
Design Patterns as Aspects: A Quantitative Assessment

Cláudio Sant’Anna, Alessandro Garcia, Uirá Kulesza,

Carlos Lucena, Arndt von Staa

PUC-Rio, Computer Science Department,

Software Engineering Laboratory, SoC+Agents Group

[claudios,afgarcia,uira,lucena,arndt]@inf.puc-rio.br

Abstract

Design patterns offer flexible solutions to common problems in software development. Recent studies have

shown that several design patterns involve crosscutting concerns. Unfortunately, object-oriented (OO)

abstractions are often not able to modularize those crosscutting concerns, which in turn decrease the system

reusability and maintainability. Hence, it is important verifying whether aspect-oriented approaches support

improved modularization of crosscutting concerns relative to design patterns. Ideally, quantitative studies

should be performed to compare object-oriented and aspect-oriented implementations of classical patterns with

respect to important software engineering attributes, such as coupling and cohesion. This paper presents a

quantitative study that compares aspect-based and OO solutions for a representative set of design patterns. We

have used stringent software engineering attributes as the assessment criteria. We have found that most aspect-

oriented solutions improve separation of pattern-related concerns, although some aspect-oriented

implementations of specific patterns resulted in higher coupling and more lines of code.

1. Introduction

Since the introduction of the first software pattern catalog containing the 23 Gang-of-Four

(GoF) patterns [5], design patterns have quickly been recognized to be important and useful in

real software development. A design pattern describes a proven solution to a design problem

with the goal of assuring reusable and maintainable solutions. Patterns assign roles to their

participants, which define the functionality of the participants in the pattern context. However,

a number of design patterns involve crosscutting concerns in the relationship between the

pattern roles and participant classes in each instance of the pattern [9]. The pattern roles often

crosscut several classes in a software system. Moreover, recent studies [7, 8, 9] have shown

that object-oriented abstractions are not able to modularize these pattern-specific concerns and

tend to lead to programs with poor modularity. In this context, it is important to

systematically verify whether emerging development paradigms support improved

modularization of the crosscutting concerns relative to the patterns.

Aspect-oriented software development (AOSD) [13, 19] is a promising paradigm to promote

improved separation of concerns, leading to the production of software systems that are easier

to maintain and reuse. AOSD is centered on the aspect notion as an abstraction aimed to

modularize crosscutting concerns. Hence, aspect-oriented approaches are candidates to

address the crosscutting property of design patterns. However, up to now there is only

consensus that classical and obvious crosscutting concerns should be modularized as aspects,

such as logging [2] and exception handling [14].

To the best of our knowledge, Hannemann and Kiczales [9] have developed the only

systematic study that investigates the use of aspects to implement classical design patterns.

They performed a preliminary study in which they develop and compare Java [11] and

AspectJ [2] implementations of the GoF patterns. Their findings have shown that AspectJ

implementations improve the modularity of most patterns. However, these improvements

113

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

113113113113113

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

113113

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

113

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

were based on some attributes that are not well known in software engineering, such as

composability and (un)pluggability. Moreover, this study was based only on a qualitative

assessment and empirical data is missing. To solve this problem, this previous study should be

replicated and supplemented by quantitative case studies in order to improve our knowledge

body about the use of aspects for addressing the crosscutting property of design patterns.

This paper complements Hannemann and Kiczales’ work [9] by performing quantitative

assessments of Java and AspectJ implementations for a representative set of the GoF patterns.

Our study was based on well-known software engineering attributes such as separation of

concerns, coupling, cohesion and size. We have found that most aspect-oriented solutions

improved separation of pattern-related concerns, although some aspect-oriented

implementations of specific patterns resulted in higher coupling, more complex operations

and more lines of code than object-oriented implementations.

The remainder of this paper is organized as follows. Section 2 introduces basic concepts in

aspect-oriented programming. Section 3 presents our study setting, while giving a brief

description of Hannemann and Kiczales’ study. Section 4 presents the study results with

respect to separation of concerns, and Section 5 presents the study results in terms of

coupling, cohesion and size attributes. These results are interpreted and discussed in Section

6. Section 7 introduces some related work. Section 8 includes some concluding remarks and

directions for future work.

2. Aspect-Oriented Software Development

Separation of concerns is a well-established principle in software engineering. A concern is

some part of the problem that we want to treat as a single conceptual unit [19]. Concerns are

modularized throughout software development using different abstractions provided by

languages, methods and tools. However, these abstractions may not be sufficient for

separating some special concerns found in most complex systems. These concerns have been

called crosscutting concerns since they naturally cut across the modularity of other concerns.

Aspect-oriented software development (AOSD) [13, 19] has been proposed as a technique for

improving separation of concerns in the construction of OO software and supporting

improved reusability and maintainability. AOSD supports the modularization of crosscutting

concerns by providing the aspect abstraction that makes it possible to separate and compose

them to produce the overall system.

AspectJ [2] is an aspect-oriented extension to the Java programming language. Aspect is a

modular unit of crosscutting implementation in AspectJ. Each aspect encapsulates

functionality that crosscuts classes in a program. An aspect is defined by an aspect

declaration, which has a similar form of class declaration in Java. Similar to a class, an aspect

can be instantiated and can contain attributes and methods, and it can be specialized in

subaspects. An aspect is then combined with the classes it crosscuts according to

specifications given within the aspect. Moreover, an aspect can introduce methods, attributes,

and interface implementation declarations into types by using the inter-type declaration

construct.

The essential mechanism provided for composing an aspect with other classes is called a join

point. A join point is a well-defined point in the execution of a program, such as a call to a

method, an access to an attribute, an object initialization, exception handler, etc. Sets of join

points may be represented by pointcuts. AspectJ provides various pointcut designators that

may be combined through logical operators to build up complete descriptions of pointcuts of

interest. An aspect can specify advices that are used to define some code that should be

executed when a pointcut is reached. An advice is a method-like mechanism that consists of a

114

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

114114114114114

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

114114

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

114

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

piece of code to be executed before, after, or around a pointcut. An AspectJ program can be

divided into two parts: a base code part which includes classes, interfaces, and other language

constructs for implementing the basic functionality of the program, and an aspect code part

which includes aspects for modeling crosscutting concerns in the program. For further

information about AspectJ, one can refer to [2].

3. Study Setting

This section describes the configuration of our empirical study. Our study supplements the

Hannemann and Kiczales work that is presented in Section 3.1. Section 3.2 uses the Observer

pattern to illustrate the crosscutting property of some design patterns. Section 3.3 describes

the design patterns selected for our study as well as our assessment procedures. Section 3.4

introduces the metrics used in the assessment process.

