
Integrating Generative and Aspect-Oriented Technologies

Uirá Kulesza, Alessandro Garcia, Carlos Lucena, Arndt von Staa

Software Engineering Laboratory, SoC+Agents Group, Computer Science Department

Pontifícal Catholic University of Rio de Janeiro - PUC-Rio

e-mail: [uira, afgarcia, lucena, arndt]@inf.puc-rio.br

Abstract

Over the last years, two new software engineering approaches have been proposed: generative programming

and aspect-oriented software development. Generative programming addresses the study and definition of

methods and tools that enable the automatic production of system families from a high-level specification.

Aspect-oriented software development has been proposed as a technique for improving separation of concerns

in the construction of OO software and supporting improved reusability and ease of evolution. The use of

aspect-oriented techniques in a definition of a generative approach can bring benefits to the modeling and

generation of crosscutting features since early development stages. This paper presents our experience in the

definition of an aspect-oriented generative approach. The proposed approach explores the multi-agent systems

domain to enable the code generation of agent architectures.

1. Introduction

Over the last years, generative programming and aspect-oriented software development have been

proposed aiming at increasing maintainability and reusability of software systems. While several

research works have focused on the investigation of the individual use of each of these software

engineering approaches, less attention has been paid to the integration of these two techniques.

Generative Programming (GP) [8] has been proposed recently as an approach based on domain

engineering [21, 27, 28]. It addresses the study and definition of methods and tools to enable the

automatic production of software from a high-level specification. GP promotes the separation of

problem and solution spaces, giving flexibility to evolve both independently. Problem space models

concepts and features existent in a specific domain. Solution space consists of the components that

are used to build particular software systems. Code generators represent the configuration

knowledge in a generative model. They define how specific feature combinations in the problem

space are mapped to a set of software components in the solution space.

Aspect-Oriented Software Development (AOSD) [23, 33] is an evolving approach to modularize

crosscutting concerns that existing paradigms (e.g.: object-oriented) are not able to capture explicitly.

Crosscutting concerns are concerns that often crosscut several modules in a software system. AOSD

encourages modular descriptions of complex software by providing support for cleanly separating

the basic system functionality from its crosscutting concerns. Aspect is the abstraction used to

modularize the crosscutting concerns.

The use of aspect-oriented techniques in the definition of a generative approach can bring additional

benefits for the development of system families, such as: (i) clear separation of orthogonal and

crosscutting features in the problem and solution space; and (ii) direct mapping of crosscutting

features in aspects. Despite these advantages, we believe that the integration of GP and AOSD

techniques is not a trivial task. Interesting questions arise and need to be considered when

130

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

130130130130130

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

130130

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

130

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

developing an aspect-oriented generative approach, including: How to model crosscutting features in

the problem space? How to design aspect-oriented architectures that address the crosscuting and

non-crosscutting features modeled? Which technologies (domain-specific languages, frameworks)

are appropriate to implement these aspect-oriented generative approaches?

Recent work explored the use of GP and AOSD together [18, 26, 31]. However, these reports

neither cover nor describe in detail the typical phases (domain analysis, domain design and domain

implementation) found in the definition of a generative approach.

In this context, this paper describes systematically how we have developed an aspect-oriented

generative approach to the context of families of multi-agent systems. Following the guidelines

presented by Czarnecki and Eisenecker [8], we have organized the development of the generative

approach into three phases: (i) domain analysis; (ii) domain design; and (iii) domain implementation.

The use of aspect-oriented technologies required the adaptation of modeling notations used in

domain analysis and design, such as: (i) the extension of feature models to represent crosscutting

features; and (ii) the extension of a current aspect-oriented modeling notation [6] to represent

aspect-oriented architectures. In the domain implementation, we illustrate the use of different

mainstream technologies to implement the central components of a generative approach, such as: (i)

XML-Schema [34] to specify domain-specific languages; (ii) Java and AspectJ [9] programming

languages to implement the agent architecture and components; and (iii) Eclipse technologies [11,

30] to build the code generator.

The remainder of this paper is organized as follows. Section 2 introduces the basic concepts of

generative programming and aspect-oriented software development. Section 3 presents an overview

of our aspect-oriented generative approach and details the process of domain analysis and design.

Section 4 describes the steps to implement the generative approach. Section 5 synthesizes some of

the lessons learned during the definition of the aspect-oriented generative approach. Section 6

discusses some related work. Finally, section 7 provides some conclusions and directions for future

work.

2. Background

2.1 Generative Programming

Generative Programming (GP) [8] addresses the study and definition of methods and tools that

enable the automatic generation of software from a given high-level specification language. It has

been proposed as an approach based on domain engineering [21, 27, 28].

GP promotes the separation of problem and solution spaces, giving flexibility to evolve both

independently. To provide this separation, Czarnecki and Eisenecker [8] propose the concept of a

generative domain model. A generative domain model is composed of three basic elements: (i)

problem space – which represents the concepts and features existent in a specific domain; (ii)

solution space – which consists of the software architecture and components used to build members

of a software family; and (iii) configuration knowledge – which defines how specific feature

combinations in the problem space are mapped to a set of software components in the solution

space. GP advocates the implementation of the configuration knowledge by means of code

generators.

The fact that GP is based on domain engineering enables us to use domain engineering methods [1,

8] in the definition of a generative domain model. Common activities encountered in domain

engineering methods are: (i) domain analysis – which is concerned with the definition of a domain

131

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

131131131131131

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

131131

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

131

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

for a specific software family and the identification of common and variable features within this

domain; (ii) domain design – which concentrates on the definition of a common architecture and

components for this domain; and (iii) domain implementation – which involves the implementation

of architecture and components previously specified during domain design.

