
Building Flexible Refactoring Tools with XML

Nabor C. Mendonça1, Paulo H. M. Maia2, Leonardo A. Fonseca1, Rossana M. C. Andrade2

1Mestrado em Informática Aplicada – Universidade de Fortaleza (UNIFOR)
Av. Washington Soares, 1321 – Fortaleza – CE – Brasil

2Departamento de Computação – Universidade Federal do Ceará (UFC)
Campus do Pici, Bloco 910 – Fortaleza – CE – Brasil

e-mail: [nabor, leonardo]@unifor.br, [pauloh, rossana]@lia.ufc.br

Abstract

Refactoring, i.e., the process of changing a software system to improve its internal quality while preserving its

external behavior, is gaining increasing acceptance among software developers. Even though many refactoring
tools are now available for a variety of programming languages, most of them rely on their own, closed

mechanisms for representing and manipulating source code information, which makes them difficult to

customize, extend and reuse. This paper makes three contributions towards the development of more flexible
refactoring tools. Firstly, it proposes an XML-centric refactoring process in which XML is used as a standard

way to represent, analyze and modify source code information. Secondly, it presents a concrete realization of

that process, in the form of a refactoring framework, called RefaX, which builds on existing XML-based source
code models and processing technologies to facilitate the development, extension and reuse of refactoring tools.

Finally, it demonstrates the applicability of the proposed process and framework through two RefaX-based
refactoring prototypes for Java and C++, respectively.

1. Introduction

 The costs and complexity of software maintenance are widely recognized. It is estimated that
50% of a software engineer’s time is dedicated to browsing and comprehending existing
code [20], and that in the last three decades maintenance activities took over 60% of all
software development costs in most organizations [23].
As an attempt to reduce the costs and complexity of maintaining existing software, a number
of techniques have been proposed, including metrics, testing and verification, reverse
engineering, and reengineering. A more recent technique, refactoring, i.e., the process of
changing a software system to improve its internal quality while preserving its external
behavior [11], is gaining increasing acceptance among software developers. Its main goal is
to reduce code complexity, which increases rapidly as the code evolves, by making it more
extensible, modular, reusable and maintainable [21]. The adoption of refactoring has been
boosted by the fact that it is one the pillars of Extreme Programming [3], an emerging and
increasingly popular software development methodology, and by the wide dissemination of
the refactorings catalog created by Fowler [11].
As with other code changing techniques, refactoring is most effectively performed by means
of automated tools. This avoids the risk of introducing new errors due to manual intervention,
and minimizes the amount of tests needed every time the code is changed. A considerable
number of refactoring tools are now available for a variety of programming languages,
including, for example, Refactoring Browser [25], for Smalltalk, JFactor [15], for Java, and
C# Refactoring Tool [4], for C#. Nonetheless, it is virtually impossible to find a refactoring
tool, or a suit of such tools, that will fully satisfy the needs of every software developer. The

178

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

178178178178178

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

178178

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

178

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

main reason is those tools only provide a fixed set of refactoring operations, which may not
be adequate for the maintenance task at hand. In addition, most of the available tools fall short
of customization support, making it difficult – if not impossible – for a developer to create
new refactoring operations, or even to adapt an existing one. The need for more flexible
refactoring tools has already been recognized in [21].
One of the main factors that hinder customization in current refactoring tools is the lack of
open, standardized ways to represent and manipulate the source code elements of the target
language, with each tool using its own data model and processing technology. In an attempt
to address this issue, several source code representations have been recently proposed for
different programming languages and paradigms (e.g., [19][1][13][2]). Most of those
representations share the fact that they rely on XML [31] as their underlying data model. The
main advantage of using XML to represent source code information is that software
maintenance tool developers and users could both benefit from the abundance of XML
processing tools currently available, including XML processing API’s [30][26], query engines
[32][33], databases [35][9][27] and transformation tools [34][36].
Even though maintenance and related tools are already benefiting from XML as a standard
way to represent and exchange source code information (e.g., [19][6][13]), those tools do not
yet fully explore the potential of current XML-based technologies towards better
customization, extension and reuse. In particular, we are unaware of any refactoring tool that
relies on XML to improve the flexibility of it underlying code transformation mechanism.
This paper makes three important contributions towards the development of more flexible
refactoring tools. As the first contribution, it proposes an XML-centric refactoring process in
which XML is used as a standard mechanism for representing, analyzing and modifying
source code information. The second contribution is a concrete realization of that process, in
the form of a refactoring framework, called RefaX, which builds on existing XML-based
source code models and processing technologies to facilitate the development, extension and
reuse of refactoring tools. In particular, RefaX makes it possible to implement refactoring
operations that are independent of source code model, programming language and
manipulation mechanism. In practice, this means that a RefaX tool can be reusable across
different source code representations and processing technologies. The third and final
contribution is a demonstration of the applicability of the proposed process and framework
through two RefaX-based refactoring prototypes for Java and C++, respectively.
We believe that such an open approach for refactoring tools production, as advocated in this
paper, can be beneficial not only for tools developers, who will have a powerful environment
upon which to build, extend and reuse refactoring operations, but also to refactoring users
themselves, whose tools will be more easily customized to their specific maintenance needs.
The rest of the paper is organized as follows. In the next section we give an overview of
existing XML-based source code representations and processing technologies. We then
introduce the XML-centric refactoring process (section 3), present the RefaX framework in
more details (section 4), and report on the development of the two refactoring prototypes
(section 5). We follow with a discussion of our research with respect to related work
(section 6), and conclude the paper by summarizing our main results and suggesting some
directions for future work (section 7).