3.1. Hannemann & Kiczales’ Study

Several design patterns exhibit crosscutting concerns [9]. In this context, Hannemann and

Kiczales have undertaken a study in which they have developed and compared Java [11] and

AspectJ [2] implementations of the 23 GoF design patterns [9]. They claim that programming

languages affect pattern implementation. Hence it is natural to explore the effect of aspect-

oriented programming techniques on the implementation of the GoF patterns. For each of the

23 GoF patterns they developed a representative example that makes use of the pattern, and

implemented the example in both Java and AspectJ.

Design patterns assign roles to their participants; for example, the “Subject” and “Observer”

roles are defined in the Observer pattern. A number of GoF patterns involve crosscutting

structures in the relationship between roles and classes in each instance of the pattern [9]. For

instance, in the Observer pattern, an operation that changes any “Subject” must trigger

notifications to the corresponding “Observers”; in other words the act of notification crosscuts

one or more operation in each “Subject” in the pattern.

In Hannemann and Kiczales’ study, AspectJ implementations of the GoF patterns were

generated to modularize the pattern roles. They have demonstrated modularity improvements

in 17 of the 23 cases. The degree of improvement has varied. They found out that patterns

whose crosscutting structures involve roles and participant classes yield the largest

improvement in the AspectJ implementation. These improvements were manifested in terms

of four modularity properties: locality, reusability, composition transparency and

(un)pluggability. The next subsection discusses these improvements as well as the

crosscutting pattern structures in terms of the Observer pattern.

3.2. Example: The Observer Pattern

The Observer pattern [5] is one of the most popular design patterns. Object-oriented

implementations of the Observer pattern usually add an attribute to all potential Subjects that

stores a list of Observers interested in that particular Subject. When a Subject wants to report

a state change to its Observers, it calls its own notify method, which in turn calls an

update method on all Observers in the list. Figure 1 shows a concrete example of the

Observer pattern in the context of a simple figure handling package. In such a program the

Observer pattern would be used to update the screen whenever a figure element is changed.

The shadowed methods contain code necessary to implement this instance of the Observer

pattern. This shows that code for implementing this pattern is spread across the classes. All

115

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

115115115115115

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

115115

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

115

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

participants (i.e. Point and Line) have to know about their role in the pattern and

consequently have pattern code within them.

getX

getY

getColor

addObserver

removeObserver

notify

setX

setY

setColor

Point

getP1

getP2

getColor

addObserver

removeObserver

notify

setP1

setP2

setColor

Line

FigureElementFigure 1 *

update

Display

Screen

update

<<interface>>

Observer

addObserver

removeObserver

notify

<<interface>>

Subject

getX

getY

getColor

addObserver

removeObserver

notify

setX

setY

setColor

Point

getX

getY

getColor

addObserver

removeObserver

notify

setX

setY

setColor

Point

getP1

getP2

getColor

addObserver

removeObserver

notify

setP1

setP2

setColor

Line

getP1

getP2

getColor

addObserver

removeObserver

notify

setP1

setP2

setColor

Line

FigureElementFigure 1 *

update

Display

Screen

update

Display

Screen

update

<<interface>>

Observer

update

<<interface>>

Observer

addObserver

removeObserver

notify

<<interface>>

Subject

addObserver

removeObserver

notify

<<interface>>

Subject

Figure 1. A simple graphical element that uses the Observer pattern in Java.

In this context, Hannemann and Kiczales have developed an AspectJ solution in which the

code for implementing the Observer pattern is textually localized in two aspects: an abstract

aspect, and one concrete extension of this aspect for each instance of the pattern. The abstract

Observer Protocol aspect implemented by Hannemann and Kiczales is shown in Figure

2. The roles are realized as protected inner interfaces named Subject and Observer (line 3-4).

Concrete extensions of the ObserverProtocol aspect assign the roles to particular classes.

Implementation of the mapping from Subjects to Observers is realized using a weak hash map

of linked lists to store the Observers for each Subject (line 6). Changes to the Subject-

Observer mapping can be realized via the public addObserver and removeObserver

methods (line 20-25) that concrete subaspects inherit. An abstract pointcut named

subjectChange (line 27) and an abstract update method updateObserver (line 29) are

defined. They are to be reified by instance-specific subaspects. Finally, the abstract aspect

implements the update logic in terms of the pointcut subjectChange and the method

updateObserver. This logic is contained in the after advice (line 31-36).

01 public abstract aspect ObserverProtocol {
02
03 protected interface Subject { }
04 protected interface Observer { }
05
06 private WeakHashMap perSubjectObservers;
07
08 protected List getObservers(Subject s) {
09 if (perSubjectObservers == null) {
10 perSubjectObservers = new WeakHashMap();
11 }
12 List observers =

(List)perSubjectObservers.get(s);
13 if (observers == null) {
14 observers = new LinkedList();
15 perSubjectObservers.put(s, observers);
16 }
17 return observers;
18 }
19

20 public void addObserver(Subject s,
Observer o) {

21 getObservers(s).add(o);
22 }
23 public void removeObserver(Subject s,

Observer o) {
24 getObservers(s).remove(o);
25 }
26
27 abstract protected pointcut

subjectChange(Subject s);
28
29 abstract protected void

updateObserver(Subject s, Observer o);
30
31 after(Subject s): subjectChange(s) {
32 Iterator iter = getObservers(s).iterator();
33 while (iter.hasNext()) {
34 updateObserver(s,((Observer)iter.next()));
35 }
36 }
37 }

Figure 2. The ObserverProtocol Aspect.

Each concrete subaspect of ObserverProtocol defines one particular kind of observing

relationship, in other words a single pattern instance. Figure 3 shows an instance of the

Observer pattern involving the classes Point, Line and Screen implemented by the aspect

ColorObserver. This subaspect defines that the classes Point and Line play the role of

116

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

116116116116116

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

116116

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

116

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Subject, and Screen plays the role of Observer. This is done using the declare parents

inter-type declaration construct, which adds interfaces to the classes, to assign the roles

defined in the abstract aspect (line 3-5). The subaspect also concretizes the subjectChange

pointcut to define the operations on the subject that require updating the Observers (line 7-

10). Furthermore, it defines how to update the observers by concretizing the

updateObserver method (line 12-14). As we can see, in the AspectJ version of the

Observer pattern, all code pertaining to the relationship between Observers and Subjects is

moved into aspects. In this way, code for implementing the pattern is textually localized in

aspects, instead of being spread across the participant classes. Moreover, the abstract aspect

code can be reused by all pattern instances.