According to Czarnecki and Eisenecker, two new activities need to be introduced to domain

engineering methods in order to address the goals of GP:

• development of a proper means to specify specific members of the software family. Domain-

specific languages (DSLs) must be developed to deal with this requirement;

• modeling of the configuration knowledge in detail in order to automate it by means of a code

generator.

In this work, we have adopted the common activities – domain analysis, domain design and domain

implementation – encountered in a domain engineering method to define the generative approach

(such as described in [8]). However, we have also considered the other two activities presented

above by implementing a domain-specific language and a code generator.

2.2 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) [23, 33] is an evolving approach aiming at

modularizing concerns, which existing paradigms are not able to capture explicitly. It encourages

modular descriptions of complex software by providing support for cleanly separating the basic

system functionality from its crosscutting concerns. Crosscutting concerns are concerns that often

crosscut several modules in a software system.

AOSD has been proposed as a technique for improving the separation of concerns in the

construction of OO software, supporting improved reusability and ease of evolution. When

developing OO software one faces an architectural dilemma: no matter how the OO system is

factored, frequently there will be concerns that are handled in different classes. Hence, such concerns

crosscut these classes. AOSD supports the modularization of crosscutting concerns by providing

abstractions to extract these concerns and later compose them back when producing the overall

system.

AOSD proposes the notion of aspect as a new abstraction and provides new mechanisms for

composing aspects and components (classes, methods, etc.) together at specific join points.

AspectJ [22] is an aspect-oriented extension to the Java programming language. The aspect

abstraction in AspectJ is composed of inter-type declarations, pointcuts and advices. Pointcuts

have a name and are collections of join points. Join points are well-defined points in the dynamic

execution of system components. Examples of join points are method calls and method executions.

Advice is a special method-like construct attached to pointcuts. Advices are dynamic crosscutting

features since they affect the dynamic behavior of components. Inter-type declarations specify new

attributes or methods to be introduced in specific classes.

As already mentioned, in this work we will focus on aspect-oriented abstractions to capture

crosscutting concerns encountered in multi-agent system implementations. Examples of such

concerns are interaction, autonomy, adaptation and collaboration [17].

3. An Aspect-Oriented Generative Approach

The aspect-oriented (AO) generative approach aims at exploring the horizontal domain [8] of multi-

agent systems (MASs) to improve their quality and productivity. The purpose of the generative

approach is threefold: (i) to uniformly support crosscutting and orthogonal (non-crosscutting) features

132

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

132132132132132

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

132132

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

132

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

of software agents starting at early development stages [9, 29]; (ii) to abstract the common and

variable features; and (iii) to enable the code generation of AO agent architectures.

Figure 1 depicts our generative approach that is composed of:

(i) a domain-specific language (DSL), called Agent-DSL, used to collect and model orthogonal

and crosscutting features of software agents;

(ii) an AO architecture modeling a family of software agents. It is centered on the definition of

aspectual components to modularize the crosscutting agent features;

(iii) a code generator that maps abstractions of the Agent-DSL to specific compositions of

objects and aspects in agent architectures.

The definition of our generative approach encompassed a typical domain engineering process. The

steps followed in the development of the generative approach were:

1. Domain Analysis

a. Definition of the domain

b. Identification and modeling of common and variable features of the domain

c. Identification and modeling of the crosscuting features of the domain

2. Domain Design

a. Specification of the generic AO architecture

b. Identification and specification of the DSLs

c. Specification of the configuration knowledge

3. Domain Implementation

a. Implementation of the DSLs

b. Implementation of the AO architecture and additional components

c. Implementation of the code generator

The following sections describe in more detail most of these steps. Section 3.1 describes the domain

analysis phase by presenting the resulted feature model and the proposed notation to represent

crosscutting features in a feature model. Section 3.2 presents the AO agent architecture and the

proposed notation to represent aspectual and non-aspectual components. Section 4 describes the

steps to implement the elements of the generative approach.

Agent-DSL

AO Agent
Architecture
Generated

Specification
of agent

properties

Code
GeneratorFrameworks +

Components

Code
Templates

Classes and Aspects
of the Agent

Figure 1. The Aspect-Oriented Generative Approach

133

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

133133133133133

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

133133

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

133

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

In the domain design we have defined an AO architecture that was implemented using as base an

AO framework. Because of this decision, the step 2(b) that involves the identification and

specification of the DSLs was simplified. It was necessary a definition of a sole configuration DSL

used to instantiate the AO framework. Section 4.1 presents the specification and implementation of

this DSL.

Due to limited space the step 2(c) of the domain design is not described in this paper. The

specification of the configuration knowledge was accomplished in our work by defining a pattern

language [12]. A pattern language defines how a set of interrelated design patterns can be used

together to address a larger problem. Our pattern language shows how the domain features of

MASs can be mapped to specific design structures of classes and aspects. A complete description

of this pattern language can be found in [13].

3.1 Domain Analysis

During the domain analysis, recurring agent concerns of multi-agent systems (MASs) were modeled

using feature models [21]. Feature models are used to represent common and variable features of

system families. Our domain analysis was supported by experience gained from our extensive

previous work on the development of several multi-agent systems [13-17], and by surveys of

different MAS modeling languages, architectures and platforms [17, 32]. We captured the different

features associated with the agent concept, including orthogonal and crosscutting agent features.

Figure 2 depicts a partial feature model produced during this phase.

