
RUP Based Analysis and Design with Aspects

Leonardo Cole
1*
, Eduardo Kessler Piveta

2
, Augusto Sampaio

1†

1
Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N,

Recife PE, Brazil 50732-970, + 55 81 32718430
2
Computing Security Lab (LabSEC), Federal University of Santa Catarina, University

Campus P.O.Box 476, Florianopolis SC, Brazil 88040-900, +55 48 3319498
e-mail: lcn@cin.ufpe.br, kessler@inf.ufsc.br, acas@cin.ufpe.br

Abstract

Aspect-Oriented Software Development (AOSD) is a new paradigm aiming to solve problems that are not
adequately addressed by the Object-Oriented paradigm. Therefore, it seems appropriate to adapt software
processes showing when and how crosscutting concerns should be considered. The Rational Unified Process
(RUP) is one of the most widely used software development processes focusing on object-oriented software
development, but RUP was not originally conceived considering separation of crosscutting concerns. This work
proposes adjustments to one of the most affected RUP disciplines, Analysis and Design, in order to use new
concepts and techniques of AOSD. A case study is developed to validate the proposed approach.

1. Introduction

Aspect-Oriented Software Development (AOSD) is a term to denote the use of Aspect

Oriented Programming [8] during software development process. It is a new paradigm that

comes to complement the Object-Oriented (OO) paradigm, solving problems that are not

adequately solved by the later [13, 14]. These problems are related to the implementation of

some concerns that are generally spread throughout the system (code scattering). In addition,

this code is generally not related to the behaviour implemented in the context where it appears

(code tangling).

AOSD implements these crosscutting concerns in a system as first class entities (named

aspects). Each aspect defines behaviour that should be added to specific points in the

program. This structure enables the separation and modularization of crosscutting concerns.

The Rational Unified Process (RUP) [9] is one of the most widely used software development

processes. It defines disciplines, workflows, activities, roles and artifacts that control the

software development, aiming to produce software with quality, on budget and within

schedule. The RUP is designed to model an object-oriented process. It was not originally

conceived to consider a different paradigm, as AOSD. On the other hand, as a process

framework, the RUP can be specialized to specific domains and extended to incorporate new

concepts and paradigms. Hence, it is possible (and seems appropriate) to adapt the RUP,

analyzing when and how to consider the modelling of crosscutting concerns as aspects.

This work focuses on the Analysis and Design discipline. We show the adaptations to each

activity in this workflow, suggesting changes and also including new activities. Thus, our

main contribution is a set of guidelines on how to use AOSD with the RUP Analysis and

Design discipline. Despite our focus on this discipline, others, such as Requirements and

*
Supported by CAPES.

†
Partially supported by CNPq, grant 500895/2003-1.

210

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

210210210210210

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

210210

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

210

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



Implementation, are also considered. We discuss related work on the Requirements discipline

which is the main input to Analysis and Design.

In particular, this work can be regarded as an extension of a previous work [15], where some

new roles and activities to the Analysis and Design discipline in the presence of aspects are

suggested. Here we further develop the ideas to propose a more precise description of the

necessary adaptations to the RUP Analysis and Design (A&D) discipline. We give an

overview of each workflow detail, proposing changes to the related activities and suggesting

the creation of new ones. Moreover, we develop a case study to validate the proposed

approach.

This paper is organized as follows. Section 2 gives an overview of the RUP singling out the

Analysis and Design discipline. Next, we introduce the Requirements discipline making use

of aspects in Section 3. Then we suggest the necessary adaptations to the Analysis and Design

discipline in Section 4. In Section 5 we develop a case study based on the Analysis and

Design discipline proposed. Section 6 discusses our conclusions, related and future work,

presenting some suggestions and guidelines for the Implementation discipline.

2. The Rational Unified Process

The Rational Unified Process (RUP) [9] is a software engineering process. It can be viewed as

a framework which is extensible to be adapted for particular project needs. It provides a

disciplined approach to assigning tasks and responsibilities within a development

organization. Its goal is to ensure the production of high-quality software that meets the needs

of its end users within a predictable schedule and budget.