01 public aspect ColorObserver
extends ObserverProtocol {

02
03 declare parents: Point implements Subject;
04 declare parents: Line implements Subject;
05 declare parents: Screen implements Observer;
06
07 protected pointcut subjectChange(Subject s):
08 (call(void Point.setColor(Color)) ||
09 call(void Line.setColor(Color))) &&
10 target(s);
11
12 protected void updateObserver(Subject s,

Observer o) {
13 ((Screen)o).display("Color change.");
14 }
15 }

Figure 3. An Observer instance.

3.3. The Assessed Patterns and Introduced Changes

Hannemann and Kiczales grouped the 23 GoF patterns by common features, either of the

pattern structures or their AspectJ implementations. They have identified six groups based on

their structural similarities. The groups are: (1) Observer, Mediator, Chain of Responsibility,

Composite and Command, (2) Singleton, Prototype, Memento, Iterator and Flyweight, (3)

Adapter, Decorator, Strategy, Visitor and Proxy, (4) Abstract Factory, Factory Method,

Template Method, Builder, Bridge, (5) State and Interpreter, and (6) Façade.

In our study, we have decided to assess the implementation of six of the GoF patterns in order

to have representative examples of each group. However, we have excluded the Façade

pattern, since there is no difference between Java and AspectJ implementations of this pattern.

Thus, we have chosen the following patterns: Observer, Mediator, Prototype, Strategy, State

and Abstract Factory.

We have applied a metrics suite [16, 17] (Section 3.4) to both Java and AspectJ code of these

six design patterns. First, we applied the metrics in Hannemann and Kiczales original code.

Afterwards, we changed their implementation to add new participant classes to play pattern

roles. For instance, in the Observer pattern implementation, four classes playing the “Subject”

role were added, as the Point class in Figure 1 (Section 3.2); furthermore, four classes

playing the “Observer” role were added, as the Line class in Figure 1 (Section 3.2). These

changes were introduced because Hannemann and Kiczales’ implementation encompasses

few classes per role (in most cases only one). Hence we have decided to add more participant

classes in order to investigate the pattern crosscutting structure. Finally, we have applied the

chosen metrics to the changed code. We analyzed the results after the changes, comparing

with the results gathered from the original code (i.e. before the changes). Table 1 presents the

roles of each studied pattern and the participant classes introduced to each pattern

implementation example.

117

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

117117117117117

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

117117

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

117

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Table 1. The Selected Design Patterns and Respective Changes.

Selected Patterns Pattern Roles Introduced Participant Classes

Observer Subject and Observer 4 Subject classes and 4 Observer classes

Mediator Colleague and Mediator 4 Colleague classes

Prototype Prototype 4 Prototype classes

Strategy Context and Strategy 4 Context classes

State Context and State 2 State classes

Abstract Factory Product and Factory 2 Factory classes

3.4. The Metrics

In our study, a suite of metrics for separation of concerns, coupling, cohesion and size [16,

17] was selected to evaluate Hannemann and Kiczales’ pattern implementations. These

metrics have already been used in a significant number of other studies [6, 7]. Some of them

have been automated in the context of a query-based tool for aspect understanding

measurement and analysis [1]. This metric suite was defined based on the reuse and

refinement of some classical and object-oriented metrics [3, 4]. Some of the object-oriented

metrics [3] were tailored to be also applicable to aspect-oriented software. The original

definition of each metric was extended to be applied in a paradigm-independent way,

supporting the generation of comparable results.

The metrics suite also encompasses new metrics for measuring separation of concerns. The

separation of concerns metrics measure the degree to which a single concern in the system

maps to the design components (classes and aspects), operations (methods and advices), and

lines of code. Table 2 presents a brief definition of each metric, and associates them with the

attributes measured by each one. Table 2 also presents the sources for the metrics which the

aspect-oriented metrics are based on. Refer to [6, 16, 17] for further details about the metrics.

In order to better understand the separation of concerns metrics, consider the example of the

Observer pattern, shown in Figure 1 (Section 3.2). In that example, there is code related to the

“Subject” role in the Subject interface and in the shadowed methods of Point class and

Line class, i.e., this concern is implemented by one interface and two classes. Therefore, the

value of the Concern Diffusion over Components metric (CDC) for this concern is three.

Similarly, the value of the Concern Diffusion over Operations metric (CDO) for the “Subject”

role is 13, since this concern is implemented by the three methods of the Subject interface,

the five shadowed methods of the Point class, and the five shadowed methods of the Line

class.

4. Results: Separation of Concerns

This section and Section 5 present the results of the measurement process. The data have been

collected based on the set of defined metrics (Section 3.4). The goal is to describe the results

through the application of the metrics before and after the selected changes (Section 3.3). The

data was partially gathered by the CASE tool Together 6.0. It supports some metrics: LOC,

NOA, WOC (WMPC2 in Together), CBC (CBO in Together), LCOO (LOCOM1 in

Together) and DIT (DOIH in Together). Due to space limitation, this paper focuses on the

description of the more relevant results. The complete description of the data gathered is

reported elsewhere [16].

The analysis is broken into two parts. This section focuses on the analysis of to what extent

the aspect-oriented (AO) and object-oriented (OO) solutions provide support for the

separation of pattern-related concerns. Section 5 presents the results regarding to coupling,

cohesion, and size. The discussion about the interplay among all the results is concentrated in

118

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

118118118118118

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

118118

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

118

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Section 6. Graphics are used to represent the data gathered in the measurement process. The

resulting graphics present the gathered data before and after the changes applied to the pattern

implementation (Section 3.3). The graphic Y-axis presents the absolute values gathered by the

metrics. Each pair of bars is attached to a percentage value, which represents the difference

between the AO and OO results. A positive percentage means that the AO implementation

was superior, while a negative percentage means that the AO implementation was inferior.

These graphics support an analysis of how the introduction of new classes and aspects affect

both solutions with respect to the selected metrics. The results shown in the graphics were

gathered according to the pattern point of view; that is, they represent the tally of metric

values associated with all the classes and aspects for each pattern implementation.

For separation of concerns, we have verified the separation of each role of the patterns on the

basis of the three separation of concerns metrics (Section 3.4). For example, the isolation of

the roles “Mediator” and “Colleague” was analyzed in the implementations of the Mediator

pattern, while the modularization of the roles “Context” and “State” was investigated in the

implementations of the State pattern. Likewise Hannemann and Kiczales, we treated each

pattern role as a concern, because the roles are the primary sources of crosscutting structures.