2. Representation and Manipulation of Source Code Information Using XML

In this section we give a brief overview of existing XML data models for representing source
code information, and discuss how this information can be manipulated using current XML
processing standards and technologies.

179

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

179179179179179

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

179179

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

179

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

2.1. XML-Based Source Code Representations

As mentioned previously, there have been a number of proposals for using XML as a
common data model to represent source code information. In [19], Mamas and Kontogiannis
propose three of such models: JavaML, CppML and OOML. JavaML and CppML represent
object-oriented source code written in Java and C++, respectively, in the form of an Abstract
Syntax Tree (AST). OOML is a generalization of the other two models and represent only
those syntactic elements that are shared by both. Badros proposes another XML source code
model for Java, also called JavaML [1]. Just like the previous models, Badros’s JavaML also
represents source code information in the form of an AST. Compared to Mamas and
Kontogiannis’s JavaML, though, Badros’s model manages to capture the same information in
a semantically richer yet more concise way. Another example of an XML-based source code
model for Java is XJava [2].
The srcML source model [18] follows a slightly different approach. Instead of converting the
source code to a different format, srcML “annotates” the original source code artifacts with
structural information represented in the form of XML tags, thus preserving non-syntactic
elements, such as blanks, comments and indentation marks. Compared to other source code
models based on an AST representation, srcML has the advantage that the annotation process
does not require a complete parsing of the source code, which simplifies the development of
code-to-XML conversion tools. On the other hand, the resulting XML document will end up
with a potentially large amount of non-essential code information, which may land it difficult
to manipulate using current XML processing technologies.
GXL [13] is another source code model that was originally proposed as a common software
exchange format to promote interoperability among software maintenance and reverse
engineering tools. In GXL, the code structure is captured in the form of a directed graph using
only two types of syntactic elements: nodes and edges. All types of syntactic information
presented in the source code have to be represented as attributes of those two basic elements.
The lack of a syntactically richer source code representation makes GXL an unsuitable format
for specifying refactorings, as most of the update operations would have to be expressed in
terms of element attributes. This not only would make the refactoring specification more
cumbersome, but would also slow down the execution of query and update expressions on
large documents.
It is worth noting that, from a strictly syntactic point of view, there are significant differences
among all those models, with some models being considerably more complete and/or concise
than others with respect to the kinds of syntactic information they represent. Although
syntactic differences are an important issue to consider when choosing an XML-based source
code representation upon which to implement refactoring operations, other factors may also
be relevant – for example, whether or not there is an appropriate conversion tool available. In
any case, different source code models may suit different tool developers under different
circumstances. Therefore, the choice of the best model should better be left to the developer,
and not be restricted by the development environment at hand.

2.2. XML Processing Standards and Technologies

Current technologies for processing XML data can be grouped into two main categories:
query processors and update and transformation tools. XPath [32] and XQuery [33] are the
two W3C (World-Wide Web Consortium) standards for querying XML data. Xpath is a simple
query language to access parts of an XML document through the specification of path
expressions. Due to its simplicity, XPath is most commonly used as a basis upon which to
build more sophisticated XML processing tools, such as XSLT [34]. XQuery in turn is a

180

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

180180180180180

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

180180

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

180

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

direct extension of XPath. In addition to the concept of path expressions, XQuery supports
query expression in terms of the so called FLOWR (FOR, LET, WHERE, ORDER BY and
RETURN) clauses. These clauses bring extra power and flexibility to the language, as they
allow the specification of multiple nested expressions in the same query. Other advanced
features added by XQuery include a number of built-in operators for processing query results,
such as sort, count and average; support for conditional queries through the logical operators
IF/THEN/ELSE; and support for recursive queries through user-defined functions, which is
XQuery’s mechanism for query encapsulation and abstraction. This latter feature can be of
particular interest to the specification of XML-based refactoring operations, as the
relationships among source code elements in most source code models are recursive in nature.
In contrast to query processing, currently there is no standard way of updating XML data. So
far several XML update languages have been proposed, including XQuery Update [17], the
one proposed by Tatarinovi et al. [28], and XUpdate [36]. XQuery Update is a direct
extension of XQuery but which, along with the language proposed by Tatarinovi et al, suffers
from the lack of adequate tool support. Support for XUpdate, on the other hand, is
continuously increasing, with many professional XML databases adopting it as their native
update language.
XML transformation tools, such as XSLT [34], can also be seen as an updating technology for
XML data, for they can be applied to transform the original XML document into a new
document that reflects the desired changes. Although some types of refactoring operations can
be implemented this way, such an approach would be highly ineffective when only a small
fraction of the code is actually affected by the refactoring – which is likely to be the case for
most refactoring operations used in practice. In addition, it is our experience that refactorings
expressed as document transformations tend to be more cumbersome (and thus more difficult
to specify) than an equivalent specification in a proper update language, for example,
XUpdate.
The next section describes how some of the above source code models and technologies can
be integrated as part of a novel software refactoring process based on XML.