The agent concept is composed of its knowledge and its basic properties, which we termed

“agenthood”. The knowledge feature encompasses beliefs, goals and plans. Agent beliefs describe

information about the agent itself and about the external environment with which the agent interacts.

To achieve a goal, an agent executes a specific plan. During the execution of a plan, the agent

manipulates its beliefs. The agenthood feature is composed of three subfeatures: interaction,

adaptation and autonomy.

ReactiveGoal

Management

ReactiveGoal

Management

KnowledgeKnowledge

AgenthoodAgenthood

Agent / RoleAgent / Role

BeliefBelief GoalGoal PlanPlan

AutonomyAutonomy InteractionInteractionAdaptationAdaptation

AdditionalPropertiesAdditionalProperties

LearningLearning MobilityMobility
PlanPlan

LearningLearning

PlanAdaptationPlanAdaptation BeliefAdaptationBeliefAdaptation

GoalGoal PlanPlan MessageMessage BeliefBelief

ExecutionAutonomyExecutionAutonomy

DecisionAutonomyDecisionAutonomy

InternalEventInternalEvent

ConcurrencyStrategyConcurrencyStrategy

ThreadPoolThreadPool ThreadPerRequestThreadPerRequest

DecisionGoalDecisionGoal DecisionPlanDecisionPlanBeliefBelief

Interaction

Behavior

Interaction

Behavior
EffectorEffector SensorSensor

PlatformPlatform

CollaborationCollaboration

Legend:

mandatory feature

optional feature

alternative features

Sensory
Behavior
Sensory
Behavior

DecisionPlanDecisionPlan

Message
Reception
Message
Reception

Message
Sending
Message
Sending

ParserParserParserParser

PlanPlan MessageMessage

crosscuts
crosscuts

crosscuts

crosscuts

crosscuts

DecisionGoalDecisionGoal

DecisionAutonomyDecisionAutonomy

ProactiveGoalProactiveGoal

ProactiveAutonomyProactiveAutonomyProactiveAutonomyProactiveAutonomy

MessageMessage ReactiveGoalReactiveGoal

inspected features

MessageMessage

Figure 2. Partial Feature Model of a Agent / Role

134

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

134134134134134

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

134134

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

134

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

The interaction feature is the agent capacity to communicate with the environment. The agent can

receive or send messages to the environment by means of its sensors and effectors, respectively.

External messages are translated to the agent ontology using specific parsers in its sensors. Effector

parsers translate internal messages to a specific external representation.

The adaptation feature is formed by belief adaptation and plan adaptation. Belief adaptation is

responsible for interpreting received messages from the environment and for manipulating its beliefs

based on the message contexts. Plan adaptation determines the plan the agent must execute

whenever a new goal needs to be achieved.

The purpose of the autonomy feature is to instantiate and manage the agent goals. It deals with three

types of goals: reactive goals, proactive goals, and decision goals. Reactive goals are instantiated

when the agent receives an external request from other agents or environment components. Proactive

goals are instantiated due to internal events that occurs, such as, the end of a plan execution or the

achievement of a specific agent state. Finally, the decision goals are instantiated due to external or

internal events and are used to decide if special reactive or proactive goals could be instantiated. The

autonomy property is also responsible for monitoring the adopted concurrency strategy. It supports

the goal achievement by implementing a mechanism for executing concurrently agent plans.In addition

to the agent knowledge and the agenthood features, an agent can incorporate additional properties.

Additional features include collaboration, mobility, and learning. The current version of the

generative approach just provides support for the collaboration feature. An agent collaborates with

other agents by playing different roles. A role gives to the agent extra capacities of knowledge,

interaction, adaptation and autonomy. Each agent can play different roles during its execution.

To support the representation of crosscutting features in feature models, a new kind of relation

between features, called crosscuts relation, has been introduced. We say that a feature A crosscuts

a feature B, when either A or one of its subfeatures depends and inspects B or one of the

subfeatures of B. In the feature model of the Figure 2, for instance, Adaptation is characterized as a

crosscutting feature because it is composed of two features (BeliefAdaptation and

PlanAdaptation) that inspect common features of the Agent Knowledge (Goal and Plan) and the

Agent Interaction (Message). As a result, the Adaptation feature crosscuts the Knowledge and

Interaction features.

The Interaction feature is also characterized as crosscutting because it is composed of a subfeature

(MessageSending) that inspects features of the Agent Knowledge (Plan). In addition, the

Autonomy feature crosscuts the Knowledge and Interaction features.

3.2 Domain Design

Domain design consists of specifying a generic and flexible AO agent architecture for the domain at

hand. Each feature modeled during domain analysis needs to be considered in the design. The AO

agent architecture is a refinement of a previous work [16, 17]. It uses two kinds of components: (i) a

central component that modularizes the orthogonal features associated with the agent knowledge;

and (ii) the aspectual components that separate the crosscutting agent features from each other and

from the Knowledge component. Aspectual components represent crosscutting features at the

architectural level.

135

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

135135135135135

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

135135

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

135

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Figure 3 depicts the components of the AO agent architecture. We have used a new notation to

graphically represent an AO architecture. It is an extension of the ASideML modeling language [6].

We developed this notation to enable the representation of aspectual components. An aspectual

component may crosscut other aspectual or non-aspectual components using its crosscutting

interfaces. A crosscutting interface may both add new state or behavior in other components and

intercept (and modify) the existent behavior of components. Non-aspectual (normal) components are

represented in a similar way to UML [3] and offer their services through the normal interfaces.

The Knowledge component models the orthogonal features (belief, goal, plan) related to the

knowledge feature. It contains two normal interfaces: (i) IKnowledgeUpdating – to update the

agent knowledge; and (ii) IServices – to offer agent services. In the domain implementation

(section 4.2), this component is refined as a set of classes.