The pattern roles crosscut participant classes. The investigated patterns are classified into two

groups: Group 1 and Group 2. Group 1 represents the patterns whose aspect-oriented solution

provided better results (Section 4.1). Group 2 represents the patterns whose either the use of

aspects did not impact the results or the OO solutions have shown as superior (Section 4.2).

4.1. Group 1: Observer, Mediator, Strategy and Prototype

The first group includes the Observer, Mediator, Strategy and Prototype patterns. All the

aspect-oriented implementations of these patterns exhibited improved separation of concerns.

Figures 4 and 5 depict the overall results of the AO and OO solutions for all the separation of

Table 2. The Metrics Suite.

Metrics Definition Based on

Concern Diffusion over

Components (CDC)

Counts the number of classes and aspects whose main

purpose is to contribute to the implementation of a

concern and the number of other classes and aspects

that access them.

-

Concern Diffusion over

Operations (CDO)

Counts the number of methods and advices whose

main purpose is to contribute to the implementation of

a concern and the number of other methods and

advices that access them.

-

S
ep

a
ra

ti
o

n
o

f
C

o
n

ce
rn

s

Concern Diffusions over

LOC (CDLOC)

Counts the number of transition points for each

concern through the lines of code. Transition points are

points in the code where there is “concern switch”.

-

Coupling Between

Components (CBC)

Counts the number of other classes and aspects to

which a class or an aspect is coupled. Chidamber[3]

C
o

u
p

li
n

g

Depth of Inheritance Tree

(DIT)

Counts how far down in the inheritance hierarchy a

class or aspect is declared. Chidamber[3]

C
o

h
es

io
n

Lack of Cohesion in

Operations (LCOO)

Measures the lack of cohesion of a class or an aspect in

terms of the amount of method and advice pairs that do

not access the same instance variable. Chidamber[3]

Lines of Code (LOC) Counts the lines of code. Fenton [4]

Number of Attributes (NOA) Counts the number of attributes of each class or aspect. Fenton [4]

S
iz

e

Weighted Operations per

Component (WOC)

Counts the number of methods and advices of each

class or aspect and the number of its parameters.
Chidamber[3]

119

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

119119119119119

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

119119

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

119

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

concerns metrics. Note that the graphics present the measures before and after the execution

of the changes (Section 3.3). Figure 4 presents the CDC results, i.e. to what extent the pattern

roles are isolated through the system components in both solutions. Figure 5a presents the

CDO results – the separation degree of the pattern roles through the system operations – and

Figure 5b illustrates the CDLOC results – the tally of concern switches (transition points)

through the lines of code. In fact, all these graphics show significant differences in favor of

the aspect-based solution. The improvement comes primarily from isolating the roles of the

patterns in the aspects.

0

1

2

3

4

5

6

7

8

9

10

Observer Subject Mediator Colleague Context Strategy Prototype

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

ts

Before After Before After Before After Before After Before After Before After Before After

Observer

Pattern

Mediator

Pattern

Strategy

Pattern

Prototype

Pattern

-50%

+33%

-20%

+37%

0% 0% 0%

+57%

-33%

+50%

-20% -40%

-22%

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

ts

-20%

AO

OO

Figure 4. Concern Diffusion over Components (Group 1).

In general, the use of aspects led to inferior results before the application of the changes, but

led to substantially superior outcomes after the implemented changes. After a careful analysis

of Figures 4 and 5, we come to the conclusion that after the changes most aspect-oriented

implementations isolated the roles 30% more than the object-oriented implementations. There

are some cases where the difference is even bigger - the superiority of aspects exceeds 60%,

an interesting fact given that in these cases the values were equivalent in both object-oriented

and aspect-oriented solutions before the implementation of the changes. For the “Subject” and

“Colleague” roles (Figure 5), the aspect-oriented solutions are even better before of

incorporation of new components. This problem happens in the OO solution because several

operation implementations are intermingled with role-specific code. For example, the code

associated with the event handling mechanism (Observer pattern) is amalgamated with the

basic functionality of the application classes. It increases the number of transition points and

the number of components and operations that deal with pattern-specific concerns.

After the changes, the majority of the pattern roles required more components in the

definition of the OO solution than in the AO solution (Figure 4). For example, the definition

of the “Colleague” role required 7 classes, while only 3 aspects were able to encapsulate this

concern. It is equivalent to 57% in favor of the aspect-oriented design for the Mediator

pattern. In fact, most roles were better modularized in the AO solution: Observer (2 against

4), Subject (5 against 8), Context (3 against 6), and Colleague (3 against 7). The results were

similar to the separation of concerns over operations (Figure 5a) and lines of code (Figure 5b).

An additional interesting observation is that the absolute number of components (CDC),

operations (CDO) and transition points (CDLOC) in the aspect-oriented solutions did not vary

after the modifications, except for the Prototype role. For example, the Context role required

three components before the changes and the same three components after the changes

(Figure 4). The same behavior is observed in the measures of operations and transition points

(Figure 5). For the Context role, 3 operations and 8 transition points were used both before

120

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

120120120120120

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

120120

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

120

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

and after the modifications. This reflects the suitability of aspects for the complete separation

of the roles associated with the four patterns in this category. When new classes are

introduced, they do not need to implement pattern-related code. The problem with the

Prototype role is that the declaration of the implementation of the Cloneable interface (that

is a pattern-specific concern) is amalgamated to the implementation of business classes in the

AO solution. However, this problem is not implicit to the use of aspects, but the specific

implementation of Hannemmann and Kiczales [9] (Section 3.1).

The results also show that the overall performance of the aspect-oriented solutions gradually

improves as new components are introduced into the system. It means that as more

components are included into the object-oriented system, more role-related code is replicated

through the system components. Thus a gradual improvement takes place in the aspect-

oriented solutions of the patterns. The series of small introduced changes (Section 3.3) affects

negatively the performance of the OO solution and positively the AO solution. The changes

lead to the degradation of the OO modularization of the pattern-related concerns. This

observation provides evidence of the effectiveness of aspect-oriented abstractions for

segregating crosscutting structures.

4.2. Group 2: State and Abstract Factory

This group includes the State and Abstract Factory patterns. Figures 6 and 7 depict the overall

results of separation of concerns in the AO and OO solutions for the patterns in this group.

