
Exploring Quality-driven Object-oriented Materializations for Software

Architectures

J. Andrés Díaz Pace
1,2

, Alejandra C. Diez
1
, Marcelo R. Campo

1,2

1
ISISTAN Research Institute, Faculty of Sciences, UNICEN University,

Campus Universitario (B7001BBO), Tandil, Buenos Aires, Argentina
 2
CONICET, Argentina

e-mail: [adiaz, adiez, mcampo]@exa.unicen.edu.ar

Abstract

Design activities are critical in the development of quality software. Along this line, architecture-based design

has been regarded as the right context for analyzing system-wide quality attributes and making principled design

decisions therein. However, the materialization of architectural models into object-oriented structures where the

decisions made at the architectural level can be reflected and implemented has not been satisfactory bridged yet.

One of the reasons for this problem is that, given an architectural model and a set of quality drivers, there exist

usually multiple different ways of mapping this input to object-oriented terms. Furthermore, the whole process

involves considerable design background and experience. In this context, this paper describes a tool approach,

called ArchMatE, to assist developers in the exploration of materialization alternatives.

1. Introduction

More and more, design activities are becoming critical in software development as they

largely influence the quality of the final product [4]. A clear evidence of this trend is that

today’s software systems typically have to deal with many quality requirements (e.g.,

modifiability, portability, interoperability, availability, to name a few) whose realization is

closely related to design-level solutions [5]. Furthermore, the growing complexity of these

systems requires of high-level models to reflect the principal design decisions and also

analyze them. In response to this situation, many researchers are starting to pay a great

attention to software architectures as means to manage both quality attributes and system’s

complexity [4, 6].

At its essence, the software architecture level of design focuses on the gross system’s

organization in function of the quality attributes affecting the system. An important aspect of

architectural models is that they prescribe

the organizational structure of the system being developed, mostly independent of particular

implementation technologies. However, one of the challenges of the architecture-based

approach is the gap between architectural models and object-oriented structures. On one side,

architectural models provide suitable abstractions for the exploration of various design

alternatives, considering different tradeoffs among quality attributes, although these models

do not always lead to an object-oriented computational solution. On the other side, the object

paradigm provides a nice implementation approach, but it shows certain inability to address

quality-attribute issues in a broad sense. As pointed out by [28], this paradigm is influenced

by some intrinsic characteristics of object abstractions (e.g., information hiding,

257

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

257257257257257

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

257257

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

257

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

encapsulation, polymorphism) oriented to promote reusability or flexibility, rather than

treating quality attributes as explicit design concerns.

Therefore, the transition from architectural designs to object-oriented counterparts results, in

practice, a technically difficult problem that requires extensive design knowledge. In

particular, a central issue in this transition is how to break the tradeoffs imposed by a

functional and quality-oriented decomposition of a system versus a pure object-oriented

decomposition of the same system. Certainly, given an architectural model and a set of quality

drivers, there exist often multiple different ways of mapping this input to object-oriented

terms. At this point, we believe that the apparent mismatch between architectures and objects

does not deny the fact that the object paradigm is a very convenient technology to represent

software architectures. We have termed this special relationship between architectures and

objects as object-oriented materialization of software architectures [10].

Besides, along with the advances in software architectures, there is nowadays a pressing need

for cost-effective design and prototyping tools supporting the development of architecture-

based software [18, 20]. Although several approaches to derive implementations from

architectural models based on functional requirements exist, very few of these techniques take

quality attributes into account [7, 19, 27, 29, 31]. In particular, our previous experiences in the

subject of proto-frameworks [10, 12] led us to envision an environment to provide this kind of

automated support. Along this line, we present a tool approach that facilitates the exploration

of object-oriented designs within a materialization process, concentrating on the main quality

attributes associated with the original architectural model. Basically, the approach relies on a

corpus of design knowledge about architectural structures, stylistic features associated to

these structures, quality-attribute issues and object-oriented mechanisms, in order to identify

links to different materialization strategies. On the basis of this knowledge, a tool called

ArchMatE (ARCHitecture MATerialization Explorer) is capable of assisting the developer by

sketching a collection of object-oriented classes that approximately fit the requirements of the

architectural model under consideration, together with the developer’s preferences.

The rest of the work is organized around 5 sections as follows. Section 2 gives some

background about architecture-based design and object-oriented design. Section 3 provides a

conceptual description of our approach for the exploration of object-oriented materializations,

illustrated with a pipe-and-filter case-study. In section 4, we introduce the ArchMatE tool and

describe its implementation. Section 5 discusses related work. Finally, section 6 analyzes

lines of future research and rounds up the conclusions of the paper.

2. From Software Architectures to Objects

The software architecture community has promoted the construction of designs out of

module-scale abstractions (e.g., components, connectors, responsibilities, mechanisms, etc.).

At its essence, architectural abstractions rely on the understanding of the architectural means

used to fulfill the main functional and quality requirements of the problem [4]. According to

[21], these abstractions are primarily focused on: high-level system specifications, rich

abstractions for interaction between architectural elements, and analysis of emergent quality-

attribute properties.