3. An XML-Centric Refactoring Process

Most existing refactoring tools follow a common refactoring process, in which refactoring
operations are applied to a program’s source code according to well-defined steps. In general,
those steps include [21]:

1. Detecting where to apply refactorings in the source code.
2. Determining which refactorings to apply to each selected source code location.
3. Guaranteeing that the chosen refactorings preserve program behavior.
4. Applying the chosen refactorings to their selected source code locations.
5. Verifying that program behavior is actually preserved after the refactorings had

been applied.
Our proposal for an XML-centric refactoring process focuses on steps 3 through 5 of that
general process. We assume that the refactoring tool user is responsible for steps 1 and 2.
Those two steps can be carried out either manually, with the maintainer exploring her own
experience and knowledge of the code, or with the help of semi-automated techniques, such
as metrics and reverse engineering. Metrics, in particular, can offer a promising solution to
automate the task of detecting refactoring opportunities in an existing system source code. A
recent work in this direction is described in [5].

181

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

181181181181181

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

181181

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

181

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

In our process, steps 3 to 5 were further refined to accommodate the necessary suit of XML
data models and processing technologies. The resulting process was then reorganized into the
four new steps, as follows:

1. Conversion of source code to XML.
2. Storage of the generated XML data.
3. Refactoring via XML data manipulation.
4. Conversion of XML to source code

Figure 1 illustrates the relationships among these four steps as part of our XML-centric
refactoring process. The following subsections describe each of these steps in more details.

3.1. Conversion of Source Code to XML

In this step, the user selects the source code files to be converted into the chosen XML
representation. The conversion process is usually carried out by means of automated tools,
such as language parsers or string processing tools. We refer to the tool responsible for this
step as an XML converter.

3.2. Storage of the Generated XML Data

Once the selected source code files have been converted to the corresponding XML
representation, that representation should be stored in some form of repository, so that it can
be effectively accessed and manipulated in later steps. The repository can range from simple
flat files to a fully-fledged commercial XML database. The actual choice depends on the
types of XML processing technologies used in the refactoring step, as well as on several other
factors, such as the amount of source code information to be manipulated, and the level of
performance and/or scalability expected from the refactoring tool.

3.3. Refactoring via XML Data Manipulation

In this step, the user selects which refactorings should be applied to each source code file
converted to XML in the first step. This step is further decomposed into three sub-steps,
namely test of pre-conditions, applying refactoring operations, and checking behavior

preservation. These are described below.

3.3.1. Test of Pre-Conditions. Refactoring pre-conditions are responsible for guaranteeing
the refactoring operation legitimacy. A given refactoring can have multiple pre-conditions. In
the case that at least one of them is not satisfied, the refactoring will not be applied. The pre-
condition concept was introduced by Opdyke [22] and later extended by Roberts [25].

Figure 1: An XML-centric software refactoring process.

1

3

4

Original

Source Code
Code2XML

Modified

Source Code

XML Data

Repository

XML2Code

/

XML Query

Engine

#

XML Update

Engine

-Ref. Operations

Refactorings

Catalog

- Pre-conditions
- Post-conditions2

182

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

182182182182182

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

182182

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

182

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Roberts defines pre-conditions as combinations of Analysis Functions (AFs), which describe
relationships among source code entities (classes, methods, fields, etc). AFs can be grouped
into two categories: primitive AFs and derived Afs. As an example, consider the primitive
AFs IsClass(className), which checks whether className already exists as a defined class
in the source code, and Superclass(className), which returns the superclass of className, if
there is such a class defined in the source code.
A derived AF can be specified in terms of one or more primitive AFs. For example, the
derived AF AllSuperclasses(className) returns the set of all superclasses of className, and
can take one of the following values:

x Ø, when Superclass(className) = Ø; or

x Superclass(className) U AllSuperclasses(Superclass(className)), otherwise.
Since AFs only access source code information, without actually changing it, in our XML-
centric refactoring process they can be expressed using an appropriate XML query language.

3.3.2. Applying Refactoring Operations. Once all preconditions have been validated, the
next activity consists of applying the refactorings themselves. A single refactoring may be
specified in terms of multiple refactoring operations. This feature not only improves
refactoring modularity and reuse, but also provides a powerful abstraction mechanism which
allows higher-level refactorings to be described in a source code model and programming
language independent way. Since each of refactoring operation has the effect of changing the
code, in our XML-centric refactoring process they should be expressed using an appropriate
XML update or transformation language.

3.3.3. Checking Behavior Preservation. After each refactoring operation has been executed,
it is necessary to verify that the modified code still preserves its original external behavior. To
this end, Roberts also introduced the concept of refactoring post-conditions, which are
conditions that must be valid after all refactoring operations of a refactoring have been
applied. As with pre-conditions, refactoring post-conditions vary according to the type and
purpose of each refactoring. Since post-conditions are also limited to access source code
information only, in our process they can also be implemented in terms of AFs expressed
using an appropriate XML query language.

3.4. Conversion of XML to Source Code

Once all refactorings have been applied to the appropriate source code elements in the
repository, their results can be reflected back to the original source code artifacts. This is
usually done using an XML transformation tool. This tool processes the selected source code
elements in the repository according to their target XML scheme, generating an equivalent
textual representation for those elements in their original programming language. We refer to
this second conversion step, from XML back to source code, as reversion, and to the
conversion tool used as an XML reverter.