Figure 6 presents the CDC results, Figure 7a presents the CDO results, and Figure 7b

illustrates the CDLOC results. Overall, no significant difference was detected in favor of a

specific solution; the results were mostly similar for the aspect-oriented and OO

implementations of these patterns. This observation is mainly supported by CDO (Figure 7a)

and CDLOC (Figure 7b). As those roles are already nicely realized in OO, these patterns

could not be given more modularized aspect-oriented implementations. Thus the use of

aspects does not bring apparent gains to these pattern implementations regarding to separation

of concerns.

The outcomes of this group were highly different from the ones obtained in group 1 (Section

4.1) because the OO implementation of the patterns here do not imply in a significant

crosscutting structure. The role-related code in these patterns affects a very small number of

methods and classes.

0

2

4

6

8

10

12

14

16

18

20

Observer Subject Mediator Colleague Context Strategy Prototype

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

Before After Before After Before After Before After Before After Before After Before After

Observer
Pattern

Mediator
Pattern

Strategy
Pattern

Prototype
Pattern

-50%

+33%

+67%

+88%

0% 0%
0%

+66%

-50%

+33%

+25%

-40%

+29%

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

+25%

AO

OO

50

43

0

5

10

15

20

25

30

35

40

Observer Subject Mediator Colleague Context Strategy Prototype

N
u

m
b

e
r

o
f

T
ra

n
s
it

io
n

P
o

in
ts

Before After Before After Before After Before After Before After Before After Before After

Observer

Pattern

Mediator

Pattern

Strategy

Pattern

Prototype

Pattern

-40%

+54%

+86%

0% 0%

+50%

+83%

0%

+66%

-50%

-40%

+29%

N
u

m
b

e
r

o
f

T
ra

n
s
it

io
n

P
o

in
ts

-50%

AO

OO

80

70

+54%

Observer Subject Mediator Colleague Context Strategy Prototype

(a) Concern Diffusion over Operations (b) Concern Diffusion over Lines of Code

Figure 5. Separation of Concerns over Operations and Lines of Code (Group 1).

121

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

121121121121121

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

121121

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

121

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

0

1

2

3

4

5

6

7

8

9

Context State Factory Product

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

ts
Before After

State

Pattern

Abstract Factory

Pattern

+33%

-20%

-14%

-17%

0%

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

ts AO

OO

+33%

-12%

0%

Before After Before After Before After

Figure 6. Concern Diffusion over Components (Group 2).

There were some differences detected in the evaluation of the solutions, such as in the State

pattern. The aspect-oriented design of the State role presented inferior results in the CDC

measures; it required 20% more components than the OO solution before the changes, and

14% more components after the changes (Figure 6). The reason for this difference is that the

AO solution has an additional aspect for modularizing the transition of states. On the other

hand, the OO design of the Context role involved 33% more components than the AO design

before as well as after the changes. The object-oriented solution has an interface, which

defines a method to support the state transition; the aspect-oriented implementation does not

require this interface.

The sole difference observed in the Abstract Factory pattern was related to the number of

components used to modularize the Factory role. This role was more localized in the OO

design, although the difference consists of only one component when compared with the AO

design (Figure 6). The aspect-based design has one additional aspect that provides a default

implementation of the factory methods defined in the AbstractFactory interface, which is

attached to this interface on the basis of inter-type declarations [9].

5. Results: Coupling, Cohesion and Size

This section presents the coupling, cohesion and size measures. We used graphics to present

the data obtained before and after the systematic changes (Section 3.3), similarly to the

previous section. The results represent the tally of metric values associated with all the classes

0

2

4

6

8

10

12

14

16

18

Context State Factory Product

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

Before After

State
Pattern

Abstract Factory
Pattern

+12%

0% 0%

0%

0%

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

AO

OO
+8%

0%

Before After Before After Before After

0%

0

2

4

6

8

10

12

14

16

18

20

Context State Factory Product

N
u

m
b

e
r

o
f

T
ra

n
s

it
io

n
P

o
in

ts

Before After

State
Pattern

Abstract Factory
Pattern0%

0%

0%N
u

m
b

e
r

o
f

T
ra

n
s

it
io

n
P

o
in

ts AO

OO

0%

Before After Before After Before After

0% 0%

0%

0%

(a) Concern Diffusion over Operations (b) Concern Diffusion over Lines of Code

Figure 7. Separation of Concerns over Operations and Lines of Code (Group 2).

122

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

122122122122122

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

122122

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

122

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

and aspects for each pattern implementation. The patterns were classified into 4 groups

according to the similarity in their measures.

5.1. Group 1: Observer and Mediator

For the Observer and Mediator patterns, the aspect-oriented design and implementation

manifest several closely related benefits. As the changes were accomplished, the aspect-

oriented solution exhibited superior results with respect to operation complexity (WOC), lines

of code (LOC), number of attributes (NOA), cohesion (LCOO) and inter-component coupling

(CBC). The differences were mostly more than 10% in favor of the aspect-oriented solution

for both design patterns.

Figure 8 shows the graphic with results for the Observer pattern. In the aspect-oriented

implementation of this pattern, the major improvements were detected in the LOC, LCOO and

NOA measures. The use of aspects led to a 27% reduction of LOC in relation to the OO code.

Thus aspects solve the problem of code replication (Section 3.2) related to the

implementations of the method notifyObservers(). The cohesion in the AO

implementation was 62% higher than the OO implementation because the latter incorporates a

number of classes that play the Subject and Observer roles and, as a consequence, implement

role-specific methods that in turn do not access the attributes of the classes. In the aspect-

oriented design, these methods are localized in the aspects that implement the roles,

increasing the cohesion of both classes and aspects. The tally of attributes in the OO

implementation was respectively 17% and 19% higher than in the AO code before and after

the introduction of new components into the implementations. In the OO solution, the

“subject” classes need attributes to hold references to their “observer” classes; these attributes

are not required in the aspect-oriented design.

0

5

10

15

20

25

30

35

40

45

CBC DIT NOA

0

50

100

150

200

250

300

350

400

LOC LCOO WOC

Before After Before After Before After Before After Before After Before After

0% 0%

-19%

+11%+11%

+19%+19%

-7%

+27%+27%

-76%-76%
+62%+62%

-19%-19%

+13%

AO

OO

+17%

Figure 8. The Observer Pattern: Coupling, Cohesion and Size.

5.2. Group 2: Prototype and Strategy

The measures gathered from implementations of the Prototype and Strategy patterns were

mostly similar. In general, the OO implementation provided better results, mainly with

respect to coupling between components (CBC), complexity of operations (WOC), and lines

of code (LOC). Figure 9 shows the results for the Strategy pattern. Note that inheritance was

the only factor that was not affected by the use of aspects. In the OO solution, class

inheritance is used to implement the variability of the strategies [5]; in the AO solution, aspect

inheritance is used to define a specific strategy protocol [9]. As a result, the maximum DIT

was two for both solutions.