Normally, architectural designs arise from the combination of a number of patterns of various

sorts, called architectural styles [24], which are descriptions of typical ways of structuring

software systems. Understanding and applying predefined styles in the development of

architectural models is expected to save time and improve quality, when compared to

searching for specific solutions on its own [9]. Basically, an architectural style defines a

258

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

258258258258258

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

258258

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

258

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

collection of related systems, providing a coherent vocabulary of design elements and rules

for their composition. Furthermore, each style represents a package of design decisions with

predetermined implications on quality-attribute issues. This can be reused across different

application domains, although permitting some tailoring to fit specific developer’s needs.

Examples of well-known architectural styles are layers, blackboard, pipes and filters, objects

and broker, among others [24]. In addition, some rules of thumb for choosing appropriate

styles have been proposed [25]. As example, Figure 1 depicts a system in a pipe-and-filter

style.

Figure 1. A typical pipe-and-filter system

Regarding the representation of architectural designs, a variety of special-purpose notations

have surged during the last years. These languages, called ADLs (Architectural Description

Languages) (see [18] for a survey), are mostly focused on the description of systems on the

basis of components, connectors and interactions among them. The components represent the

primary locus of computation, while the connectors act as mediators in communication and

coordination activities among components. Besides specification, the ADLs give support for

different kinds of analyses on the architectural information, and come with generative

facilities that permit rapid development of systems.

From a different perspective, the object paradigm conceives a system as a collection of

objects interacting via message sending [14]. At first glance, the object abstractions are often

more related to detailed design or implementation than architectural abstractions. In terms of

design, the way responsibilities are assigned to groups of objects is going to determine the

flexibility/reusability of the resulting system. For this reason, we can say that the target

quality attribute of the paradigm is principally modifiability, albeit ramifications to other

quality attributes may exist. Nonetheless, despite this apparent limitation, the paradigm is

equipped with abstractions that allow developers to implement useful object structures and

collaborations, as is the case of design patterns and frameworks [13, 14]. A framework

infrastructure for a given domain can be extended by the developer to get specific applications

in such a domain. To illustrate this point, Figure 2 shows a small framework (sometimes

called framelet [23]) for a pipe-and-filter style, implemented in terms of push-like filters

arranged in a pipeline.

Figure 2. A framelet implementing a pipe-and-filter style

When it comes to the specification of object-oriented designs, the most popular visual

modeling language standard is the UML [30]. UML provides several kinds of diagrams to

OutputFilter

writeTo(Writer : stream, Object : data)

push(Object : data)

<<abstract>>

Sink

push(Object : data)

<<interface>>

InputFilter

readFrom(Reader : stream)

startPipeline()

<<abstract>>

PushFilter

mySink : Sink

push(Object : data)

<<abstract>> process(Object : data) : Object

<<abstract>> +nextFilter

+firstFilter

 Input:
 DataSourceT

 CircularShift:
 FilterT

 Alphabetizer:
 FilterT

 Output:
 DataSinkT

Pipe1:

PipeT

Pipe3:

PipeT

Pipe2:

PipeT

259

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

259259259259259

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

259259

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

259

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

describe different viewpoints of a system, and can also give directions to translate these

models into code.

2.1. Towards a Linkage between Architectural and Object Models

From the above overview, we can see that both architectural and object abstractions tend to

consider the following aspects: i) a vocabulary of constituent elements, ii) a set of rules to

assemble partial fragments out of these elements, iii) a language appropriate to describe

designs, iv) a rationale to explain the advantages/disadvantages of design decisions, and v) a

collection of techniques to analyse the resulting designs. However, the two types of

abstractions have different roles and capabilities within the design process.

The first observation is about granularity. Architectural models deal with the composition of

modules and interactions among them in order to form systems. Instead of that, object models

concentrate on flexible, reusable, and to some extent modular, implementations for a system,

assuming that an architectural design for it has been outlined. Therefore, architectural

mechanisms are good at abstracting away from implementation details, and serve to expose

the quality properties that are most critical for the system’s success, whereas object

mechanisms are more suitable to address variability in implementation settings.

The second observation is about quality attributes. As many authors have mentioned, object

models are likely to present difficulties to address the principle of separation of concerns [17,

22]. In particular, many of these concerns arise as a consequence of quality-attribute factors

(e.g., concurrency, distribution, real-time constraints, location control, persistence and failure

recovery, among others). Here, architectural models can provide a better context to identify

relevant concerns and reason them at the very conception of the system architecture.

The appropriateness of software architectures to engineer software quality enables one to

structure the design process in two phases, as outlined in [10, 12]. Initially, we can start with

an architectural model, capturing the underlying organization of the system and the tradeoffs

imposed by quality attributes in terms of predefined architectural styles. Then, using the

architectural guidance, we can convert this high-level model into a lower-level object model

(e.g., a framework or a final application). Eventually, design patterns may be applied to obtain

more flexible object structures, leading to different implementation alternatives. Put it in other

way, we are doing an object-oriented materialization of a software architecture.

