible, or are too high
level to be used in practice, which is a situation found on many organizations [30].

The pattern repository should be elaborated from existing sources of organizational
patterns, such as Coplien’s [9] [11], Harrison’s [17], Beedle et al Scrum org. patterns
[3], DeLano and Rising test pattern language [13] and Stevens and Pooley systems
reengineering patterns [29]. It should also be complemented with the knowledge
documented on published software development methodologies, such as XP [2], RUP
[26] and the CMM [25]. Patterns may also be obtained by documenting the experience
of software project managers or process engineers on solving recurring problems.
However, careful consideration is important when adding a new pattern to the
repository, in order to maintain its quality as a source of meaningful and efficient
information.

Special consideration is also necessary when adding new risk resolution rules to the
repository, which are used by the selection system to choose the patterns which are most
suitable to tackle the risks of the chosen project. The rules should also be elaborated
from the experience of project managers on resolving project risks, or from the existing
knowledge published on the literature. The risk resolution rules should be adjusted and
tuned with the experimentation of the approach. The feedback of process designers
should be collected and evaluated in order to improve the knowledge of the PMT
repository.

This work is an ongoing project. There are a number of limitations that have to be
overcome, as risk metrics, metrics collection, adaptation mechanisms for the standard
process in use by an organization, evaluation of recommended practices for given risks,
and other points. Future work may include using the GQM (Goal-Question-Metric)
approach [15] for monitoring the risks during the execution of the project and
suggesting corrective actions. The authors are working on a tool for collecting data and
using it for evaluating and improving the suggested risk resolution rules and to plot the
tendency of evolution of the risks.

19º Simpósio Brasileiro de Engenharia de Software

354
340

Other extension is the use of meta-models to represent both the patterns and the
processes. This comes with the idea of considering each project resulting own process
as an adaptation of the standard process of the organization. The use of a standard
process is helpful to large organizations, to minimize the costs of culture change, help
with the collection and analysis of metrics, ease the training of new staff, and many
other reasons. The meta-model is used as a common representation for the processes
activities, deliverables, roles, and workflows. A project specific process is tailored by
the combination of the organization’s standard process with the selected patterns for the
project. The goal of the selection is to minimize the risks of the project.

The approach presented in this paper is limited by the difficulties of validating the
empirical knowledge of experienced process designers, software engineers and project
managers, expressed as patterns and risk resolution rules. Nevertheless, it has a strong
and original contribution to structure a systematic approach for capturing this
knowledge and assisting process designers and project managers on leveraging it. The
approach here reported suggests that the use of risk analysis combined with
organizational patterns is a promising way of overcoming the limitations of existing
software process improvement frameworks.

8. References

[1] Addison, T., Vallabh, S. Controlling Software Project Risks – An Empirical Study of
Methods used by Experienced Project Managers. Proceedings of the South African
Institute of Computer Scientists & Information Technologists, Port Elizabeth, South
Africa, September 2002, p.128-140.
[2] Beck, Kent. Embracing Change with Extreme Programming. IEEE Computer,
32:70--77, Oct. 1999.
[3] Beedle, M. et al. SCRUM: an extension pattern language for hyper-productive
software development. In: Pattern Languages of Program Design 4. Addison-Wesley,
1999.
[4] Boehm, B. Software Risk Management: Principles and Practices. IEEE Software,
v.8, n.1, p. 32-41, January 1991.
[5] Boehm, Barry. Get Ready for Agile Methods, with Care. IEEE Computer, v.35, n.1,
p. 64-69, January 2002.
[6] Boehm, Barry; Turner, Richard. Using Risk to Balance Agile and Plan-Driven
Methods. IEEE Computer, June 2003.
[7] Cockburn, Alistair. Selecting a Project’s Methodology. IEEE Software, July/August
2000.
[8] Cockburn, Alistair. Agile Software Development. Addison-Wesley, 2001.
[9] Coplien, J. A Development Process Generative Pattern Language. In: James
Coplien, Douglas Schmidt, eds. Pattern Languages of Program Design. Addison-
Wesley, 1995.
[10] Coplien, James. Sofware Patterns. Originally published by SIGS Books and
Multimedia. http://www1.bell-labs.com/user/cope/Patterns/WhitePaper/. 1996.
[11] Coplien, James. Organizational Patterns web site, as viewed in August 7th, 2004.
http://www1.bell-labs.com/user/cope/Patterns/Process/OrgPatternsMap.html
[12] Coppendale, J. Managing Risk in Product and Process Development and Avoid
Unpleasant Surprises. Engineering Management Journal, v.5, n.1, p. 35-38, February,
1995.