123

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

123123123123123

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

123123

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

123

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

0

2

4

6

8

10

12

14

16

18

20

CBC DIT NOA

Before After

-40%

0

20

40

60

80

100

120

140

160

LOC WOC

AO

OO

Before After Before After
Before After Before After

-22%

0% 0%

-19%

-19%

-19%
-3%

Figure 9. The Strategy Pattern: Coupling, Cohesion and Size.

The system coupling was substantially higher in the aspect-oriented solution. For example,

the difference between the solutions was 4 units in favor of the OO design of the Strategy

pattern. As new components were added to both designs, the difference remained constant

(Figure 9). It happens because the aspects, which implement the pattern roles, are coupled to

the business classes. The coupling of the business classes introduced into the AO

implementation is zero since they are not aware of the presence of aspects. However, the

coupling of the aspect, which implements the strategy protocol, increases linearly. Table 3

illustrates this problem: the coupling of the SortingStrategy aspect is 7, while the

coupling of the SortingStrategy class is 0. This table also shows that LOC was higher in

the aspect-oriented solution. The aspects require more lines of code as the changes are carried

out. For example, the SortingStrategy aspect has 17 LOC, while the SortingStrategy

class has 4 LOC. Cohesion is not a valid metric for both patterns because most classes and

aspects do not have internal attributes. The differences in the NOA measures are not

significant (Figure 9). In both patterns, WOC measures decreases as the changes are

implemented. However, the OO implementation remains superior.

Table 3. The Strategy Pattern: Measures Per Component.
Object-Oriented Solution

Class CBC DIT LOC NOA WOC Class(C)-Aspect(A) CBC DIT LOC NOA WOC

BubbleSort 1 2 18 0 6 BubbleSort (C) 1 1 18 0 6

LinearSort 1 2 21 0 6 LinearSort (C) 1 1 21 0 6

Main 6 1 27 0 2 Main (C) 8 1 42 0 4

Sorter 2 1 17 0 5 Sorter (C) 0 1 6 0 2

Sorter1 1 1 6 0 3 Sorter1 (C) 0 1 6 0 2

Sorter2 1 1 6 0 3 Sorter2 (C) 0 1 6 0 2

Sorter3 1 1 6 0 3 Sorter3 (C) 0 1 6 0 2

Sorter4 1 1 6 0 3 Sorter4 (C) 0 1 6 0 2

SortingStrategy 0 1 4 0 2 SortingStrategy (A) 7 2 17 0 3

StrategyProtocol (A) 1 1 9 1 5

TOTAL 14 2 111 0 33 TOTAL 18 2 137 1 34

Aspect-Oriented Solution

5.3. Group 3: State

The aspect-oriented implementation of the State pattern was superior in three measures:

coupling, cohesion and complexity of operations (Figure 10). On the other hand, the OO

implementation provided better results in two measures: number of attributes and lines of

code. The coupling in the OO solution is higher than in the AO solution because the classes

representing the states are highly coupled to each other; this problem is overcame in the

aspect-oriented solution because the aspects modularize the state transitions (Figure 11),

minimizing the system-level coupling. Figure 11 shows that the coupling in the OO solution

is seven because each “state” class needs to have references to the other “state” classes.

The OO solution produced more complex operations (WOC measures) because all the

methods on the “state” classes have an additional parameter to receive the “context” object in

124

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

124124124124124

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

124124

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

124

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

order to implement the state transition; it is not required in the aspect-oriented design because

a unique aspect is responsible for managing the transitions between states.

0

2

4

6

8

10

12

14

16

CBC DIT NOA

0

50

100

150

200

250

300

350

LOC LCOO WOC

Before After

+11%

AO

OO

Before After Before After Before After

+33%

0% 0%

-7%

-7%

+14%
+26%

Before After Before After

-33%

-38%

+27%

Figure 10. The State Pattern: Coupling, Cohesion and Size.

From the NOA metric point of view, the OO implementation was superior because the aspect-

oriented implementation has additional attributes in the aspects to hold references to the

“state” elements. This difference increases as new “state” elements are added to the system

(Figure 11). The OO implementation provided fewer LOCs in spite of the “state” classes have

fewer lines of code. However, the aspect, which manages the state transitions, has a high

number of LOCs since: (i) it holds references to all the “state” classes, and (ii) one additional

advice associated with methods of “state” classes.

<<ConcreteState>>

QueueEmpty

<<ConcreteState>>

QueueNormal

<<ConcreteState>>

QueueFull

<<Context>>

Queue
<<ConcreteState>>

QueueEmpty

<<ConcreteState>>

QueueNormal

<<ConcreteState>>

QueueFull

<<Context>>

Queue

QueueStateAspect

State Transition

Pointcuts

Dependence due to State Transition

LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

<<ConcreteState>>

QueueEmpty

<<ConcreteState>>

QueueNormal

<<ConcreteState>>

QueueFull

<<Context>>

Queue

<<ConcreteState>>

QueueEmpty

<<ConcreteState>>

QueueNormal

<<ConcreteState>>

QueueFull

<<Context>>

Queue
<<ConcreteState>>

QueueEmpty

<<ConcreteState>>

QueueNormal

<<ConcreteState>>

QueueFull

<<Context>>

Queue

QueueStateAspect

State Transition

Pointcuts<<ConcreteState>>

QueueEmpty

<<ConcreteState>>

QueueNormal

<<ConcreteState>>

QueueFull

<<Context>>

Queue

QueueStateAspect

State Transition

Pointcuts

Dependence due to State Transition

LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

Figure 11. Coupling in the State Pattern: OO vs. AO.

5.4. Group 4: Abstract Factory

No significant difference was detected in the AO and OO implementations of the Abstract

Factory pattern. As illustrated in Figure 12, the measures were similar with respect to

cohesion (LCOO), inheritance (DIT), number of attributes (NOA), and complexity of

operations (WOC). The differences detected in LOC and coupling measures are not

significant. The reason for such results is that the OO and AO designs are very similar. The

difference relies on an aspect that introduces default behavior to the methods of the interface

that plays the Abstract Factory role [9].

6. Discussion

This section provides a more general analysis (Section 6.1) of the previously observed results

in Sections 4 and 5, and discussions about the constraints on the validity of our empirical

evaluation (Section 6.2).