Having subscribed to the materialization approach, a direct outcome of these ideas is how to

use adequate design knowledge to guide the developer in the transformation of architectural

designs into concrete implementations. For example, depending on the characteristics of the

selected architectural model, some of the techniques to obtain an object-oriented

representation of that model may include: direct mapping, constraint relaxation or constraint

strengthening [10]. Although interesting in theory, it is quite hard in practice to derive object

models by applying these techniques without considerable design background and experience.

This is so because, even taking a small set of quality drivers for the materialization, there are

many alternative ways to get a feasible combination of object-oriented fragments that satisfies

the original architectural model. Hence, some kind of tool support is required in order to keep

the exploration of object-oriented design alternatives manageable. When analyzing the main

requirements for automating this exploration, we can distinguish the following levels:

x A categorization of architectural abstractions, taking into account the structural,

behavioral and quality characteristics most relevant to each style - architectural level

x A collection of design rules to derive object models from architectural descriptions. These

rules, although incomplete, should be based on the underlying structure of these

260

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

260260260260260

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

260260

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

260

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

descriptions, but also consider context-specific information and quality-attribute issues -

mapping level

x A number of techniques to cope with variability in object structures (e.g., design patterns,

aspects, etc.), as architectural abstractions do not always have a direct correspondence

with individual objects - object level

3. Automating the Exploration of Object-oriented Designs

During the design of any system, the developer usually deals with a hierarchy of design

decisions that potentially impact several quality attributes of this system. Related to this

hierarchy of decisions is the concept of design space [28], a multi-dimensional space where

the developer searches for, selects, evaluates and combines partial solutions. Naturally, this

line of reasoning applies to object-oriented materializations as well. That is, the developer can

take advantage of particular architectural styles to identify ranges of design families,

incorporating also quality-attribute properties, and afterwards use design patterns and

frameworks to solve specific design situations within a given style. This way, we can

approximate the exploration of object-oriented designs for well-defined architectural models.

At first, a naïve approach for automating the exploration process could be the generation of

valid object-oriented configurations for a given architectural model through a standard search,

comparing the configurations by means of some analysis technique. It is quite obvious that

this initiative has few chances of success, due to the computational burden that such a search

would imply. Nonetheless, we can certainly formulate design-oriented heuristics to traverse

the design space, in order to narrow the bundle of possible designs to a subset of promising

solutions. These heuristics can work reasonably well, if the alternatives are being generated

on the basis of principled choices made by the developer. Therefore, assuming a design scope

based on particular architectural styles along with predetermined quality-attribute goals, we

can define a sort of “materialization strategies” to be followed by an automated tool in the

exploration of object-oriented solutions. In this context, we propose an assistance schema that

comprises the activities enumerated below (see Figure 3).

1. The developer is asked to define an architectural model, choosing the desired levels of

quality attributes for this system.

2. A special design engine is in charge of generating an initial object model for that

architectural model, applying a number of materialization strategies. To do so, the engine

is based on a corpus of architectural information, focused on architectural styles and

including some advice on their contributions to quality-attribute issues.

3. Once a preliminary solution reflecting the developer’s preferences is identified by the

engine, the developer can set the stage for a more detailed exploration of solutions. This

would enable the engine to suggest a number of transformations and derive further object

models as needed.

4. Finally, functionality is assigned to the resulting object model, according to the design

goals and the characteristics of the problem domain.

Note that the use of architectural styles as foundation of the approach gives the developer a

collection of component types together with a description of the interaction patterns among

them. Nonetheless, these component types will have functionality to the extent necessary to

implement the patterns of interaction. Depending on the style and the domain, the specific

number of components and their responsibilities will vary according to the functionality to be

implemented by the system.

261

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

261261261261261

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

261261

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

261

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Figure 3. Assistive schema to explore the materialization of architectural models

3.1. Details of the Approach

For the implementation of the assistance schema, the approach requires of several assets: i) an

ADL to specify architectural models, amenable for automation, ii) a framework to organize

the design knowledge about architectural styles, iii) strategies for visiting architectural models

and generating object-oriented skeletons, iv) a rule-based engine to put the precedent things

together.

The starting point has to do with the description of architectural models. These models are

represented as typed graph structures, where nodes represent components or connectors and

arcs refer to attachments among them. In order to account for semantic properties, the

elements in the graph can be annotated with different properties (e.g., protocol information,

data types, assigned priorities, logging enabled, etc.). Furthermore, any architectural model is

expected to adhere to the rules of a predetermined architectural style (e.g., a pipes-and- filters,

blackboard, client-server, etc.). In terms of the graph, such an architectural style will typically

define a set of types for components, connectors and properties, along with rules that govern

how elements of those types may be composed. Some of the benefits of having stylized

architectural models include: support for analysis, reuse and code generation [15]. The

importance of these aspects will be visible in subsequent parts of the approach.