RUP is an object-oriented and Web-enabled software development process. It provides

guidelines, templates, and examples for all aspects and program development phases. RUP

and similar products, such as Catalysis [5] and the OPEN Process [6], are comprehensive

software engineering tools that combine defined stages, techniques, and practices with other

components of development (such as documents, models, manuals, code, and so on) within an

unifying framework.

RUP establishes four development phases, each is organized in iterations that must satisfy

defined criteria before the next phase is undertaken. The first phase is the inception, where

developers define the scope of the project and its business case. Next, in the elaboration

phase, developers analyze the project’s needs in greater detail and define its architectural

foundation. In the construction phase, developers create the application design and source

code. Finally, in the transition phase, developers deliver the system to users. Using RUP

allows the production of a functional prototype at the completion of each iteration. The way

interactions and phases take place should be configured according to specific projects

necessities and technologies.

There are four primary modelling elements: roles, activities, artifacts and workflows. Roles

represent behaviours and responsibilities of the development team participants (i.e. system

analysts, architects, designers). Activities are the work performed by the roles (i.e. find use

cases and actors, review the design and execute a performance test). Artifacts are formation

produced or used by the roles to perform activities (i.e. software architecture ocument, design

model).

Workflows (or disciplines) describe the sequence of activities that produce some value result

and show the interactions among roles. There are nine workflows considered in RUP:

Business Modelling, Requirements, Analysis and Design, Implementation, Test, Deployment,

Configuration and Change Management, Project Management, and Environment. Besides the

last three ones, most of the artifacts produced in one workflow are part of the input to the

next.

211

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

211211211211211

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

211211

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

211

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



Requirements goals are to establish and maintain agreement with the customers and other

stakeholders on what the system should do. It also provides a better understanding of the

system domain and behaviour, allowing the definition of the the system´s scope and user-

interface. In addition, it enables the estimation of costs and time to develop the system.

The purpose of Analysis and Design is to transform the requirements into a concrete design of

the system, to construct a robust architecture for the system and to adapt the design to match

the implementation environment. More details on this discipline are given in Section 4.

Implementation defines the code organization, structuring subsystems in layers. In this phase,

the design elements are mapped to implementation elements (source files, binaries,

executables, and others) and unit tests are performed to produce an executable system using

the components produced by individual implementers (or teams).

This work focuses on the Analysis and Design discipline. However, it is important to consider

the Requirements and the Implementation disciplines as they, respectively, generate part of

the input and use part of the output produced by the Analysis and Design discipline. We only

discuss those three disciplines, as the others are beyond the scope of this work.

3. Requirements Assumptions

The phase where aspects should be introduced during the software development process

should be as early as possible [18, 19]. Early separation of crosscutting properties supports

effective determination of their mapping and influence on latter development phases. Rashid

et al. propose a generic model for Aspect Oriented Requirements Engineering (AORE) [18,

19]; some of the activities suggested can be seen in Figure 1(a).

An extension for the AORE model [22] suggests an adaptation to the NFR-Framework (Non-

Functional Requirements-Framework) [4]. This adaptation is more adequate to deal with NFR

operationalizations in the context of AORE because it better reflects how the crosscutting

concern will be implemented. Therefore, it improves the composition and the mapping of

crosscutting requirements onto artifacts at later development phases. Figure 1(b) shows the

extended model.

We adopt the Requirements discipline considering aspects as described in [22] and thus we

assume the existence of an artifact containing the aspect information as an input to the

Analysis and Design discipline. This artifact describes, for instance, the mapping of the NFR

operationalizations with respect to artifacts to be generated at later stages. Figure 2 shows an

example of this information representation.

4. Analysis and Design Adaptations

This section presents the main contribution of this work. It is structured similar to the way

RUP explains its workflow details and activities. We show a brief description of the workflow

detail, and then we show the activities that compose it and the necessary steps to execute

them. Only the activities affected by AOSD are presented and their descriptions include only

the information relevant to AOSD. Some of them appear in more than one workflow detail. In

these cases, only additional information and differences are showed. The repeated activities

that do not change are only presented the first time they appear.

212

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

212212212212212

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

212212

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

212

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



(a) AORE Generic Mode. (b) Adaptation of the NFR-Framework.

Figure 1. AORE and NFR-Framework Models.