125

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

125125125125125

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

125125

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

125

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

0

1

2

3

4

5

6

7

8

LCOO DIT NOA

0

25

50

75

100

125

150

175

200

225

LOC CBC WOC

0% 0%

0% 0%

0%

0%

-3%

-2%

-4% -3% 0% 0%

AO

OO

Figure 12. The Abstract Factory Pattern: Coupling, Cohesion and Size.

6.1. General Analysis

Separation of Concerns. As presented in Section 4.1, the AspectJ implementations of the

Observer, Mediator, Prototype and Strategy patterns have shown better results in terms of the

metrics of separation of concerns. Indeed, these results have confirmed that their AspectJ

implementations manifest modularity improvements, which in turn was also observed by

Hannemann and Kiczales in terms of locality, transparency composability and

(un)pluggability. In addition, the results about the Abstract Factory pattern (Section 4.2)

support Hannemann and Kiczales’ claims that this pattern did not benefit from AspectJ

implementation. However, AspectJ implementation of the State pattern has not shown

relevant separation of concern improvements, which contradicts some Hannemann and

Kiczales’ claims about this pattern.

Inseparable Concerns. Sometimes the pattern is expressed separately as an aspect, but it

remains non-trivial to specify how this separate aspect should be recombined into a simple

manner. A lot of effort is required to compose the participant classes and the aspects that

modularize the pattern roles. For example, the aspect-oriented implementation of the Strategy

pattern provided better separation of the pattern-related concerns (Section 4.1). However,

although the aspect-oriented solution isolates the pattern roles in the aspects, it resulted in

higher complexity in terms of coupling (CBC), operation complexity (WOC), and lines of

code (LOC), as described in Section 5.2. In this context, there are some cases where the

separation of the pattern-related concerns lead to more complex solutions.

Reducing Coupling. Based on the interplay of the results in Section 4 and 5, we can conclude

that the use of aspects provided better results for the patterns with high interaction between

the roles in their original definition. The Mediator, Observer, State patterns are examples of

this kind of patterns. The Mediator pattern, for instance, exhibits high inter-role interaction:

each “Colleague” collaborates with the “Mediator”, which in turn collaborates with all the

“Colleagues”. The use of aspects was useful to reduce the coupling between the participants

in the pattern, since the aspect code modularizes the collaboration protocol between the

pattern roles. Figure 11 illustrates how the aspect was used to reduce the coupling of the OO

solution of the State pattern. In fact, the use of aspects did not succeed in the patterns whose

roles are not highly interactive. This is the case for the Abstract Factory, Prototype and

Strategy patterns (Sections 5.2 and 5.4).

Multi-Dimensional Analysis. Hannemann and Kiczales [9] have centered their analysis only

on separation of concerns, and how the achieved separation helps to improve high-level

qualities of the pattern and the application, such as (un)pluggability and composability. Lopes

[15] has also carried out a case study that rests only on separation of concerns as assessment

criteria. However, based on the discussion above, we found that the analysis of other software

dimensions or attributes, such as coupling and internal complexity of operations, are

126

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

126126126126126

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

126126

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

126

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

extremely important to compare aspect-oriented and object-oriented designs. In fact, the

interaction between the aspects and the classes is sometimes so intense that the separation of

aspects in the source code seems to be a more complex solution in terms of other software

attributes.

Refactoring Aspect-Oriented Solutions. Based on the measurements, we have found that some

problems in the aspect-oriented solutions are not related to the aspect paradigm itself, but to

some design or implementation decisions taken in the Hannemmann and Kiczales

implementation (Section 3.1). For example, the problem related to the aspect-oriented

solution for the Prototype pattern occurred because the developers have left the declaration of

the Cloneable interface in the description of the classes (Section 4.1). However, this solution

can be refactored in order to improve the separation of concerns, overcoming the problem

detected in Section 4.1. In this sense, we can conclude that quantitative assessments based on

well-known software attributes, as performed in this study, are also useful to capture

opportunities for refactoring in aspect-oriented software.

6.2. Study Constraints

Concerning our experimental assessment, there is one general type of criticism that could be

applied to the used software metrics (Section 3.4). This refers to theoretical arguments leveled

at the use of conventional size metrics (e.g. LOC), as they are applied to traditional (non-AO

software) development. However, in spite of the well-known limitations of these metrics we

have learned that their application cannot be analyzed in isolation and they have shown

themselves to be extremely useful when analyzed in conjunction with the other used metrics.

In addition, some researchers (such as Henderson-Sellers [10]) have criticized the cohesion

metric as being without solid theoretical bases and lacking empirical validation. However, we

understand this issue as a general research problem in terms of cohesion metrics. In the future,

we intend to use another emerging cohesion metrics based on program dynamics.

The limited size and complexity of the examples used in the implementations may restrict the

extrapolation of our results. However, while the results may not be directly generalized to

professional developers and real-world systems, these representative examples allow us to

make useful initial assessments of whether the use of aspects for the modularization of

classical design patterns would be worth studying further. In spite of its limitations, the study

constitutes an important initial empirical work and is complementary to a qualitative work

(e.g. [9]) performed previously. In addition, although the replication is often desirable in

experimental studies, it is not a major problem in the context of our study due to the nature of

our investigation. Design patterns are generic solutions and, as a consequence, exhibit similar

structures across the different kinds of applications where they are used.

7. Related Work

There is a few related work focusing either on the quantitative assessment of aspect-oriented

solutions in general, or on the empirical investigation of using aspects to modularize

crosscutting concerns of classical design patterns. Up to now, most empirical studies

involving aspects rest on subjective criteria and qualitative investigation. One of the first case

studies was conducted by Kersten and Murphy [12]. They have built a web-based learning

system using AspectJ. In this study, they have discussed the effect of aspects on their object-

oriented practices and described some rules and policies they employed to achieve their goals

of modifiability and maintainability using aspects. Since several design patterns were used in

the design of the system, they have considered which of them should be expressed as classes

127

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

127127127127127

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

127127

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

127

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

and which should be expressed as aspects. They have found that Builder, Composite, Façade,

and Strategy patterns [5] were more easily expressed as classes, once these patterns were had

little or no crosscutting properties. We have found here a similar result for the Strategy pattern

(Section 5.2).

Soares et al [18] have reported their experience using AspectJ to implement distribution and

persistence aspects in a web-based information system. They have implemented the system in

Java and restructured it with AspectJ. They have argued that the AspectJ implementation of

the system bring significant advantages with the corresponding pure Java implementation.