The idea is that the architectural model given as input to the approach should be characterized

as an “instantiation” of a particular “base” style. Specifically, we have chosen the Acme ADL

[1] as the language to specify both styles and general architectures (codified as “families” and

“systems” using the Acme vocabulary). To get a flavor of Acme specifications, Figure 4

shows an architectural description of a pipe-and-filter style, basically we have: filter

ARCHITECTURAL STYLES
- Main features

- Contributions to quality attributes

- Mechanisms

Input Architectural Model
(based on Architectural Styles)

DESIGN GOALS
- Relevant concerns

- Quality-attribute levels

- Main responsibilities

ObjectObject

Object

ObjectObject

ArchMatE

Design Engine

Materialization
strategies

Knowledge about
Architectural Styles

DEVELOPER

Instantiation Information

Interaction

Generation

OBJECT-ORIENTED
MATERIALIZATION

Output Object-oriented Model

262

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

262262262262262

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

262262

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

262

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

components that receive data and transform data, and pipe connectors that transfer data

between filters. Note that the constitutive elements of this “base” style are declared as types

(see lines 8, 11, 14, 15, 16, 22, 38, 44 in Figure 4). Additionally, the specification is

augmented with predefined properties in order to capture extra-structural information. In our

example, we have: concurrency, protocol, customization, error handling and quality (see lines

1-5, 9, 12, 17, 19, 23-30, 32, 35,39, 41, 45, 50 in Figure 4). Then, when it comes to the

specification of an input architectural model (to be materialized), the types of the “base” style

can be “instantiated” by creating and linking different instances of pipes and filters. Likewise,

all the properties defined by the “base” style are inherited by its instantiations. A typical input

architecture for the KWIC system [22], whose design is actually based on the pipe-and-filter

family provided in Figure 4, is the one introduced previously in Figure 1. Although a

graphical representation of this architecture was preferred for clarification purposes, this

representation can be certainly translated into an Acme textual form.

Figure 4. Fragment of an Acme specification of a pipe-and-filter style, extended with
properties

1. ->

2. ->

3. ->

4. ->

5. ->

6. ->

7. ->

8. ->

9. ->

10. ->

11. ->

12. ->

13. ->

14. ->

15. ->

16. ->

17. ->

18. ->

19. ->

20. ->

21. ->

22. ->

23. ->

24. ->

25. ->

26. ->

27. ->

28. ->

29. ->

30. ->

31. ->

32. ->

33. ->

34. ->

35. ->

36. ->

37. ->

38. ->

39. ->

40. ->

41. ->

42. ->

43. ->

44. ->

45. ->

46. ->

47. ->

48. ->

49. ->

50. ->

51. ->

52. ->

Property Type Concurrency_T = enum {singleThreaded,multiThreaded};
Property Type Protocol_T = enum {pull,push,pull_push};
Property Type Customization_T = Set{Parameter_T};
Property Type ErrorHandler_T = Record [name : string; comment : string;];
Property Type QualityMeasure_T = enum {high,low,medium};

Family PipeAndFilterFam = {

Port Type InputPortT = {

 Properties { dataType : string; };

 };

Port Type OutputPortT = {

 Properties { dataType : string; };

 };

Role Type SourceT;

Role Type SinkT;

Component Type DataSinkT = {

 Properties { protocol : Protocol_T; };

 Port input : InputPortT = new InputPortT extended with {

 Properties { dataType : string; };

 };

 }; // End DataSinkT

Component Type FilterT = {

 Properties {

 protocol : Protocol_T;

 customizable : Customization_T;

 sharedData : boolean;

 logging : boolean;

 errorHandling : ErrorHandler_T;

 priority : QualityMeasure_T;

 };

 Port input : InputPortT = new InputPortT extended with {

 Properties { dataType : string; };

 };

 Port output : OutputPortT = new OutputPortT extended with {

 Properties { dataType : string; };

 };

 }; // End FilterT

Component Type DataSourceT = {

 Properties { protocol : Protocol_T; };

 Port output : OutputPortT = new OutputPortT extended with {

 Properties { dataType : string; };

 };

 }; // End DataSourceT

Connector Type PipeT = {

 Properties { dataType : string; };

 Role src : SourceT = new SourceT;

 Role snk : SinkT = new SinkT;

 }; // End PipeT

 Properties { concurrency : Concurrency_T; };

 Attachments { };
}; // End PipeAndFilterFam

263

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

263263263263263

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

263263

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

263

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

The next step is the incorporation of design knowledge into the engine. As underlying

framework for architectural styles, aiming at progressively providing a vocabulary of Acme

families and architectural features thereof, we adopted the categorization proposed by [25]

extended with quality-attribute information. Besides, we added to this classification a

collection of architectural mechanisms (e.g., data conversion, error handling, logging,

customization or persistence), as general-purpose concerns that may be plugged into base

styles.