The Analysis and Design discipline is composed of six workflow details: Perform

Architectural Synthesis, Define a Candidate Architecture, Refine the Architecture, Analyze

Behaviour, Design Components and Design the Database. Each workflow detail is composed

of some activities and describes what to be done, which role is responsible and what are the

artifacts produced or updated. This workflow can be seen in Figure 3.

The dynamics of the Analysis and Design discipline indicates how the workflow details are

executed during RUP phases and interactions. This perspective of the Analysis and Design

does not change from the already defined in RUP. Figure 4 shows the distribution of the

workflow details during RUP phases.

In the Inception Phase, Analysis and Design is concerned with establishing whether the

system as envisioned is feasible, and with assessing potential technologies for the solution (in

Perform Architectural Synthesis). If it is felt that little risk attaches to the development then

this workflow detail may be omitted.

The early Elaboration Phase focuses on creating an initial architecture for the system (Define

a Candidate Architecture) to provide a starting point for the main analysis work. If the

architecture already exists, the work will focus on changes to refine the architecture (Refine

the Architecture). In addition, it is necessary to provide the appropriate behaviour by

analyzing behaviour and creating an initial set of elements (Analyze Behaviour).

After these elements are identified, they are further refined. The activity Design Components

produces components to provide the appropriate behaviour to satisfy the system requirements.

If the system includes a database, then the activity Design the Database occurs in parallel.

The resulting components are further refined in the Implementation discipline.

Concerning roles and artifacts, we believe that the roles are only affected by the way each one

executes its activities. We do not create or change any role. The artifacts, mainly diagrams,

must be changed to represent aspect concepts. In Section 5, we use the aSide Modelling

Language [3] to represent aspects as an extension of UML diagrams.

213

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

213213213213213

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

213213

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

213

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



Figure 2. Mappings of NFR operacionalizations.

4.1. Perform Architectural Synthesis

The intent of this workflow detail is to construct and assess an Architectural Proof-of-Concept

to demonstrate that the system, as envisioned, is feasible. It is conducted during the inception

phase and is the responsibility of the Architect.

4.1.1. Architectural Analysis. The purpose of this activity is to define a candidate

architecture for the system, based on experience obtained from similar systems or in similar

problem domains and to define the architectural patterns, key mechanisms, and modelling

conventions for the system. This activity includes the following steps adopted to consider

AOSD.

• Survey Available Assets: In addition to regular assets consideration, this step should

also look for assets related to aspects. For instance, a framework or component that

may assist on the system architecture construction.

• Identify Key Abstractions: The abstractions selected in this phase should include the

ones necessary to use the aspects uncovered in the Requirements discipline, guiding

the architect on the Architectural Proof-of-Concept construction considering aspects.

• Develop Deployment Overview: The geographical distribution study in this step

should consider the possibility of modelling distribution as an aspect.

4.1.2. Construct Architectural Proof-of-Concept. The purpose of this activity is to

synthesize at least one solution (which may be conceptual) that meets the critical architectural

requirements. It must incorporate critical aspects as they also need validation.

4.1.3. Assess Viability of Architectural Proof-of-Concept. In this activity, the synthesized

Architectural Proof-of-Concept is evaluated to determine whether the critical architectural

requirements are feasible and could be satisfied (by this or any other solution). It is important

to consider the critical aspects that influence the architecture. For instance, the aspects signed

as architectural decision, during the requirements discipline, directly contribute to the

architecture construction.

214

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

214214214214214

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

214214

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

214

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



Figure 3.Analysis and Design Workflow.

Figure 4. Dynamic Distribution of Workflow Details.

4.2. Define a Candidate Architecture

The purpose of this workflow detail is to create an initial sketch of the software architecture.

Although modelling crosscutting concerns as aspects usually simplifies the architecture in

general, most of the architectural modelling decisions must be aware of aspects because the

architecture is directly affected by them. In addition, it is also important to work on subsystem

and component interfaces, preparing them to offer the necessary join points to the aspects,

although it is not mandatory. Thus, the architect should keep the aspects in mind even when

modelling a simple architecture. However, some architectural decisions may be postponed

because the aspects allow its future implementation in a non-invasive way. The architecture is

also influenced by the goals, that map to architectural decision, as identified during the

requirements workflow (see Section 3).