Each of the crosscutting agent features (interaction, adaptation, autonomy and role) are modeled as

aspectual components in the agent architecture. Each aspectual component was refined during the

domain implementation (section 4.2) as a set of aspects and auxiliary classes, which are also part of

the crosscutting feature.

The Interaction aspectual component models the interaction crosscutting feature. It is

composed of two crosscutting interfaces: (i) IMessageReception – which introduces the

capacity to receive external messages into the Knowledge component; and (ii)

IMessageSending – which crosscuts elements of the Knowledge component to define specific

points where is necessary to send messages to the environment. It also crosscuts elements of the

Collaboration aspectual component to specify specific points in collaboration plans where is also

necessary to send messages to the environment.

The Adaptation aspectual component models the adaptation crosscutting feature. It is composed

of two crosscutting interfaces: (i) IBeliefAdaptation – which intercepts the invocation of

services provided by the IMessageReception interface of the Interaction component to

IKnowledge

Updating

IPlan

Adaptation

Knowledge

IServices

IBelief

Adaptation

IMessage

Reception

Interaction

Adaptation

IGoal

Creation IExecution

Autonomy
Autonomy

IRole

Binding

Collaboration
Legend:

aspectual component

component

crosscutting interface

normal interface

IMessage

Sending

IExtrinsic

Knowledge

Figure 3. The Aspect-Oriented Agent Architecture

136

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

136136136136136

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

136136

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

136

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

update agent beliefs when new external messages are received by the agent; and (ii)

IPlanAdaptation – which intercepts the invocation of services provided by the

IKnowledgeUpdating interface of the Knowledge component to instantiate new plans to be

executed when the agent needs to achieve a specific goal.

Finally, the Collaboration aspectual component models the role crosscutting feature. It is

composed of two crosscutting interfaces: (i) IExtrinsicKnowledge – which introduces new

knowledge (state and behavior) associated with agent roles in the Knowledge component; and (ii)

IRoleBinding – which defines specific points in the Knowledge component where agent roles

are instantiated and bound to the agents.

4. Implementing the Generative Approach

This section describes the implementation of the generative approach elements: (i) the Agent-DSL,

(ii) the AO agent architecture, and (iii) the code generator.

4.1 Agent-DSL

Based on the feature models defined in the domain analysis (section 3.1), we defined a configuration

domain-specific language (DSL), called Agent-DSL. A configuration DSL allows to specify a

concrete instance of a concept [8]. It can be directly derived from feature models. This language is

used to specify the agent features that an agent instance could have to accomplish its tasks. It allows

modeling the agent features, such as, knowledge, interaction, adaptation, autonomy and

collaboration.

An XML Schema [34] was used to specify the semantics of the Agent-DSL. The feature models

were translated to XML Schema complex types. For each specific agent of a MAS to be generated,

it must be created an agent description XML document. This document must conform to the XML

Schema that defines the Agent-DSL. The right side of Figure 5 depicts a partial specification of an

agent type used in a case study developed by our research group [13]. Subsection 4.3 describes in

more detail the case study.

4.2 The Aspect-Oriented Agent Architecture

The implementation of the generic AO agent architecture (section 3.2) was realized using Java and

AspectJ [22] programming languages. The basis of the architecture implementation is an AO

framework that contains hot-spots as classes and aspects [24]. Figure 4 presents a partial

description of the AO framework. The ASideML modeling language [6] is used to represent visually

the framework. This language extends UML with notations for representing aspects. The notations

provide a detailed description of the aspect elements. In this modeling language, an aspect is

represented by a diamond; it is composed of internal structure and crosscutting interfaces. The

internal structure declares the internal attributes and methods. A crosscutting interface specifies when

and how the aspect affects one or more classes [6]. Each crosscutting interface is composed of

inter-type declarations, pointcuts and advices. The first part of a crosscutting interface represents

inter-type declarations, and the second part represents pointcuts and their attached advices. The

notation uses a dashed arrow to represent the crosscutting relationship, which relates one aspect to

classes and/or aspects. Every class and aspect presented in the figure are hot-spots.

The Knowledge component (section 3.2) was refined as a set of classes – Agent, Belief, Goal

and Plan classes. Each one of them represents a specific hot-spot that can be extended to define an

137

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

137137137137137

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

137137

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

137

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

agent type. Agent beliefs are defined in our architecture as domain classes that Agent instances can

aggregate. Each one of the aspectual components (section 3.2) was refined as a central aspect and a

set of auxiliary classes. Figure 4 only presents the main aspects that refine the agent knowledge

classes incorporating specific agent features.

The Interaction component is defined as an abstract aspect that introduces interaction capabilities

(inbox, outbox, sensors, effectors, parsers) in the Agent class. It also intercepts domain classes and

sensors in the agent environment to enable the message reception by means of AspectJ pointcuts and

advices. Finally, the Interaction aspect defines two abstract pointcuts and some abstract

methods. The abstract pointcuts are used to define specific points in role aspects and plan classes

where internal messages must be sent. The abstract methods are specialized to create and initialize

specific sensors and effectors. The Interaction subaspects define the concrete configuration of

the Interaction aspect by implementing the abstract pointcuts and methods. It is possible to

specify a different Interaction subaspect for each one of the agent types or roles defined in a

MAS.