On the basis of this categorization, it is possible to analyze well-known architectural styles

and recognize the major variants within each style. The style’s variants should address those

aspects of the architectural level that have to do with the details of how components and

connectors can be alternatively arranged. For instance, to continue with our pipe-and-filter

style, the available topologies for pipes and filters may admit different pull/push interactions,

single- or multi-threaded schemas, and varied data types. In principle, there is a 1-to-N

relationship between a style variant and its materializations at the object-oriented level,

although some variants evidently direct the developer towards specific implementations (e.g.,

a configuration of push filters running on separate threads may derive into an implementation

based on active objects.).

In order to identify materialization strategies for them, we have considered the following

items for each variant: main characteristics of the variant, their contributions to quality-

attribute issues, strategies to build an object-oriented implementation, and arguments for and

against the available alternatives. Table 1 summarizes the analysis of the pipe-and-filter style.

Additionally, Figure 5 shows a possible object-oriented implementation for the KWIC

system, based on the FilterPattern variant. This implementation was built on top of the pipe-

and-filter framelet given in Figure 2.

Table 1. Design knowledge about the pipe-and-filter style

Variant Main Features Implementation Advantages Disadvantages

Filter Pattern

- Single-
threaded

- Linear
topology

- Some
communication
protocol

Based on an
appropriate
combination of
abstract classes and
delegation

- Moderate coupling among
components. A given data source/sink
does not know about its
upstream/downstream components
(flexibility)

- Transference of data between filters is
quite fast (performance)

- The topology is
restricted to linear
(scalability)

- The whole
computation schema
is fixed
(modifiability)

Publisher/
Subscriber

- Single-
threaded

- Arbitrary
topology

- Some
communication
protocol

Based on an event
notification
mechanism (e.g.,
Observer pattern)

- Low coupling among components.
Each data source potentially has a list
of filters monitoring it, and conversely,
each filter is observed by either data
sinks and/or other filters (flexibility)

- Components can be used easily in
different contexts (reusability)

- Topology may change (scalability)

- Transference
among filters is
rather slow
(performance)

Multi-threaded

- Multi-threaded

- Arbitrary
topology

- Some
communication
protocol

Based on pipe
mechanisms to
synchronize active
filters (e.g.,
Producer-consumer
pattern)

- Low coupling among filters (flexibility)

- Filters that produce/consume data do
not need to wait for
production/consumption of data, except
if the corresponding pipes are blocked
(performance)

- Pipes are explicitly modeled, thus
sophisticated communication protocols
can be implemented (communication)

- Some overhead
due to
synchronization
policies
(performance)

264

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

264264264264264

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

264264

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

264

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

So, from a more technical point of view, how can we assist developers in moving from an

input architectural specification based on a single style (see Figures 4 and 1) to an object

implementation (see Figure 5), using pre-compiled knowledge about that style (see Table 1)?

As stated in [21], it is possible to define object-oriented architectural styles that exhibit (some

of) the characteristics of their corresponding architectural abstractions, using the facilities

provided by object-oriented design (e.g., inheritance, information hiding, abstract and hook

methods, polymorphism, etc.). Establishing a direct relationship between architectural and

object abstractions may be a feasible exercise, although in many situations this mapping could

be of little utility, as it may not reflect those design drivers the developer is primarily

concerned with. In this context, the transformation of architectural structures to object-

oriented ones depends mainly on what quality attributes are at work rather that on

functionality issues. In fact, this is the very essence of our materialization strategies, they are

instruments to characterize related object-oriented design decisions targeted to achieve a

desired level of some quality of interest, not just implementation recipes. Then, the effects of

materialization strategies on quality attributes can be operationalized, for instance using the

NFR framework [27]. At the end, these strategies may or may not be expressed through

design patterns, or perhaps admit slightly different implementations.

Figure 5. Materialization of KWIC system using a pipe-and-filter framelet (generated
by ArchMatE)

Having these concepts in mind, and recalling the support given by stylistic architectural

descriptions, we think that a suitable approach to accomplish the materialization is generative

programming [11]. Briefly, this approach is focused on mechanisms to enable the automatic

production of software from a high-level specification. An advantage of a generative approach

is that permits a clear separation between the high-level specification and the implementation

model used to support this specification. Normally, there is a code generator that represents

the configuration knowledge in a generative model. This code generator is responsible for

defining how specific combinations of features in the high-level specification are translated to

a set of classes and methods within a particular implementation model. In terms of our

InputFilter

readFrom(Reader : stream)

process(Object : data) : Object

convertLines(Object : data)

Sink

push(Object : data)

<<interface>>

AlphabetizerFilter

process(Object : data) : Object

insertLineOrdered()

ConfigurabilityNoisyWords

configureNoisyWords(String[] words)

<<interface>>

ErrorManager

reportError(String message, Object arg)

CircularShiftFilter

stdError : ErrorManager

process(Object : data) : Object

isNoisyWord(String word) : boolean

configureNoisyWords(String[] words)

OutputFilter

push(Object : data)

formatLine()

writeTo(Writer : stream, Object : data)

ConversionLines

convertLines()

<<interface>>

PushFilter

mySink : Sink

push(Object : data)

<<abstract>> process(Object : data) : Object

<<abstract>> +target

+originator+firstFilter

265

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

265265265265265

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

265265

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

265

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

approach, the architectural descriptions act as high-level specification, the corpus of design

knowledge provides a set of style-dependent but domain-independent features, the code

generator corresponds with our design engine, and finally, the output is represented by a

collection of framelets implementing different style variants. More details for the

implementation of this kind of generators are described in the next section.