4. RefaX: An XML-Based Refactoring Framework

The RefaX framework is a proof-of-concept realization of the XML-centric refactoring
process presented in the previous section. In this section, we first discuss the framework’s
main requirements, then elaborate on some of its selected implementation details, and finally
illustrate its use through an example.

183

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

183183183183183

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

183183

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

183

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

4.1. Requirements

The design of RefaX was largely influenced by the requirements of FAMIX [29], a meta-
model for representing object-oriented software entities and their relationships in a language-
independent way. In addition to language independence, in developing RefaX we had also to
consider further requirements specific to the use of XML, such as independence of XML data
model (or scheme), and independence of XML processing technology. These and other
requirements are discussed below:
Scheme-independence – RefaX was designed to support different XML data models for the
same target language. This means that any refactoring operation written for a particular
programming language (say Java), using a specific data model (say XJava), should be easily
applied to source code elements of the same language represented in a different data model
(say JavaML or BuiltyJ).
Language-Independence – RefaX supports the specification of reactorings in varying levels of
abstraction. This makes it easier for the developer to design refactoring operations abstract
enough to be applicable to different programming languages. This requirement is particularly
important in practice, since different languages belonging to the same paradigm usually have
many types of source code entities in common, thus offering a number of opportunities for
refactorings reuse across those languages. In general, the deeper the differences between two
or more programming languages, the higher the level of abstraction necessary for writing
common refactorings to them.
Technology-Independence – RefaX was built following a conscious architectural design, in
which several hot spots are provided so that a developer can easily decouple refactorings
implementation from the suit of XML processing technology (converter, storage medium,
update engine, etc) necessary to execute them. This frees the developer from committing to
any specific technology early in the development process, and also makes it easier to replace
one of more of the chosen technologies for new ones in later stages.
Reliability – Through the verification of pre- and post-conditions, RefaX refactorings are
guaranteed to preserve the external behavior of the code – insofar as those conditions have
been properly defined! In practical terms, this means that new refactorings should always be
designed with great care, especially with regards to their pre- and post-conditions elements.
Scalability – A RefaX refactoring should be effectively applied to systems of varying sizes,
from a few lines of code to millions of lines of code. In practice, the performance of any
RefaX-based tool will largely depend on the scalability of its underlying XML processing
technologies. Since RefaX was designed from the ground-up in a technology-independent
way, tool developers should be able to easily switch to new, more scalable technologies as
they become available.
Other important requirements, such as easy of customization and extension, are intrinsic to
the framework’s object-oriented design, which is described next.

4.2. Selected Implementation Details

At the architectural level, RefaX is organized into a hierarchy of layers, as shown in Figure 2.
The first layer, RefaX Tool, contains all code developed specifically for a RefaX application
(or instance). In this layer, developers are free to use and/or extend any of the framework’s
basic refactoring services. The second layer, RefaX Facade, as the name says, implements the
Facade design pattern [12]. It offers a unified interface for the suit of services implemented in
the layer below. Those services are a Conversion Manager, which abstracts from the details
of any model or language specific conversion technology; RefaX Core, which encompasses a
number of other services for applying refactoring operations and verifying pre- and post-

184

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

184184184184184

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

184184

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

184

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

conditions; and a Reversion Manager, which abstracts from the details of the reversion
technology. Finally, the last layer, XML Data Manager, abstracts from the details of all XML
processing technologies used, including the storage medium, query processor, and update
engine. All three “manager” layers implement one or more instances of the Abstract Factory
design pattern [12].
The RefaX Core services are at the heart of the framework, as they implement some of its
most important requirements, namely, scheme-independence, language-independence, and
reliability. Scheme-independence is achieved by encapsulating all XML data queries that
access source code information directly in the form of scheme-specific XQuery functions
called Code Access Functions (CAFs). To give but two examples, the CAF getClass($doc)

returns all XML nodes that correspond to class definitions in a given XML document $doc,
and the CAF getClassName($class) returns the name of the class represented by a given XML
node $class.
Because CAFs embody knowledge on how source code elements are defined and represented
in XML, as it is the case with getClass and getClassName, which embody knowledge on class
definition, their implementation is always bound to a specific source code model. On the other
hand, functions that call one or more CAFs will be completely ignorant to (and hence isolated
from) the knowledge they embody, thus improving their reusability.
The set of all CAFs for a given source code model constitutes a scheme-specific layer upon
which different sets of scheme-independent analysis functions (AFs) can be specified. In
addition, the framework supports the definition of new AFs as a composition of existing AFs.
This feature, which complies with the notion of primitive and derived analysis functions, as
proposed by Roberts [25], makes it possible to define higher-level AFs in terms of common
language features that are completely independent of a particular programming language.
Since AFs only access source code information, though at a higher abstraction level than
CAFs, they are also implemented by means of XQuery functions.
Refactoring operations in turn are scheme-dependent, as they need to access and change the
source code structure directly. Therefore, they should be implemented using an XML update
language. In the current version of RefaX, we implement refactoring operations as XUpdate
expressions.
Finally, at the source code level, RefaX consists of a Java API (Application Programming

Interface) with the necessary classes and interfaces to implement refactoring tools according
to the XML-centric process described in the previous section. Our choice for Java as the main
implementation language is due to, among other reasons, its platform-independence nature
and, more importantly, the fact that nearly all XML conversion and processing technologies
currently available offer a Java API as a built-in feature.