The Adaptation component defines the Adaptation abstract aspect, which enables the Agent

class to adapt its beliefs and plans. The belief adaptation of the Adaptation aspect is defined by

intercepting the receiveMsg() method of the Agent class (introduced by the Interaction

aspect). After that, specific advices and methods are responsible for updating beliefs based on

external messages received by the agent. The plan adaptation, defined in the Adaptation aspect,

intercepts the setGoal() method of the Agent class and the erroneous execution of the

execute() method of the Plan subclasses. The purpose is to determine new agent plans to be

executed by the agent to reach a specific goal. The Adaptation abstract aspect also offers abstract

methods to be defined by subaspects. These subaspects allow defining specific belief and plan

adaptation for each one of the agent types or roles in a open MASs.

The Autonomy component defines the Autonomy aspect, which enables the Agent class to

instantiate and manage reactive goals and execute concurrently several plans (execution autonomy).

However, for sophisticated agent types, the Autonomy aspect also allows to define proactive and

decision autonomy. To instantiate reactive goals, the Autonomy aspect also intercepts the

receiveMsg() method of the Agent class. This interception is used to verify if specific external

events (for instance, a request of another agent) demand the instantiation of reactive goals. The

execution autonomy is implemented in the Autonomy aspect by defining an Active Object [24],

which monitors the list of plans to perform of the Agent class to execute them in separate threads.

The proactive autonomy is implemented by specifying: (i) several pointcuts in agent knowledge

classes that represent specific events of interest, and (ii) an advice associated with these pointcuts

which is responsible for determining if a proactive goal must be instantiated in the occurrence of any

of these events. Finally, the decision autonomy only defines a makeDecision() method in the

Autonomy aspect that is invoked in the advices associated with the pointcuts of reactive and

proactive goal instantiation. This method verifies whether it is necessary to execute a decision plan on

the occurrence of a specific event or on the reception of a message. Autonomy subaspects can also

be implemented to define specialized proactive, reactive and decision autonomy for each one of the

agent types and roles defined in a MAS.

The Collaboration component is implemented by defining role aspects that introduce attributes and

methods in an agent type (Agent class or subclass). These elements define respectively specific

beliefs and behaviors of roles. Also, specific Plan and Goal subclasses must be defined for the

roles. The plans defined for a role manipulate the attributes (beliefs) and invoke methods (behaviors)

introduced by the role aspect. Goal classes specified for a role are instantiated by an Autonomy

138

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

138138138138138

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

138138

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

138

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

subaspect which is specially created for the role. Specific interaction, adaptation and autonomy

subaspects can be defined for an agent role. Next section exemplifies the definition of subaspects for

agent roles of a specific case study developed by our research group.

Besides the framework, some components were created to implement specific functionalities

associated with the agenthood features, such as:

• interaction feature: concrete sensors and effectors specially tailored to specific agent platforms

(such as JADE [2]);

• autonomy feature: concrete concurrency strategies (such as thread pool and a thread per

request) used by the active object to implement the agent’s execution autonomy.

4.3 Code Generator

In the configuration knowledge of the generative approach, we implemented a code generator as an

Eclipse plug-in [30]. This generator maps abstractions in the Agent-DSL to normal and aspectual

components of the agent architecture. The AO framework (section 4.2) is used as the basis of the

agent architecture. The main task of the generator is to instantiate the framework, creating subclasses

and subaspects for specific hot-spots of the framework. Depending on the agent descriptions

provided, new types of agents (or roles) with their respective agent properties can be generated. We

present below examples of classes and aspects generated for the context of a case study.

We have used the generative approach for the development of the ExpertCommittee (EC) system,

which is a case study undertaken by our research group [13]. EC is an open system that supports

the management of paper submissions and the reviewing process for a conference. Software agents

have been introduced to EC in order to assist its users with time-consuming activities and automate

repetitive user tasks. EC agents are software assistants that represent paper authors, chairs, PC

members and reviewers and coordinate their activities. The EC system also includes information

agents.

Figure 5 presents the elements of the generative approach applied to the EC system. The left side of

the figure contains an agent description file for a specific agent type of the EC, called

BeliefBelief

GoalGoal

PlanPlan

Knowledge

Agent

name
goals

plans
…

new()

addBelief ()

setGoal()

executePlan()

...

reactiveAutonomy_()

GoalCreation Autonomy

newAgent_()

ExecutionAutonomy

Legend:

_beforeAdvice

afterAdvice_

aroundAdvice

IMessageReception

sendMsg ()

outgoingMsg_()

MessageSending
Interaction

receiveMsg()

incomingMsg_ ()

<<crosscutting interface>>

sensors

effectors

...

<<crosscutting interface>>

<< crosscuttinginterface >> << crosscuttinginterface >>

proactiveAutonomy_()

inbox

outbox

makeDecision()

initConcurrencyStrategy()

instantiateReactiveGoal()

instantiateProactiveGoal()

activeObject

goals

newGoal_()

planFinal_()

changedBelief_()

newMsg_()

Knowledge

Adaptation

Adaptation
IPlanAdaptation

newGoal_()

planFinal_()

changedBelief_ ()

newMsg_()

IBeliefAdaptation

<<crosscutting interface>>

<<crosscuttinginterface >>

adaptBeliefs()

findPlan()

...

Adaptation

Figure 4. The Aspect-Oriented Agent Framework

139

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

139139139139139

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

139139

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

139

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

ResearcherUserAgent. The chair role played by this agent type is also presented. We used the

JAXB plug-in [20] to enable reading the agent description XML file by the code generator.

The center of the figure is the code generator. It is responsible for reading the agent description file

and customizing code templates based on information collected by the Agent-DSL. Code templates

allow us to represent structure and behavior of specific classes and aspects that we want to generate.