To date, the information we have gathered about a few styles, variants and strategies comes

from experimental studies carried out by our research group, plus a some evidences regarding

object-oriented implementations of architectural styles reported in [6, 21]. This kind of

categorizations intends to be a vehicle to analyze different architectural styles, so that the

main relationships among architectural abstractions, quality-attribute issues, and object-

oriented implementation techniques can be articulated into a number of materialization

strategies. Certainly, the compilation of all this knowledge is frequently a time-consuming

task, however, we argue that once provided, it can support a semi-automated engine to

explore materializations quite efficiently.

4. ArchMatE: A Rule-based Engine for Materializing Architectural Styles

To validate our ideas about materialization, a prototype Java tool called ArchMatE

(ARCHitecture MATerialization Explorer) has been developed. Basically, the tool supports

the definition of architectural styles, the instantiation of systems on top of these styles in

Acme, and the specification of quality-attribute properties respect to the materialization of

these systems. Quality-attribute properties may refer to modifiability, reusability, scalability,

or performance aspects of components, connectors or sub-systems. After that, there is a rule-

based engine responsible for the generation of object-oriented skeletons, as realization of the

system given as input. This engine is actually a code generator implemented using Javalog

[3], an integration framework between Prolog and Java. This engine is able to evaluate a

corpus of mapping rules and generate different solutions for a particular architectural setting,

following predefined materialization strategies. Figure 6 outlines the main classes of the

ArchMatE environment.

At first, the architectural description of the input system is edited with AcmeStudio [1]. This

description is captured by the ArchitecturalDesign class, internally represented using the

AcmeLib toolkit [1]. Basically, the standard operation mode of ArchMatE relies on a

singleton class RuleBasedEngine to work over instances of ArchitecturalDesign and produce

instances of the ObjectOrientedDesign class. In addition, any instance of ArchitecturalDesign

is required to belong to a predefined Acme family, so that this stylistic information can be

used by the RuleBasedEngine to carry out the materialization. Regarding quality-attribute

preferences, they are also configured by the developer in ArchitecturalDesign.

Once a particular architectural style is identified, there are three classes where design

knowledge and materialization strategies are hooked, namely: RuleBasedEngine,

ArchitecturalStyleFeatures, and ArchitecturalStyleBuilder (one or more subclasses of each

base class per style). Within the ArchitecturalStyleFeatures class, we should locate those

features derived from our categorization of the style (like the ones for the pipe-and-filter style

given in Table 1). Each subclass of ArchitecturalStyleBuilder, in turn, aims to encapsulate a

separate strategy for generating object-oriented models from the actual architectural

configuration of components and connectors, based upon the characteristics of its associated

ArchitecturalStyleFeatures. Here, the class RuleBasedEngine is the factory responsible for

selecting appropriate subclasses of builders and features for a particular style.

266

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

266266266266266

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

266266

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

266

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

Figure 6. Main classes of the ArchMatE environment

In this context, the class RuleBasedEngine is at the core of the materialization process, as it is

equipped with a Javalog engine able to represent and infer relationships among our design

assets. Moreover, this engine has proven to be very good at exploiting the advantages of both

object-oriented and logic paradigms. On one hand, the logic paradigm permits the

specification of declarative rules for choosing object-oriented variants implemented through

subclasses of ArchitecturalStyleBuilder, which can be evaluated using the standard Prolog

inference mechanisms. On the other hand, after selecting a given variant and its associated

builder, the object-oriented paradigm permits to structure well-defined strategies, although a

few degrees of customization in their implementation steps are still considered (e.g., through

specialization or composition/delegation). This way, the exploratory parts of the

materialization process can be written in Prolog, while those parts of the process that are

known beforehand or involve significant costs can be programmed in Java. Clearly, those

relationships involving quality-attribute issues, architectural configurations and mapping

RuleBasedEngine

brain : JavalogEngine

selectedBuilder : ArchitecturalStyleBuilder

selectedFeatures : ArchitecturalStyleFeatures

writeJavalogRules() : boolean

<<abstract>> createArchitecturalStyleBuilder(String : builder) : ArchitecturalStyleBuilder

selectArchitecturalStyleBuilder() : ArchitecturalStyleBuilder

<<abstract>> buildObjectOrientedDesign(Properties qas) : ObjectOrientedDesign

<<abstract>> buildNewObjectOrientedDesign() : ObjectOrientedDesign

<<abstract>>ArchitecturalDesign

inputDesign : AcmeDesign

outputDesign : ObjectOrientedDesign

myEngine : RuleBasedEngine

createDesign()

createNewDesign()

getObjectOrientedDesign() : ObjectOrientedDesign

setRules(AcmeDesign design)

setQualityAttributes(Properties qas)