4.3. An Example Using the Add Attribute Refactoring

Conversion

Manager

RefaX

Core

XML Data Manager

Reversion

Manager

RefaX Facade

RefaX Tool

Analysis
Functions

Refactorings

 RefaX Core

Code Access
Functions

Refactoring

Operations

Figure 2. RefaX layered architecture.

185

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

185185185185185

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

185185

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

185

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

RefaX currently supports several of the language-independent refactorings built upon the
FAMIX meta-model [29]. To illustrate how new refactorings can be implemented using the
RefaX framework, here we briefly discuss the implementation of a particular FAMIX
refactoring, namely AddAttribute(className, attributeName). This refactoring has the effect
of adding an attribute named attributeName to the definition of a given class named
className. Applying the addAttribute refactoring requires that the following pre-conditions
be satisfied:

x There must be no attribute named attributeName in the inheritance hierarchy of the
given class.

x There must be no class named attributeName.

These two pre-conditions were expressed using four AFs, namely IsClass, AllSuperclasses,
AllSubclasses and DefinesAttribute, whose language-independent implementation in XQuery
is shown Figure 3.
From their XQuery expressions we can see that those AFs in turn call five code access
functions (CAFs), namely getClass, getClassName, getSuperclassName, getAttribute, and
getAttributeName. Since they are all scheme-dependent, those CAFs have to be provided
with different XQuery implementations for each of the source code models at hand.
The refactoring itself was implemented through a single refactoring operation, expressed in
XUpdate, which inserts a new attribute element, named attributeName, into the XML-based

declare function IsClass ($doc as element(),
$className as xs:string) as xs:boolean
{
for $c in getClass($doc)
return

 getClassName($c) = $className
};

declare function Superclass ($doc as element(),
$className as xs:string) as element()
{
for $c in getClass($doc)
where getClassName($c) = $className
return

 getSuperclassName($c)
};

declare function AllSuperclasses ($doc as element(),
$className as xs:string) as element()
{
let $d := $doc
return

if (Superclass($d, $className) = string("")) then
 string("")

else
 Superclass($d, $className)
};

declare function DefinesAttribute ($doc as element(),
$attributeName as xs:string) as xs:boolean
{
for $c in getClass($doc),

$a in $getAttribute($c)
return

 getAttributeName($c) = $attributeName
};

Figure 3. XQuery analysis functions used in the AddAttribute refactoring.

186

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

186186186186186

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

186186

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

186

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

definition of the class className in the repository. That refactoring operation, along with its
corresponding implementation in Xupdate, was then encapsulated as a new Java class. The
decision to encapsulate every refactoring operation as a new class has the disadvantage of
increasing the total number of classes necessary to implement a refactoring in RefaX. On the
other hand, having each operation implemented as a separate class also has the advantage that
it facilitates refactorings composition and further improves their reusability.
Finally, to guarantee that the AddAttribute refactoring does preserve the external behavior of
the original program, the following post-conditions must be satisfied:

x The className class defines an attribute named attributeName.

x There is no access to the attributeName attribute.
These post-conditions were implemented in XQuery by calling the following AFs:
DefinesAttribute, which checks whether a given class defines a given attribute; and
MethodsThatAccessAttribute and ConstructorsThatAccessAttribute, which return all class
methods and all class constructors that access a given class attribute, respectively.
It is worthy noting that the Add Attribute refactoring, as it is the case of all other refactorings
supported by the RefaX framework, is specified only in terms of syntactic code constructs. In
practice, syntactic information alone may be insufficient to express a number of other types of
refactoring operations, such as those that require semantic knowledge and dynamic flow
information [21].

5. RefaX Tools

To demonstrate the viability of the RefaX framework, we conducted a case study in which we
used RefaX to implement a refactoring prototype for Java, called RefaX4Java, and other for
C++, called RefaX4C++. Theses two prototypes were useful to investigate the level of
reusability offered by the framework, and to show that its tools satisfy the requirements
discussed in section 4.1. In this section, we describe the set of source code models and
technologies used for each prototype, and discuss some of the issues involved in their
implementation.

5.1. RefaX4Java

We developed two versions of RefaX4Java: one applicable to the JavaML source code model
proposed by Badros 1, which we call Badros's JavaML, and the other applicable to the
JavaML source code model proposed by Mamas and Kontogiannis [19], which we call
M&K's JavaML. With these two versions, we intend to illustrate, in a more concrete way,
how the framework supports the requirements of scheme-independence and technology-
independence.
We chose the two JavaML models because both have converters and reverters freely
available. Moreover, both define XML representations upon which one can easily specify
code analysis functions and refactoring operations, with Badros’s version offering an extra
advantage, since it represents source code entities using shallower node hierarchies. This
characteristic is particularly attractive as it facilitates specification of node removal
operations.
The framework hot spots for each version of RefaX4Java were implemented with the
following technologies:

x Code access functions: code access functions were provided for each JavaML
model according their XML schema;

x Converter: for Badros's JavaML we used Jikes, an adaptation of IBM’s Java
compiler provided Badros himself, while for M&K's JavaML we used RET4J [24], a toolset

187

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

187187187187187

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

187187

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

187

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

for analysis and transformation of Java programs;

x Query engine: the IPSI-XQ query processor [14] was used for both versions, as it
supports the latest XQuey specification;

x Refactoring specification language: XUpdate [36] was used for both versions, as it
is a “real” XML update language that makes it easier to specify update queries;

x XML data repository: Xindice [35], a freely available native XML database, was
used for both versions, as it supports the latest XUpdate specification;

x Update engine: we used the update engine embedded in the XIndice both cases;

x Reverter: for Badros's JavaML we used XSLT transformations provided by Badros
himself, while for M&K's JavaML we again used RET4J.