Walker et al. [20] have conducted two exploratory experiments to study the increased

modularization provided by AspectJ. In these experiments, they have compared the

performance of a small number of participants working on two common programming tasks:

debugging and changing. However, these studies are qualitative assessments, which are not

focused on the use of aspects for modularizing pattern-related concerns.

Garcia et al. [7] have presented a quantitative study designed to compare the maintenance and

reuse support of a pattern-oriented approach and an aspect-oriented approach for a multi-

agent system development. They used an assessment framework that includes the same

metrics suite used in our study. The results have shown that, for the system at hand, the

aspect-oriented approach allowed the construction of this system with improved structuring

for reuse and maintenance of the multi-agent system concerns. The use of aspects resulted in

better separation of concerns, lower coupling between its components (although less

cohesive), and fewer lines of code. However, their study is also not focused on the use of

aspects to isolate the crosscutting concerns relative to classical design patterns.

8. Final Remarks and Future Work

This paper presented a comparative study comparing the aspect-oriented and object-oriented

implementations of a representative set of GoF patterns. The results have shown that most

aspect-oriented implementations provided improved separation of concerns. However, some

patterns resulted in higher coupled components, more complex comperations and more LOCs

in the aspect-oriented solutions. Another important conclusion of this study is that SoC can

not be taken as the only factor to conclude for the use of aspects. It must be analyzed in

conjunction with other important factors, including coupling, cohesion and size. Sometimes,

the separation achieved with aspects can generate more complicated designs. However, since

this is a first exploratory study, to further confirm the findings, other rigorous and controlled

experiments are needed.

It is important to notice that, from this experience, especially in a non-rigorous area such as

software engineering, general conclusions cannot be drawn. The scope of our experience is

indeed limited to (a) the patterns selected for this comparative study, (b) the specific

implementations from the GoF book [5] and Hannemann and Kiczales’ study [9], (c) the Java

and AspectJ programming language, and (d) a given subset of application scenarios that were

taken from our development background. However, the goal was to provide some evidence

for a more general discussion of what benefits and dangers the use of aspect-oriented

abstractions might create, as well as what and when features of the aspect-oriented paradigm

might be useful for the modularization of classical design patterns. Finally, it should also be

noted that properties such as reliability and understandability must be also examined before

one could establish preference recommendations of one approach relative to the other. We are

planning now to perform a quantitative assessment of the combined use of design patterns in

the development of different application contexts; this paper focused on the separate

assessment of each design pattern.

128

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

128128128128128

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

128128

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

128

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Acknowledgements. We would like to thank Jan Hannemann and Gregor Kiczales for

making the pattern implementations available. This work has been partially supported by

CNPq under grant No. 140214/2004-6 for Cláudio, and under grant No. 140252/2003-7 for

Uirá. Alessandro was supported by FAPERJ under grant No. E-26/150.699/2002. The authors

are also supported by ESSMA Project under grant 552068/2002-0 and by the art. 1st of

Decree number 3.800, of 04.20.2001.

References

1. Alencar, P. et al. “A Query-Based Approach for Aspect Measurement and Analysis”. TR

CS-2004-13, School of Computer Science, Univ. of Waterloo, Canada, February 2004

2. AspectJ Team. “The AspectJ Programming Guide”. http://eclipse.org/aspectj/.

3. Chidamber, S., Kemerer, C. “A Metrics Suite for Object Oriented Design”. IEEE

Transactions on Software Engineering, 20 (6), June 1994, pp. 476-493.

4. Fenton, N., Pfleeger, S. “Software Metrics: A Rigorous Practical Approach”. London:

PWS, 1997.

5. Gamma, E. et al. “Design Patterns: Elements of Reusable Object-Oriented Software”.

Addison-Wesley, Reading, 1995.

6. Garcia, A. “From Objects to Agents: An Aspect-Oriented Approach”. Doctoral Thesis,

PUC-Rio, Computer Science Department, Rio de Janeiro, Brazil, April 2004.

7. Garcia, A. et al. “Separation of Concerns in Multi-Agent Systems: An Empirical Study”.

In Software Engineering for Multi-Agent Systems II, Springer, LNCS 2940, January

2004.

8. Garcia, A., Silva, V., Chavez, C., Lucena, C. “Engineering Multi-Agent Systems with

Aspects and Patterns”. J. of the Brazilian Computer Society, 1 (8), July 2002, pp 57-72.

9. Hannemann, J., Kiczales, G. “Design Pattern Implementation in Java and AspectJ”.

Proceedings of OOPSLA’02, November 2002, pp. 161-173.

10. Henderson-Sellers, B. “Object-Oriented Metrics: Measures of Complexity”. Prentice Hall,

1996.

11. Java Reference Documentation. http://java.sun.com/reference/docs/index.html.

12. Kersten, A., Murphy, G. “Atlas: A Case Study in Building a Web-based learning

environment using aspect-oriented programming”. Proc. of OOPSLA’99, November

1999.

13. Kiczales, G. et al. “Aspect-Oriented Programming”. Proceedings of ECOOP’97, LNCS

(1241), Springer-Verlag, Finland, June 1997, pp. 220-242.

14. Lippert, M., Lopes, C. “A Study on Exception Detection and Handling Using Aspect-

Oriented Programming.” Proc. ICSE’00, Limerick, Ireland, May 2000, pp. 418 - 427.

15. Lopes, C. “D: A Language Framework for Distributed Programming”. PhD Thesis,

Northeastern University, 1997.

16. Sant’Anna, C. “Maintainability and Reusability of Aspect-Oriented Software: An

Assessment Framework”. Masters Thesis, PUC-Rio, March 2004 (in Portuguese).

17. Sant’Anna, C. et al. “On the Reuse and Maintenance of Aspect-Oriented Software: An

Assessment Framework”. Proc. of SBES’03, Manaus, Brazil, October 2003, pp. 19-34.

18. Soares, S., Laureano, E., Borba, P. “Implementing Distribution and Persistence Aspects

with AspectJ”. Proceedings of the OOPSLA’02, pp. 174-190.

19. Tarr, P. et al. “N Degrees of Separation: Multi-Dimensional Separation of Concerns”.

Proceedings ICSE’99, Los Angeles, USA, May 1999, pp. 107-119.

20. Walker, R., Baniassad, E., Murphy, G. “An Initial Assessment of Aspect-oriented

Programming”. Proceedings of ICSE’99, Los Angeles, USA, May 1999, pp. 120-130.

129

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

129129129129129

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

129129

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

129

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