PipeAndFilterEngine

PipeAndFilterFeatures

FilterPatternVariantBuilder

PublishSubscribeVariantBuilder

MultithreadVariantBuilder

PipeAndFilterVariantImplementation

<<abstract>>

PipeAndFilterBuilder

variant : PipeAndFilterVariantImplementation

<<abstract>> mapFilter(AcmeComponent : filter)

<<abstract>> mapPipe(AcmeConnector : Pipe)

<<abstract>> mapDataSource(String obj)

<<abstract>> mapDataSink(String obj)

selectVariant() : PipeAndFilterVariantImplementation

<<abstract>>

ArchitecturalStyleFeatures

getFeature(String : name) : Object

setFeature(String : name, Object : feature)

hasFeature(Object : element, String : feature) : boolean

getAcmeComponents() : AcmeEnumeration

getAcmeConnectors() : AcmeEnumeration

getAcmeAttachments() : AcmeEnumeration
ObjectOrientedDesign

acceptVisitor(Visitor : visitory)

addClassTemplate()

addInterfaceTemplate()

addClassMember()

getElements(String : obj) : Enumeration

ArchitecturalStyleBuilder

myFeatures : ArchitecturalStyleFeatures

currentDesign : ObjectOrientedDesign

<<abstract>> buildObjects(ArchitecturalStylesFeatures : features) : ObjectOrientedDesign

<<abstract>> defineMechanism(String : mechanism)

setDesignCharacteristics()

<<abstract>>

Visitor

<<abstract>> visitClassTemplate()

<<abstract>> visitInterfaceTemplate()

<<abstract>> visitAssociation()

<<abstract>> visitConstructor()

<<abstract>> visitClassMember()

<<abstract>>

JavaCodeWriterVisitor XMIWriterCode

<< creates << creates

<< uses

<< visits

AcmeDesign AcmeSystem

FilterPatternVariantImplementation

267

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

267267267267267

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

267267

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

267

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

strategies are candidates to be expressed as logic programs. Conversely, the different

implementations of materialization strategies appear more suitable for an object-oriented

treatment, ensuring the global characteristics of each variant.

At last, the rule-based engine will select a specific builder, and this builder, after being

properly configurated, will generate an object-oriented design. The rules for determining an

appropriate builder are specified in a Prolog-like fashion, in terms of feature and structural

matching. In the case other design alternatives want to be explored, the developer just asks to

the rule-based engine for another solution. This query will cause the selection of another

builder or the re-configuration of the current one, to obtain a different materialization, until no

more designs satisfying the input are found by the engine. The resulting designs can be later

visited to generate Java or XMI code. As additional help, the designs are annotated by the

engine with the design rationale followed during the materialization, based on the model

given by [8].

Figure 7. Sample of Javalog rules for determining materialization strategies

To better understand the relationships among builders, features and the Javalog engine, let’s

revisit the pipe-and-filter family of Figure 4 and the corresponding instantiation of the KWIC

system presented in Figure 5. Figure 7 sketches how the logic module containing rules for

selecting builders within this style would look like. The quality-attribute levels can have

1. ->

2. ->
3. ->

4. ->

5. ->
6. ->

7. ->

8. ->
9. ->

10. ->

11. ->
12. ->

13. ->

14. ->
15. ->

16. ->

17. ->
18. ->

19. ->
20. ->

21. ->

22. ->
23. ->

24. ->

25. ->
26. ->

27. ->

28. ->
29. ->

30. ->

31. ->
32. ->

33. ->

34. ->
35. ->

36. ->
37. ->

38. ->

39. ->
40. ->

41. ->

42. ->
43. ->

44. ->

45. ->
46. ->

47. ->

%% Facts and other helper rules

...
selectMechanisms(...) :- ...

configureMechanism(Builder,Name,Mechanism):- ...

%% Rules for selecting the builder for a given architectural-style variant

selectBuilder(singleThreaded, lineal, [Modifiability, Scalability, Reusability, Performance]) :-

 Modifiability <= 2, Scalability <= 2, Reusability <= 2, Performance <= 3, !,
 selectMechanisms([Modifiability, Reusability, Performance],

 Conversion,Customization,Traceability,singleThreaded,Error,DataSharing),

send($0, createBuilder, ['FilterPatternVariantBuilder'], MyBuilder),
 configureMechanism(MyBuilder,conversion ,Conversion),

 configureMechanism(MyBuilder,customization ,Customization),

 configureMechanism(MyBuilder,traceability ,Traceability),
 configureMechanism(MyBuilder,error ,Error),

 configureMechanism(MyBuilder,dataSharing ,DataSharing).

selectBuilder(singleThreaded, Topology, [Modifiability, Scalability, Reusability, Performance]) :-

 Modifiability <= 3, Scalability <= 3, Reusability <= 3, Performance <= 1 , !,
 selectMechanisms([Modifiability, Reusability, Performance],