They are used to represent each one of subclasses and subaspects of the framework hot-spots. Java

Emitter Templates (JET), a generic template engine of the Eclipse Modeling Framework (EMF) [4],

has been used to write the source templates. Examples of classes and aspects that we wrote as

templates are: (i) concrete instances of hot-spots (classes or aspects), such as specific agent type

classes, specific agenthood (interaction, adaptation and autonomy) subaspects; (ii) specific agent

plans and goals classes; and (iii) specific role aspects.

Finally, the right side of the figure shows the specific elements (subclasses and subaspects) generated

for the EC system. Several classes and aspects are generated based on its Agent-DSL description

file and on the JET source templates. First, the ResearchUserAgent class, a specific agent type, is

generated. The two roles played by instances of this class are also generated. They are called Chair

and Reviewer aspects. Each one of them introduces specific beliefs and behaviors in the

ResearchUserAgent class. Specific Plan and Goal classes are also generated to the two roles.

Moreover, different Interaction, Adaptation and Autonomy subaspects are generated to each

one of the roles. For instance, the ChairInteraction, ChairAdaptation and ChairAutonomy

aspects are produced to agents playing the chair role. ChairInteraction initializes JADE sensors

and effectors to be used by the agents playing the chair role. ChairAdaptation realizes specific

belief and plan adaptation of the chair role. Finally, ChairAutonomy defines: (i) a reactive autonomy

– to instantiate specific goals when receiving external messages from reviewer agents; (ii) a proactive

autonomy – to instantiate specific goals when internal events occur; and (iii) an execution autonomy –

which defines a “thread per request” concurrency strategy to execute agent plans.

5. Discussion and Lessons Learned

Based on the experience of development of an AO generative approach, we have already identified

some important requirements and techniques that are useful and relevant during the integration of GP

and AOSD technologies. Below, we synthesize these lessons learned.

• support to crosscutting features in the domain analysis – the modeling of crosscutting

concerns in early design phases has been recognized recently as an important topic of research in

AOSD [9, 29]. The extension of feature models to represent crosscutting features, presented in this

paper (section 3.1), helps to become explicit the existence of crosscutting concerns in system families

during domain analysis. More research need to be developed to understand better how to model

crosscutting features and their interactions;

• specification of aspect-oriented architectures – a fundamental activity when constructing

program families (and product lines) is the modeling of a software architecture that addresses

common and variable features. We have presented in this paper (section 3.2) a new notation that

allows representing aspectual components. The use of this notation enables us to represent in a

concise way the main components (and their interactions) of AO architectures. The definition of

principles and patterns to model AO architectures so that it can be possible to address different

crosscutting concerns is an important topic of research that we intend to explore;

140

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

140140140140140

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

140140

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

140

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

•

<MAS ... xsi:noNamespaceSchemaLocation=

 "agent-dsl.xsd">

 <agent>

 <name>ResearcherUserAgent</name>

 <belief> ... </belief>

 <goal> ... </goal>

 <role>

 <name>Chair</name>

 <belief> ... </belief>

 <goal>

<name>PaperDistributionGoal</name>

 <type>Reactive</type>

 </goal>

 <plan>

<name>PaperDistributionPlan</name>

 <type>Reactive</type>

<communication>false</communication>

 </plan>

 <interaction>

 <sensor>

<name>sensorAgent</name>

<type>AgentCommunication</type>

<platform>JADE</platform>

 </sensor>

 <effector>

<name>effectorAgent</name>

<type>AgentCommunication</type>

<platform>JADE</platform>

 </effector>

 <message>

<id>REQUEST_DISTRIBUTE_PAPER</id>

<performative>REQUEST</performative>

 <service>

 SERVICE_DISTRIBUTE_PAPERS

</service>

 </message>

 </interaction>

 <autonomy>

<executionAutonomy>

 <concurrencyStrategy>

ThreadPool

 </concurrencyStrategy>

</executionAutonomy>

<reactiveAutonomy>

 <messageToGoal>

 <message>

 REQUEST_DISTRIBUTE_PAPER

 </message>

 <goal>

PaperDistributionGoal

 </goal>

 </messageToGoal>

</reactiveAutonomy>

...

</autonomy>

 <adaptation>

 <planAdaptation>

<goal>PaperDistributionGoal</goal>

<plan>PaperDistributionPlan</plan>

 </planAdaptation>

 <beliefAdaptation> ...

 </beliefAdaptation>

 </adaptation>

 </role>

 ...

 </agent>

</MAS>

Agent Type

Code

Role Aspect

Code

Adaptation

Subaspect Code

Autonomy

Subaspect Code

Interaction

Subaspect Code

141

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

141141141141141

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

141141

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

141

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Figure 5. Problem Space | Configuration Knowledge | Solution Space
(Agent-DSL) (Code Generator) (Agent Architecture

Generated)

142

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

142142142142142

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

142142

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

142

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

• specification of the configuration knowledge – the configuration knowledge in a

generative domain model (section 2.1) defines how specific combinations of features in the

problem space can be mapped to specific combinations of components in the solution space.