19º Simpósio Brasileiro de Engenharia de Software

355
341

[13] DeLano, David E., Rising, Linda. System Test Pattern Language. Last visited in
August 7th, 2004.
http://www.agcs.com/supportv2/techpapers/patterns/papers/systestp.htm
[14] Devedzic, Vladan. Software Patterns. in: Chang, S.K. (ed.), "Handbook of
Software Engineering and Knowledge Engineering Vol.2 – Emerging Technologies",
World Scientific Publishing Co., Singapore, 2002, pp. 645-671.
[15] Fontoura, Lisandra M., Price, Roberto T. Usando GQM para Gerenciar Riscos em
Projetos de Software. XVIII Brazilian Simposium on Software Engineering, 2004.
[16] Hall, E. Managing Risk: Methods for Software Systems Development. New
York:Addison-Wesley, 1998.
[17] Harrison, Neil. Organizational Patterns for Teams, In John Vlissides, James
Coplien and Norm Kerth, eds., Pattern Languages of Program Design 2. Addison-
Wesley, 1996.
[18] Henderson-Sellers, B. and Mellor, S. Tailoring process-focussed OO methods.
JOOP/ROAD, 12(4), 1999.
[19] The Hibernate project web site. Last visited on August 15th, 2004.
http://www.hibernate.org
[20] Jacobson, Ivar; Booch, Grady; Rumbaugh, James. The Unified Software
Development Process. Addyson Wesley Professional, 1999.
[21] Keil, M. et al. A Framework for Identifying Software Project Risks.
Communications of the ACM, v. 41, n.11, p. 76-83, November 1998.
[22] Manzoni, Lisandra V.; Price, Roberto T. Identifying Extensions Required by RUP
(Rational Unified Process) to Comply with CMM (Capability Maturity Model) Levels 2
and 3. IEEE Transactions on Software Engineering, February, 2003.
[23] Martin, James. Recommended Diagramming Standards for Analysts and
Programmers. Prentice-Hall, 1987.
[24] Palmer, Steven, and Felsing, John. A Practical Guide to Feature-Driven
Development. The Coad Series. 2002.
[25] Software Engineering Institute. The Capability Maturity Model: Guidelines for
Improving the Software Process. Addison-Wesley, 1995.
[26] Rational Software Corporation. Rational Unified Process, v. 2001. Cupertino,
2001.
[27] Software Engineering Institute. Capability Maturity Model Integration (CMMI),
Version 1.1, 2002.
[28] Schwaber, K., Beedle, M. Agile Software Development with Scrum. Upper Saddle
River: Prentice Hall, 2001.
[29] Stevens, P., Pooley, R.. Systems Reengineering Patterns. Proceedings ACM-
SIGSOFT, 6th International Symposium on the Foundations of Software Engineering,
pp.17-23, 1998.
[30] Vasconcelos, F.M de; Werner, C.M.L.; Organizing the Software Development
Process Knowledge: An Approach Based on Patterns; Int. Journal of Software Eng. &
Knowledge Eng., World Scientific Publishing Company (Vol. 8, n°. 4, 1998)

19º Simpósio Brasileiro de Engenharia de Software

356
342

	AnaisSBES
	Sessões Técnicas SBES (ST)/ Technical Sessions (TS)
	ST6 – Processos
	Using Risk Analysis and Patterns to Tailor Software Processes

	Índice por Autor / Author Index