5.2. RefaX4C++

The RefaX4C++ prototype was developed with the intent of showing that the RefaX
framework satisfies the language-independence requirement. However, in contrast to the Java
prototype, this prototype was much more difficult to implement due to various reasons. First
of all, we found only two XML-based representations for C++, both named CppML. One was
proposed by Mamas and Kontogiannis [19], while the other is provided as part of the
Columbus CAN reverse engineering tool [8]. Of those two representations, only the former
had a converter available, but with no reverter. Since developing a new reverter from scratch
was beyond our goals, we did not implement any support for the reversion step in
RefaX4C++. Another difficulty was due to the fact that the C++ grammar is considerably
more complex than the Java grammar, which required the specification of a greater number of
analysis functions, code access functions, and refactoring operations to cover the
particularities of the language. Refactoring operations were also more difficult to implement,
due to the increased complexity of the underlying XML scheme.
The framework hot spots for RefaX4C++ were implemented with the following technologies:

x Code access functions: the code access functions were implemented according to
the XML schema used in Columbus CppML model;

x Converter: we used the one provided by Columbus CAN;
For all the other hot spots, with the exception of the reverter, which was not available, we
used the same set of technologies used to implement RefaX4Java.

5.3. An Example

To give a more concrete example of how the requirements of scheme-independence and
language-independence can be achieved with the framework, Table 1 shows the XQuery
implementation of the set of code access functions used in the Add Attribute refactoring for
each of the two JavaML models and CppML. It should be noted that those functions only
return references to XML nodes or strings, which in turn can be manipulated by higher-level
analysis functions without concern about their internal structure.
As described in section 4.2, refactoring operations are scheme-dependent and thus need to be
implemented separately for each source code model at hand. Figure 4 shows the XUpdate
expression for the Add Attribute refactoring operation in Badros’s JavaML representation. An
example of the results of applying this operation to a Java code fragment, represented in
Badros’s JavaML, is given in Figure 5. Due to space restrictions, we omit the XUpdate
implementation of that operation for M&K’s JavaML and CppML. It should be noted that this
particular refactoring only requires modifications to a single class. Refactorings that involve
modifying multiple classes, such as the Rename Class refactoring, can also be easily
expressed using XUpdate’s node match and update capabilities.

188

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

188188188188188

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

188188

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

188

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

6. Related Work

Even though refactoring techniques have only been recently proposed, at least when
compared to other more traditional maintenance techniques, there is already a considerable
body of work available in this area. A recent survey can be found in [21]. Here we focus only
on those works that are more closely related to ours.
In [19], Mamas and Kontogiannis describe an integrated software maintenance environment,
called ISME, upon which developers can build new maintenance tools via the integration of
existing CASE tools. The ISME environment can be regarded as an extra abstraction layer
sitting between the source code being maintained and the maintenance tools. Although we
share some of Mamas and Kontogiannis’s research goals and techniques, particularly the use
of XML-based source code representations to improve tool customization and reuse, their
work differs from ours in that they do not apply XML technologies to actually manipulate
source code information. Instead, they use XML only as a standard software exchange format
to facilitate integration among ISME’s constituent tools. For source code manipulation they
still rely on the internal (i.e., closed) representations and processing mechanisms provided by
an external manipulation tool.

Table 1. Examples of XQuery code access functions and their implementation in
three different XML-based source code representations.

Representation-specific Implementation
Code Access Function

 JavaML (Badros) JavaML (M&K) CppML

getClass($doc) $doc//class $doc//ClassDeclaration $doc//Class

getClassName($cls) $cls/@name
$cls/UnModifiedClassDeclaration/
@Identifier

$cls/@name

getSuperclass($cls) $cls/superclass
$cls/UnModifiedClassDeclaration/
Name

(unsupported)

getSuperclassName($scls) $scls/@name $scls/@Identifier $scls/@name

getAttribute($cls) $cls//field $cls//FieldDeclaration $cls//Object

getAttributeName($att) $att/@name
$att/VariableDeclaratorId/
@Identifier

$att/@name

getMethod($cls) $cls/method $cls//MethodDeclaration
$cls//Function
[@kind=“fnkNormal”]

getConstructor($cls) $cls/constructor $cls//ConstructorDeclaration
$cls//Function
[@kind=“fnkConstructor”]

<xupdate:modifications version="1.0"
 xmlns:xupdate="http://www.xmldb.org/xupdate">
 <xupdate:insert-after select="/java-source-program/java-class-
file/class[@name='className']/superclass">
 <xupdate:element name="field">
 <xupdate:attribute name="name">attributeName</xupdate:attribute>
 <xupdate:attribute name="visibility">private</xupdate:attribute>
 <xupdate:element name="type">
 <xupdate:attribute name="name">Object</xupdate:attribute>
 </xupdate:element>
 </xupdate:element>
 </xupdate:insert-after>
</xupdate:modifications>

Figure 4. XUpdate implementation of the AddAttribute refactoring operation using
Badros’s JavaML representation.