4.2.1. Architectural Analysis

• Define the High-Level Organization of Subsystems: This step should relate aspects

to the layering organization and consider adaptations necessary to the patterns

adopted.

• Identify Key Abstractions: The goals identified during requirements, which maps to

an architecture decision, should be considered in this step.

215

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

215215215215215

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

215215

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

215

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



• Identify Analysis Mechanisms: Decide which mechanisms map to aspects and make

architecture understanding easier. Almost all the architectural mechanisms (for

example, persistence and transaction management) can be represented as aspects.

4.2.2. Use Case Analysis

• Find Analysis Aspects (New Step): Considering the mapping suggested in the

Requirement discipline (see Section 3), the designer should identify the model

elements capable of achieving the requirement goals.

• Distribute Behaviour to Analysis Classes: Include aspects on the collaborations,

showing aspects dependencies and responsibilities.

• Describe Responsibilities: In this step, the designer should describe the

responsibilities of identified aspects.

• Describe Attributes and Associations: The designer should identify and define other

classes and aspects on which the already identified aspects depends. It is also

necessary to identify the classes affected by aspects and possibly determine the

pointcuts used by them.

• Qualify Analysis Mechanisms: This step considers only the mechanisms not

modelled as aspects.

4.3. Refine the Architecture

This workflow detail provides the natural transition from analysis activities to design

activities, identifying: appropriate design elements from analysis elements and appropriate

design mechanisms from related analysis mechanisms. It also describes the organization of

the system’s run-time and deployment architecture. The implementation model is organized to

make the transition between design and implementation seamless. It is important to maintain

the consistency and integrity of the architecture, ensuring that: new design elements identified

for the current iteration are integrated with pre-existing design elements, and maximal re-use

of available components and design elements is achieved as early as possible in the design

effort.

4.3.1. Identify Design Elements. As aspects implement a set of concerns, this activity should

include aspects on relationship diagrams and descriptions.

• Identify Events and Signals: This step should consider identifying the pointcuts

required by aspects.

• Identify Classes, Active Classes and Subsystems: Refine the aspects identified

during analysis and their relations to the new design elements. This step identifies the

active classes (threads), therefore, concurrency should be considered during this

activity. Concurrency is a common example of crosscutting concern. Generally, its

effects are spread throughout the processes and consequently over different modules.

Hence, concurrency control is a good candidate to be implemented as an aspect.

• Identify Subsystem Interfaces: Subsystems affected by aspects should provide an

interface with the necessary pointcuts to be used by the affecting aspects. However,

those interfaces must be clear and can not brake its intended contract.

4.3.2. Identify Design Mechanisms. As a refinement of the step Qualify Analysis

Mechanisms in activity Use case Analysis, this activity considers only the mechanisms not

implemented as aspects.

216

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

216216216216216

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

216216

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

216

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



4.3.3. Incorporate Existing Design Elements.

• Identify Reuse Opportunities: Look for similarities and probably unification of

interfaces affected by aspects. Another important consideration in this step is the

identification of common aspect features as an indicative of an abstract aspect. This

step also defines patterns used to refine the architecture. There are several patterns

suggested to use aspects in a more organized way that should be considered in this

step. For instance, the PaDA [20] is a pattern for distribution using aspects.

4.3.4. Describe Distribution. As a refinement to the Deployment Model created during

Architectural Analysis, this activity is influenced by the use of AOSD only if the distribution

is modelled with aspects. In this case, this activity should refine the Deployment Model to

reflect the current design, showing how the distribution aspects affect the deployment

configuration.

4.3.5. Describe the Runtime Architecture. This activity is mainly focused on processes and

its organization. It identifies processes, how they communicate, their life cycle and finally

how they share resources. Thus, new threads can be identified during this activity, implying

on changes to concurrency policies. If concurrency is modelled with aspects, the aspects

should be modified to control the new threads.

4.4. Analyze Behaviour

The purpose of this workflow detail is to transform the behavioural descriptions provided by

the requirements into a set of elements upon which the design can be based. It occurs in every

iteration where the necessary behavioural requirements are still not analyzed.

The activities concerning user interface are not affected by the use of AOSD. Other activities

specified in this workflow detail (Use Case Analysis and Identify Design Elements) are

affected and were already defined (see Sections 4.2 and 4.3).