The configuration knowledge was specified in our work by defining a pattern language [13]. A

pattern language defines how a set of interrelated design patterns can be used together to

address a larger problem. Each one of the components of the AO architecture was specified

as a design pattern of the pattern language. The description of each pattern emphasizes: (i) a

specific problem in the context of agent architectures; and (ii) a flexible design structure to

address that problem;

• construction of domain-specific languages – during the implementation of our

generative approach, we have defined a unique configuration domain-specific language to

express orthogonal and crosscutting features of software agents (section 4.1). Configuration

DSLs are recognized as a suitable alternative to define generative approaches that require to

instantiate object-oriented frameworks [5, 11]. In our case, it was also suitable to represent

the crosscutting features encountered in a definition of a software agent. An interesting work is

the investigation of the combined use of a configuration DSL to express only the orthogonal

features and aspectual DSLs to express each one of the crosscutting features (see related

work in section 6) existent in a domain;

• implementation of aspect-oriented frameworks – object-oriented frameworks are

a common and useful technology to implement architectures for system families [10]. They

address the implementation of common (frozen-spots) and variable (hot-spots) features of

system families. The use of the aspect abstraction in the definition of frameworks enables us to

define common and variable behaviors of crosscutting features. An AO framework that

models a set of crosscutting features encountered in agent architectures has been presented in

this work (section 4.2). We believe that AO frameworks are a fundamental technology to be

used during the implementation of AO generative approaches. In the implementation of our

framework it was used some of the AspectJ idioms presented in [19] (such as, Abstract

Pointcut, Chained Advice, Pointcut Method, Template Advice). We found that they

represent basic and recurrent constructions used to define AO frameworks in AspectJ.

6. Related Work

Some recent reports explored the integration of GP and AOSD [18, 26, 31]. However, these

reports have not covered or described in sufficient detail all the typical phases encountered

while developing a generative approach.

Pinto et al [26] have proposed DAOP-ADL, an architecture description language used to

describe software architectures. This language supports the concepts of components and

aspects. DAOP-ADL is interpreted by DAOP (Dynamic Aspect-Oriented Platform), a

specific component and aspect-based middleware platform [27]. DAOP platform uses the

information presented in the ADL to compose dynamically components and aspects of a

application. DAOP-ADL enables the specification of AO architectures independent of

programming languages and component platforms. The notation (section 3.2) proposed in this

paper can also be formalized as an ADL.

Shonle et al [31] have developed XAspects, an extensible system that allows to define

aspectual domain-specific languages. An aspectual DSL allows to express specific

crosscutting concerns into modularized constructs [8]. Examples of aspectual DSLs presented

143

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

143143143143143

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

143143

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

143

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

by them are [31]: (i) a coordination language used to specify thread coordination concerns;

and (ii) a traversal language used to express collaborative behavior between classesXAspects

also provides support to generate Java and AspectJ code derived from one or more aspectual

DSLs. In our work we have studied the domain of software agents to define a unique DSL

that express orthogonal and crosscutting agent features.

Colyer et al [7] have presented some principles that guide the definition of flexible and

configurable AO systems. They show the proper use of AOSD technologies to follow these

principles. They also illustrate how the application of the principles can help in the configuration

of different features in a product line. The work presented by these authors is an important

step in the definition of guidelines for constructing program families in order to maximize

configurability in AO architectures. This kind of principle is very useful to guide the

specification of AO architectures that can be configured with different feature combinations in

a generative approach.

7. Conclusion and Future Work

This paper reported our experience in the definition of an AO generative approach. The goal

of this approach is to explore the horizontal domain that MASs represent in order to enable

the code generation of agent architectures. We organized the development of the generative

approach using typical phases encountered in domain engineering processes. During the

development process of the generative approach, it was necessary to adapt modeling

notations used in generative programming due to the adoption of AOSD. The feature model

was extended to support the representation of crosscutting features (section 3.1). Also, a new

notation was proposed to support the representation of AO architectures (section 3.2).

Aspectual components have been used to model crosscutting features from the architectural

point of view.

We believe that the definition of AO generative approaches can bring important benefits to the

development of software families. GP allows: (i) to evolve the problem and solution spaces

independently; and (ii) to define clearly the mapping between high-level features and

implementation components. The integrated use of GP and AOSD techniques brings additional

benefits, such as: (i) clear separation of orthogonal and crosscutting features starting at early

design phases; and (ii) direct mapping of crosscutting features in aspectual components. This

latter benefit simplifies the implementation of code generators, because the composition of

crosscutting concerns is accomplished by the aspect weavers. Using only OO abstractions,

crosscutting agent features need to be hand-coded in the code of classes.

This work aimed at identifying relevant techniques and requirements to be considered on the

development of AO generative approaches. It represents a significant step in the definition of a

method to develop AO generative approaches. In this context, our future work consists of the:

(i) application of the same process presented in this paper to develop an AO generative

approach for a different software domain; (ii) investigation of the benefits and drawbacks of

the use of aspectual domain-specific languages; and (iii) definition of a set of principles and

guidelines to specify artifacts in a generative domain model considering the use of AOSD

technologies using the notations presented.

Acknowledgments. This work has been partially supported by CNPq under grant No.

140252/2003-7 for Uirá Kulesza, grant No. 141457/2000-7 for Alessandro Garcia, and by

144

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

144144144144144

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

144144

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

144

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

FAPERJ under grant No. E-26/150.699/2002 for Alessandro. The authors are also

supported by the PRONEX Project under grant 7697102900, and by ESSMA under grant

552068/2002-0 and by the art. 1st of Decree number 3.800, of 04.20.2001.

References

1. A rrango, G. Domain Analysis Methods. In Software Reusability, Schäfer, R. Prieto-

Díaz, and M. Matsumoto (Eds.), Ellis Horwood, New York, pp. 17-49, 1994.

2. Bellifemine, F., Poggi, A., Rimassi, G. JADE: A FIPA-Compliant Agent Framework.

Proc. Practical Applications of Intelligent Agents and Multi-Agents, pp. 97-108, April

1999.