189

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

189189189189189

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

189189

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

189

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

In [29], Tichelaar et al. describe FAMIX, a language-independent source code meta-model.
FAMIX has been used to develop a variety of language-independent maintenance tools,
including a refactoring engine, named Moose, for both Java and Smalltalk programs. The
work on FAMIX differs from ours in that they focus exclusively on the language
independence requirement. In particular, Moose relies on a set of in-house source code
models and manipulation mechanisms, which may be difficult to reuse outside their own
execution environment.
Another similar work has been recently reported by Collard in [7], where he proposes an
infrastructure to support (semi) automated construction of refactorings via a fine-grained
syntax level differencing approach. The general approach is built on top of an XML
representation of the source code, specifically srcML. The underlying idea is that, by
comparing the syntactic differences between two scrML versions of the same code, with one
version representing the code in its original state and the other representing the code after it
has been manually modified by a developer, it should be possible to infer which refactoring
operations have been applied and how. Collard suggests using XSLT [34] to capture that
information, so that the detected refactorings could be easily checked and re-executed. That
work differs from our work on RefaX in several points. First, Collard uses a fixed set of
source code representation and transformation technology (srcML and XSLT, respectively)
while we leave that decision open for the developer, so that she can choose the representation
and technology that best suit her needs. Second, Collard does not consider pre and post
conditions as part of the refactoring detection process, which may comprise the applicability
of the detected refactorings in a real-world maintenance scenario. Another significant

Figure 5. A Java code fragment (top right) and its corresponding representation in
Badros’s JavaML (bottom), as modified by the AddAttribute refactoring operation.

The added code is highlighted in boldface.

<?xml version="1.0" encoding="UTF-8"?>
<java-source-program>
<java-class-file name="Client.java">
<package-decl name="client"/>
<import module="clientFunctions"/>
<class name="Client" visibility="public" line="5" col="0"
end-line="12" end-col="0">
 <superclass name="Object"/>

<field name="attName" visibility="private" line="6" col="2"
end-line="6" end-col="21">
 <type name="Object"/>
 </field>

 <field name="name" visibility="private" line="7" col="2"
end-line="6" end-col="21">
 <type name="String"/>
 </field>
 <method name="getName" visibility="public" id="Client_mth-20"
line="7" col="2" end-line="9" end-col="2">
 <type name="String"/>
 <formal-arguments/>
 <block line="7" col="26" end-line="9" end-col="2">
 <return><var-ref name="name"/></return>
 </block>
 </method>
</class>
</java-class-file>
</java-source-program>

package client;
import clientFunctions;
public class Client {
 private String name;
private Object attName;

 public String getName() {
 return name;
 }
}

190

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

190190190190190

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

190190

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

190

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

difference is that Collard’s approach focuses on detecting new refactorings from the syntactic
differences between XML representations derived from two different versions of the same
source code, while RefaX promotes implementation and reuse, in a flexible way, of well-
known refactorings already described in previous works.

7. Conclusions and Future Work

This paper presented RefaX, an XML-centric refactoring framework aimed at facilitating the
development of flexible refactoring tools. RefaX provides refactoring tool developers with a
number of services to support, among other activities, conversion of source code artifacts into
an XML representation; storage of the converted artifacts in the form of an XML-based
repository; verification and execution of refactoring operations upon the repository data; and
conversion of the (updated) XML representation back to its original textual format. Our main
results can be summarized as follows:

x Developing refactoring tools with RefaX not only proved feasible, as we have
shown with the two refactoring prototypes for Java and C++, but also increased
our confidence that using XML as a standard way to decouple process from
technology can be an effective contribution towards the development of more
flexible software maintenance tools.

x The use of open, XML-based models and processing standards, in a technology
independent way, can offer developers with a greater degree of flexibility in
choosing an appropriate set of tools at each step of the refactoring process.

x The requirements of scheme and programming language independence, as
supported by the RefaX framework, bring an additional contribution towards
promoting refactorings reuse across different source code models, different
programming languages, and even different software maintenance
environments.

We are currently working to increase the number of refactorings available in the framework,
so as to assess the adequacy and pragmatic useability of the proposal. Of particular
importance is to investigate how difficult it is to define and implement correct refactoring
operations. We also intend to build more refactoring prototypes for other programming
languages, particularly those with a well-defined XML-based source code representation
already available. Furthermore, it is our interest to apply RefaX-based tools (such as
RefaX4Java and RefaX4C++) to systems of varying sizes and application domains, so as to
investigate the performance and scalability of their underlying XML processing tools, and to
compare them with existing refactoring tools for the same target languages. Another natural
line for future work is to integrate RefaX tools with existing IDE’s, so as to improve their
usability. Finally, we believe that our set of XQuery-based analysis and code access functions
could also be useful as a basis upon which to develop other types of maintenance tools,
including tools for metrics, program analysis, and reverse engineering. Work in this direction
is underway [10].

References

1. Badros, G. J. JavaML: A Markup Language for Java Source Code. Proc. of the 9th
International World Wide Web Conference (WWW9), Amsterdam, Netherlands, May
2000.

2. BeaultyJ Home Page. Available at http://beautyj.berlios.de/beautyJ.html. Accessed on
04/03/2004.

3. Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.
4. C# Refactoring Tool home page. Available at http://dotnetrefactoring.com/. Accessed on

191

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

191191191191191

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

191191

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

191

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

04/03/2004.
5. Carneiro, G., Mendonça, M. Relacionando Refactorings e Métricas de Código Fonte –

Um Primeiro Passo para Detecção Automática de Oportunidades de Refactoring. Proc. of
the XVII Simpósio Brasileiro de Engenharia de Software (SBES 2003), Manaus,
Amazonas, Brasil, October 2003, pp. 51–66.