4.5. Design Components

The purpose of this workflow detail is to refine the system design. The activities described are

not directly affected by the use of AOSD. However, it is necessary to create a new activity

called Design Aspects.

4.5.1. Design Aspects (New Activity). The purpose of this activity is to ensure that enough

information is provided to unambiguously implement the aspects, to refine already identified

join points, and to identify the pointcuts and advices.

Define Priorities and Precedence: This decisions should be based on the conflict identification

and resolution from IdentifyDesign Mechanisms in the Refine the Architecture workflow

detail.

• Define Pointcuts: This step is responsible for grouping join points on which the

aspect depends, creating the necessary pointcuts and deciding the context that should

be exposed to advices. It is necessary to put together all the join points that are

similarly affected and are able to expose the same context. This step can also define

abstract pointcuts to be used by advices. Those pointcuts can be further defined in a

concrete aspect.

• Define Advices: Specify only the kinds of advice (i.e. before, after and around) and

the context exposure based on the identified pointcuts.

217

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

217217217217217

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

217217

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

217

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



• Define Structure Influence: This step is responsible for specifying how the aspects

change the class hierarchy, identifying the new relationships. It also defines how

aspects introduce behaviour to classes, indicating which attributes and methods must

be introduced.

5. Example

This section shows an enactment of the proposed Analysis and Design discipline in the

context of a commercial system. The Health Watcher [21] is a real web based system intended

to improve the quality of the services provided by health care institutions. By allowing the

public to register several kinds of health complaints, such as complaints against restaurants

and food shops, health care institutions can promptly investigate the complaints and take the

required actions. The system has a web-based user interface for registering complaints and

performing several other associated operations.

For simplicity, we work only with a subset of use cases of the original system. Figure 5 shows

the use case diagram for the chosen ones. The system has two actors: users, who can add a

complaint to the system, and employees, who needs authentication to change the complaint

status. The use case details can be seen in Figure 6.

Figure 5. Use Case Diagram for the Health Watcher System.

We also simplified the non-functional requirements considering only one to be analyzed and

modeled with aspects. The non-functional requirement used is distribution. Although

persistence could also be modeled with aspects [16, 17, 2], it would increase the complexity

of the example making it difficult to understand.

The system should be distributed separating the execution of user interface from the business

related processes. This separation provides better scalability, performance and availability.

The Requirements discipline execution according to the model previously described [22] (see

Section 3) produces an indication that this non-functional requirement would generate an

aspect. Only during design we will find out that this aspect crosscuts all three use cases.

The HealthWatcher system uses an existing architecture model. Hence we skip the Perform

Architectural Synthesis workflow detail and begin with the Define a Candidate Architecture

during the elaboration phase. In order to achieve modularity and extensibility, a layered

architecture and associated design patterns [7, 11] are used in the system. This layered

architecture helps to separate data management, business, communication (distribution), and

presentation (user interface) concerns.

218

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

218218218218218

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

218218

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

218

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



Figure 6. Use Case Details.

The Architectural Analysis during elaboration, only identifies and creates an analysis element

to represent the aspects that influence the architecture. Analysis elements should also be

created to represent the aspects indicated in requirements. Next, the Use Case Analysis

activity identifies the analysis elements according to the chosen architecture. For each

identified entity, there is a related class that represents an entity collection. In addition, each

use case has an interface and a controller. The resulting architecture with the identified

analysis elements is shown in Figure 7. For now, the distribution aspect has no relations, as

we do not know how it will affect the other analysis elements.

There are several approaches to model aspect-oriented systems [25, 24, 27, 3]. Our solution is

not attached to a particular modelling language, however we chose the aSide [3] modelling

language for it is less dependent on a programming language. The aSide modelling language

is an extension to UML to represent the aspects design. In the aSide (see Figure 7), the

diamond shape represents an aspect. The crosscutting interfaces (the way aspects crosscuts

other elements) are represented as circles attached to the aspects. The rectangle on the right

contains the crosscutting interfaces and their affecting parameters
1
. For simplicity, we do not

expand the aspect representation and focus only on its relationships. More details are

explained as the need arises during the example development.