3. Booch, G., Jacobson, I., Rumbaugh, J. Unified Modeling Language - User's Guide.

Addison-Wesley,1999.

4. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T. Eclipse Modeling

Framework, Addison-Wesley, 2003.

5. Cechticky, V. et al. A Generative Approach to Framework Instantiation. Proceedings of

the GPCE´2003, Erfurt, Germany, September 2003.

6. Chavez, C. A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis,

Computer Science Department, PUC-Rio, April 2004.

7. Colyer, A., Rashid,A., Blair,G. On the Separation of Concerns in Program Families.

Technical Report, Computing Department, Lancaster University, January 2004.

8. Czarnecki, K., Eisenecker, U. Generative Programming: Methods, Tools, and

Applications, Addison-Wesley, 2000.

9. Early Aspect Home-Page, Available at URL http://www.early-aspects.net/

10. Fayad, M., Schmidt, D., Johnson, R. Building Application Frameworks: Object-Oriented

Foundations of Framework Design. John Wiley & Sons, September 1999.

11. Fontoura, M. et al. Using Domain Specific Languages to Instantiate Object-Oriented

Frameworks. IEE Proceedings - Software, 147(4), 109-116, August 2000.

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley Publishing, 1995.

13. Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis,

Computer Science Department, PUC-Rio, April 2004.

14. Garcia, A., Cortés, M., Lucena, C. A Web Environment for the Development and

Maintenance of E-Commerce Portals based on a Groupware Approach. Proceedings of

the Information Resources Management Association International Conference

(IRMA’01), Toronto, May 2001.

15. Garcia, A., Lucena, C. Software Engineering for Large-Scale Multi-Agent Systems.

ACM Software Engineering Notes, Vol. 27, Number 5, September 2002, pp. 82-88.

16. Garcia, A., Lucena, C., Cowan,D. Agents in Object-Oriented Software Engineering.

Software: Practice & Experience, Elsevier, V. 34, Issue 5, May 2004, pp. 489-521.

17. Garcia, A., Silva,V., Chavez, C., Lucena, C. Engineering Multi-Agent Systems with

Aspects and Patterns. Journal Brazilian Computer Society, July 2002,1(8),pp.57-72.

145

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

145145145145145

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

145145

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

145

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

18. Gray, J., Bapty, T., Neema, S., Schmidt, D., Gokhale,A., Natarajan,B. An Approach for

Supporting Aspect-Oriented Domain Modeling. Proceedings of the GPCE´2003, pp.

151-168 Erfurt, Germany, September 2003.

19. Hanenberg, S., Unland, R., Schmidmeier, A. AspectJ Idioms for Aspect-Oriented

Software Construction. Proceedings of the 8th European Conference on Pattern

Languages of Programming (EuroPlop’03), Irsee, Germany, June 2003.

20. JAXB Eclipse Plug-in. Available at URL http://sourceforge.net/projects/jaxb-builder/

21. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A. Feature-Oriented Domain

Analysis (FODA): Feasibility Study. Technical Report CMU/SE4-90-TR-21, Software

Engineering Institute, Carnegie Mellon University, 1990.

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. Getting

Started with AspectJ. Communications of the ACM. October 2001.

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,

Irwin, J. Aspect-Oriented Programming. In Proceedings of the ECOOP´97, LNCS

(1241), Springer-Verlag, Finland, June 1997.

24. Lavender,R.,Schmidt,D. Active Object:an Object Behavioral Pattern for Concurrent

Programming. In: Pattern Languages of Program Design, Addison-Wesley, 1996.

25. Pinto, M., Fuentes, L., Fayad, M., Troya, J. Separation of Coordination in a Dynamic

Aspect Oriented Framework. Proceedings of the AOSD'02, April 2002, Enschede,

Netherlands.

26. Pinto, M., Fuentes, L., Troya, J. DAOP-ADL: An Architecture Description Language for

Dynamic Component and Aspect-Based Development. Proceedings of the GPCE´2003,

Erfurt, Germany, September 2003, pp. 118-137.

27. Prieto-Diaz, R. Domain Analysis for Reusability. Proceedings of the 11th COMPSAC -

Computer Software & Applications Conference, Tokyo, Japan, October 1987, pp. 23-

29.

28. Prieto-Diaz, R., Arango, G. (Eds). Domain Analysis and Software Systems Modeling.

IEEE Computer Society Press, Los Alamitos, CA, 1991.

29. Rashid, A., Moreira, A., Araújo, J. Modularization and Composition of Aspectual

Requirements. Proceedings of the AOSD´2003. 2nd International Conference on

Aspect-Oriented Software Development, ACM, pp. 11-20.

30. Shavor, S., D’Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., McCarthy, P. The

Java Developer’s Guide to Eclipse. Addison-Wesley, 2003.

31. Shonle, M., Lieberherr, K., Shah, A. XAspects: An Extensible System for Domain

Specific Aspect Languages. In Companion of the OOPSLA´2003, pp. 28-37.

32. Silva, V., Garcia, A., Brandao, A., Chavez, C., Lucena, C., Alencar, P. Taming Agents

and Objects in Software Engineering. In: Software Engineering for Large-Scale Multi-

Agent Systems, LNCS 2603, Springer-Verlag, 2003.

33. Tarr, P., Osher, H., Harrison, W., Sutton Jr, S. N Degrees of Separation: Multi-

Dimensional Separation of Concerns. In Proceedings of the 21st International Conference

on Software Engineering (ICSE'99), May 1999, pp. 107–119.

34. XML Schema. Available at URL http://www.w3.org/XML/Schema.

146

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

146146146146146

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

146146

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

146

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