6. Collard, M. L, Kagdi, H. H., Maletic, J. I. An XML-Based Lightweight C++ Fact
Extractor. Proc. of the 11th IEEE International Workshop on Program Comprehension
(IWPC ‘03), Portland, USA, May 2003.

7. Collard, M. L. An Infrastructure to Support Meta-Differencing and Refactoring of Source
Code. Proc. of the 18th IEEE International Conference on Automated Software
Engineering, Doctoral Symposium, Montreal, Quebec, Canada, October 2003.

8. Columbus Home Page. Available at http://www.frontendart.com/. Accessed on
28/04/2004.

9. Exist Home Page. Available at http://exist.sourceforge.net. Accessed on 04/03/2004.
10. Fonseca, L. A., Mendonça, N. C., and Maia, P. H. M. Towards Reusable Code Analysis

Tools Using Standard XML Technologies. Proc. of the I Workshop de Ciências da
Computação e Sistemas da Informação da Região Sul (WORKCOM-SUL), Palhoça, SC,
May 2004.

11. Fowler, M. Refactoring: Improving the Design of Existing Programs. Addison-Wesley.
1999.

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

13. Holt, R. C., Winter, A., and Schürr, A. GXL: Toward a Standard Exchange Format. Proc.
of the 7th Working Conf. on Reverse Engineering (WCRE’00), Brisbane, Australia,
November 2000, pp. 162–171.

14. IPSI-XQ Home Page. Available at http://www.ipsi.fraunhofer.de/oasys/projects/
ipsixq/index_e.html. Accessed on 04/03/2004.

15. JFactor Home page. Available at http://www.instantiations.com/jfactor/. Accessed on
04/03/2004.

16. Jikes Home page. Available at http://www-124.ibm.com/developerworks/oss/jikes/.
Accessed on 04/03/2004.

17. Lehti, P. Design and Implementation of a Data Manipulation Processor for an XML
Query Language. Ph.D. Thesis, Technical University of Darmstadt, Germany, 2001.

18. Maletic, J.I., Collard, M.L. and Marcus, A. Source Code Files as Structured Documents.
Proc. of the10th Int. Workshop on Program Comprehension (IWPC ’02), Paris, France,
June 2002, pp. 289–292.

19. Mammas, E. and Kontogiannis, C. Towards Portable Source Code Representations Using
XML. Proc. of the 7th Working Conf. on Reverse Engineering (WCRE’00), Brisbane,
Australia, November 2000, pp. 172–18.

20. Mayrhauser, A. and Marie Vans, A. Program Comprehension During Software
Maintenance and Evolution. IEEE Computer, Vol. 28, No. 8, pp. 44–55, August 1995.

21. Mens, T. and Tourwé, T. A Survey of Software Refactoring. IEEE Transactions on
Software Engineering, Vol. 30, No. 2, February 2004.

22. Opdyke, W. F. Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Aplications Framework. Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign, 1992.

23. Pressman, Roger S. Software Engineering – A Practitioner’s Approach. McGraw-Hill, 5th
Edition, 2000.

24. Ret4J Home Page. Available at http://www.alphaworks.ibm.com/tech/ret4j. Accessed on
04/03/2004.

25. Roberts, D. B. Practical Analysis for Refactoring. Ph.D. Thesis, Univ. of Illinois at

192

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

192192192192192

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

192192

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

192

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Urbana-Champaign, 1999.
26. SAX Home page. Available at http://www.saxproject.org. Accessed on 04/03/2004.
27. Tamino Home Page. Available at http://www.softwareag.com/tamino. Accessed on

04/03/2004.
28. Tatarinovi, I., Ives, Z. G., Halevy, A. Y., Weld, D.S. Updating XML. Proc. of ACM

Special Interest Group on Management of Data (SIGMOD 2001), California, USA, May
2001.

29. Tichelaar, S. et al. A Meta-model for Language-Independent Refactoring. Proc. of the
International Symposium on Principles of Software Evolution (ISPSE 2000), Kanazawa,
Japan, November 2000.

30. W3C. Document Object Model (DOM). Available at http://www.w3.org/DOM. Accessed
on 04/03/2004.

31. W3C. Extensible Markup Language (XML). Available at http://www.w3.org/ TR/xml.
Accessed on 04/03/2004.

32. W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation November 1999.
Available at http://www.w3.org/TR/xpath. Accessed on 04/03/2004.

33. W3C. XQuery 1.0: An XML Query Language. W3C Working Draft 12 November 2003.
Available at http://www.w3.org/TR/xquery/. Accessed on 04/03/2004.

34. W3C. XSL Transformations (XSLT) Version 1.0. W3C Recommendation November
1999. Available at http://www.w3.org/TR/xslt. Accessed on 04/03/2004.

35. XIndice Home Page. Available at http://www.xreftech.com/. Accessed on 04/03/2004.
36. XML:DB. XUpdate – XML Update Language Working Draft. Available at

http://www.xmldb.org/xupdate/. Accessed on 04/03/2004.

193

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

193193193193193

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

193193

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

193

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