1
Crosscutting interfaces represent affecting roles, they may have associated parameters that represent how

theaffected class changes behaviour.

219

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

219219219219219

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

219219

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

219

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



Figure 7. Analysis Elements.

The next workflow detail is Analyze Behaviour. For a matter of space, we omit the activities

related to user interface and data base design. Hence, we start with the activity Identify Design

Elements. First, we choose to use the Facade [7] design pattern to provide a single access

point to the system business rules. Thus, the controllers used by the interface elements merge

into a single design element, which is the system facade. We also choose to use servlets to

implement the user interface. Thus, each interface element generates a servlet in the design.

The entity collections are designed with the PDC pattern [11], which consists of a structure

that uses four classes for each entity. One is the entity record, which is responsible for the

business logic related to the entity. Another is the repository interface, which is a simple

interface providing operations to store a collection of entities. It is also necessary to provide

an implementation to the repository interface. Finally, there is a class to represent the entity

itself. Thus, each entity collection originates three classes: an entity record, an interface to an

entity repository, and the repository implementation. As a consequence, we may have

different repository (persistence) implementations without affecting other parts of the system.

We choose to represent the distribution requirement with a client/server model, where the

clients are the user interface elements and the server is the system facade. As a result, we

create two design elements from the analysis aspect, one is the client aspect and the other is

the server aspect. Figure 8 shows the resulting architecture.

At this point, we carry out activity Use Case Analysis again. This time we focus on design

elements behaviour and relationships. For simplicity, we describe only what is necessary to

understand the aspects design. Starting with the server aspect, it is necessary to identify how it

will affect other classes. In a client/server model, the server should make the system façade

remote. Thus, we create a crosscutting interface (Remote) indicating that the affected object

will become remote. The other concern relative to the server aspect is to allow the necessary

objects to be transported through the remote channel. Thus, we create a second crosscutting

interface (Serializable) responsible for allowing the necessary classes to be transported

through the communication channel. Next, we associate those crosscutting interfaces with the

affected classes.

220

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

220220220220220

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

220220

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

220

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



Figure 8. Design Elements.

Figure 9 shows the resulting server aspect. Each crosscutting interface appears in the

parameter list, to indicate what class elements it affects, and it also appears as a circle

connecting the aspect and the affected class. This association also represents what class

elements are to be connected to the aspect parameters. For instance, the label <remoteOP-

>All> indicates that every operation in the class HealthWatcherFacade will be

remotely available.

Figure 9. Server Aspect.

Designing the client aspect is similar. The client aspect is initially responsible for making the

remote facade available for the user interface classes. Then, the aspect redirects calls

originally addressing the local system facade to the remote facade. Thus, the resulting aspect

has two crosscutting interfaces: the first (RemoteAccess) is associated with user interface

classes and affects its facade attribute; the second (RemoteRedirect) affects the local

system facade and redirects all the facade operations to a remote facade. The client aspect

design is shown in Figure 10.

The next workflow detail is Design Components. The only relevant activity here is Design

Aspects, which defines the necessary pointcuts and advices for the aspects. In our example,

the join points can be derived from the aspect associations. The advices indicate how the

aspect parameters affect the associated classes. For instance, the expression <remoteOp-

>All> indicates that there is one advice around all operations in the associated class. The

advice representation comes from the symbol. When it appears before the operation, it

indicates a before advice. It happens similarly when it appears after the operation. When it

221

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

221221221221221

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

221221

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

221

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



appears before and after the operation, it indicates an around advice. This activity also

identifies how the class hierarchy is affected. This happens only in our server aspect, as it

changes the ancestors of class HeathWatcherFacade to make it remote. The server may

also change the classes with the relation Serializable, making them implement this

interface to allow their serialization through the communication channel.

Figure 10. Client Aspect.

The last workflow detail is Refine the Architecture. It is responsible for unifying the design

realized by different designers. In our example, it means we would generalize our aspects to

control other user interface elements and entities. For a matter of space, we do not describe

the related activities in detail.

This concludes the elaboration phase. As mentioned earlier (see Section 4) during the

construction phase, we execute Design Components and Refine the Architecture in each

iteration to improve our existing design and incorporate possible changes to the system

requirements.

6. Conclusion

We have proposed adaptations to activities of the RUP [9] Analysis and Design discipline in

order to incorporate the concepts of AOSD. A related work [15] suggests some changes to the

roles, activities and artifacts of the Analysis and Design discipline in the presence of AOSD.

We have further developed their ideas and proposed a more precise description of the

necessary adaptations to the RUP Analysis and Design discipline. We gave an overview of

each workflow detail, proposing changes to the related activities and suggested the creation of

a new activity, Design Aspects. As far as we are aware, there is no other detailed proposal, in

the literature, for systematizing the Analysis and Design discipline, including aspects, as we

have proposed here. Another important contribution of our work is to integrate isolated efforts

towards dealing with aspects in a software process. We have adopted the work reported in

[22] for requirements, showing how the information captured at the requirements level could

be used as input to the proposed Analysis and Design discipline. We have also adopted the

modelling conventions suggested in [3].

This work focuses on one discipline defined by the RUP. Although some disciplines are not

affected by the use of AOSD, there are disciplines, other than Analysis and Design, which

need to be adapted. Hence, future work would deal with the adaptation of the Implementation

discipline as it is strongly affected by the use of AOSD and it occurs just after the Analysis

and Design discipline. One of the primary impacts is on the implementation language, which

generally is an extension to an existing language or a framework. Once the developer is used

to the new language, there are necessary adaptations to the way classes are implemented, to

incorporate aspect implementations. In a similar way, the tests should be adapted to explore

the concerns implemented by aspects.

222

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

222222222222222

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

222222

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

222

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



However, there are related problems that are discussed elsewhere. The representation of

crosscutting features in UML is discussed in [25] and the the representation of join points in

UML is discussed in [24]. The expression of aspects and its relationships to classes and other

aspects is proposed in [27], as an extension to the UML eXchange Format [26]. Finally, the

aSide Modelling Language [3] is an UML extension that allows a more abstract representation

of aspects and its relationships. We adopted this last approach to represent the aspect model in

the example (see Section 5).

RUP instantiations are common as it is an adaptable process that should be tailored to specific

companies and projects. Nevertheless, there are general instantiations that maintain the

general propose of the framework. Kruchten [10] suggests adaptations to RUP with the

objective of evolving a legacy project. Moraes [12] adapts the RUP to incorporate concepts of

the Architecture Based Development Process, which uses the architecture as a bridge between

the requirements and the implementation. Furthermore, their adaptations are mainly on the

Analysis and Design discipline.

There are also instantiations to use RUP in more specific domains. Ara´ujo and Souza [1, 23]

focused on adaptations to the Analysis and Design discipline to developWeb based

applications.

References
1. Araújo, A. C. M. Framework de Análise e Projeto Baseado no RUP para o

Desenvolvimento de Aplicações Web, Master thesis, Informatics Centre – Federal
University of Pernambuco, February 2001.

2. Camargo, V., Ramos, R., Penteado, R., Masiero, P. C. Projeto Baseado em Aspectos do
Padrão Camada de Persistência. In: XVII Brazillian Symposium on Software Engineering
- SBES, October 2003.

3. Chavez, C. A Model-Driven Approach for Aspect-Oriented Design. PhD thesis, Pontifícia
Universidade Católica do Rio de Janeiro, April 2004.

4. Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J. Non-Functional Requirements in
Software Engineering, volume 5 of The Kluwer International Series In Software
Engineering. Kluwer Academic Publishers, October 1999.

5. D’Souza, D. F., Wills, A. C. Objects, Components, and Frameworks with UML : The
Catalysis(SM) Approach. Addison-Wesley Pub Co, October 1998.

6. Firesmith, D., Henderson-Sellers, B. The OPEN Process Framework. An Introduction.
Addison-Wesley, December 2001.

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable
Object–Oriented Software. Addison–Wesley, 1994.

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J. Aspect-oriented programming. In: Aksit, M., Matsuoka, S., editors, 11th European
Conf. Object-Oriented Programming, volume 1241 of LNCS, pages 220–242. Springer
Verlag, 1997.

9. Kruchten, P. The Rational Unified Process: An Introduction, Second Edition. Addison-
Wesley Longman Publishing Co., Inc., 2000.

10. Kruchten, P. Using the RUP to Evolve a Legacy System. Available URL:http://www-
106.ibm.com/developerworks/rational/library/389.html, May 2001, last visited in July
2004.

11. Massoni, T., Alves, V., Soares, S., Borba, P. PDC: Persistent Data Collections pattern. In:
First Latin American Conference on Pattern Languages Programming—SugarLoafPLoP,
pages 161 – 173, Rio de Janeiro, Brazil, October 2001. UFRJ Magazine: Special Issue on
Software Patterns.

223

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

223223223223223

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

223223

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

223

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software



12. Moraes, M. A. F. Um Framework de Análise e Projeto Baseado em Arquitetura de
Software. Master thesis, Informatics Centre – Federal University of Pernambuco, June
2002.

13. Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V. Specifying subject–oriented
composition. TAPOS, 2(3):179–202, 1996. Special Issue on Subjectivity in OO Systems.

14. Ossher, H., Tarr, P. Using subject–oriented programming to overcome common problems
in object–oriented software development/evolution. In: International Conference on
Software Engineering, ICSE’99, pages 698–688. ACM, 1999.

15. Piveta, E. K., Devegili, A. J. Aspects in the Rational Unified Process Analysis and
DesignWorkflow. In: Aspect Oriented Design Workshop, AOSD 2002, Enschende,
Netherlands, 2002.

16. Rashid, A. On to aspect persistence. In: Proceedings of the Second International
Symposium on Generative and Component-Based Software Engineering-Revised Papers,
pages 26–36. Springer-Verlag, 2001.

17. Rashid, A., Chitchyan, R. Persistence as an aspect. In: Proceedings of the 2nd
international conference on Aspect-oriented software development, pages 120–129. ACM
Press, 2003.

18. Rashid, A., Moreira, A., Araújo, J. Modularisation and composition of aspectual
requirements. In: 2nd International Conference on Aspect-Oriented Software
Development, pages 11–20. ACM, 2003.

19. Rashid, A., Sawyer, P., Moreira, A., Araújo, J. Early aspects: A model for aspectoriented
requirements engineering. In: IEEE Joint International Conference on Requirements
Engineering, pages 199–202. IEEE, IEEE Computer Society Press, 2002.

20. Soares, S., Borba, P. PaDA: A Pattern for Distribution Aspects. In: Second Latin
American Conference on Pattern Languages Programming — SugarLoafPLoP, Itaipava,
Rio de Janeiro, Brazil, August 2002.

21. Soares, S., Laureano, E., Borba, P. Implementing distribution and persistence aspects with
AspectJ. In: Proceedings of the OOPSLA 2002 conference on Object Oriented
Programming Systems Languages and Applications, pages 174 – 190. ACM Press,
November 2002.

22. Sousa, G. M. C., Silva, I. G. L., Castro, J. B. Adapting the NFR Framework to Aspect-
Oriented Requirements Engineering. In: XVII Brazillian Symposium on Software
Engineering - SBES, October 2003.

23. Souza, R. A. C., Vasconcelos, A. M. L. Uma Extensão do Fluxo de Análise e Projeto do
RUP para o Desenvolvimento de Aplicações WEB. In: XVII Brazillian Symposium on
Software Engineering - SBES, October 2003.

24. Stein, D., Hanenberg, S., Unland, R. On representing join points in the UML. In: Kandé,
M., Aldawud, O., Booch, G., Harrison, B., editors, Workshop on Aspect-Oriented
Modeling with UML, 2002.

25. Stein, D., Hanenberg, S., Unland, R. A uml-based aspect-oriented design notation for
AspectJ. In: Proceedings of the 1st international conference on Aspect-oriented software
development, pages 106–112. ACM Press, 2002.

26. Suzuki, J., Yamamoto, Y. Making UML models interoperable with UXF. In: Bézivin, J.,
Muller, P.-A., editors, The Unified Modeling Language, UML’98 - Beyond the Notation.
First International Workshop, Mulhouse, France, June 1998, Selected Papers, volume
1618 of LNCS, pages 78–91. Springer, 1998.

27. Suzuki, J., Yamamoto, Y. Extending UML with aspects: Aspect support in the design
phase. In: ECOOP Workshops, pages 299–300, 1999.

224

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

224224224224224

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

224224

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

224

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software