 Conversion,Customization,Traceability,singleThreaded,Error,DataSharing),

send($0, createBuilder, ['PublishSubscribeVariantBuilder'], Builder),
 configureMechanism(MyBuilder,conversion ,Conversion),

 configureMechanism(MyBuilder,customization ,Customization),

 configureMechanism(MyBuilder,traceability ,Traceability),
 configureMechanism(MyBuilder,error ,Error),

 configureMechanism(MyBuilder,dataSharing ,DataSharing).

selectBuilder(multiThreaded, Topology, [Modifiability, Scalability, Reusability, Performance]) :-

 Modifiability <= 3, Scalability <= 3, Reusability <= 3, Performance <= 3, !,

 selectMechanisms([Modifiability, Reusability, Performance],
 Conversion,Customization,Traceability,multiThreaded,Error,DataSharing),

 synchronizationSharedDataMechanism(Synchronization),

send($0, createBuilder, ['MultithreadedBuilder'], Builder),
 configureMechanism(MyBuilder,conversion ,Conversion),

 configureMechanism(MyBuilder,customization ,Customization),
 configureMechanism(MyBuilder,traceability ,Traceability),

 configureMechanism(MyBuilder,error ,Error),

 configureMechanism(MyBuilder,dataSharing ,DataSharing),
 configureMechanism(MyBuilder,synchronization, Synchronization).

%% If concurrency is not specified

selectBuilder(Topology, QualityLevels) :- selectBuilder(Concurrency, Topology, QualityLevels).

%% Typical queries – (QualityLevels -> high = 1 medium = 2 low = 3 ignore = 0)

?- selectBuilder(multiThreaded, lineal, [1, 1, 1, 3]).
?- selectBuilder(lineal, [1, 1, 1, 3]).

268

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

268268268268268

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

268268

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

268

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

values in a low/medium/high/ignore scale (see lines 7, 8, 19, 19, 29, 30 in Figure 7). The

send() predicate (see lines 11, 22, 34 in Figure 7) is a built-in predicate to invoke methods on

Java objects. Let’s observe also that each builder can be configured with style-independent

mechanisms such as data conversion, error handling, or traceability, among others, depending

on the variant selected (see lines 12-16, 23-27, 33, 35-40 in Figure 7). According to the

proposed rules, three main builders are available for the engine, namely: FilterPattern

VariantBuilder, PublishSubscribe VariantBuilder, and MultithreadedVariant Builder.

Although omitted in the figure for clarity reasons, the builders typically rely on several

concrete subclases to arrive to an object-oriented design.

4.1. Experimental Results

As proof-of-concept, we have implemented two applications: a KWIC and a Tic-Tac-Toe

systems, using two architectural styles: pipes-and-filters and blackboard respectively. Within

each style, several variants and object-oriented implementations of these variants were

analyzed. This knowledge has been incorporated into ArchMatE, and a number of object-

oriented alternatives for the case-studies have been accordingly generated and evaluated.

Although the results gathered from these experiments are quite preliminary, the comparisons

of the generated materializations with the solutions reported for the two system in the

literature have been encouraging in terms of similarity. To this end, a set of modifiability-

related metrics (e.g., non-commented source statements, cyclomatic complexity, stability,

abstractness and rippling factor) [16] have been computed on the solutions for the KWIC and

Tic-Tac-Toe systems. Interestingly, the evolution of the quality-attribute properties under

consideration, as different solutions are being generated by the engine, seems to agree with

the developer’s expectations for each system. In spite of these facts, a more objective

evaluation of the approach to determine how well the materializations correspond to reality is

still required. Such an evaluation would involve a more extensive assessment of the

materialization strategies, and a larger number of systems and their solutions. This is currently

a subject of outgoing research within the ArchMate project.

5. Related Work

Software architectures and frameworks have provided much inspiration for this work. Besides

our approach based on proto-frameworks [10, 12], other lines of research have dealt with the

transition between architectural and object models.

Two of the most relevant approaches are the C2 model [19] and the ArchJava language [2]. In

[19], the authors have developed a family of implementation frameworks for architectural

models based on the C2 style. The approach provides a basic object-oriented framework

representing the main concepts of this style. Alternative implementations of the same

framework have been also derived to address some extra-functional properties required at the

application level. The work of [2], on the contrary, presents an extension to Java that

seamlessly unifies software architecture with implementation. In terms of materialization,

both C2 and ArchJava define particular realization techniques, although the exploration of

solutions is not explicitly considered. As the C2 model is more focused on architectural issues

concerning graphical interfaces, the mapping rules appear strongly influenced by this context.

ArchJava somehow ensures that an implementation conforms to several constraints prescribed

by the architecture, although this implementation is not really a derived product of the

architectural model. Architectures expressed in ArchJava are usually more concrete than

269

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

269269269269269

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

269269

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

269

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

architectures in other ADLs, and this tends to restrict the ways in which a given architecture

can be implemented. Furthermore, little is said in the two approaches about the influence of

quality factors in the materialization process.

On the other hand, the use of object-oriented frameworks to represent architectural building

blocks can be traced to the notion of framelets [23]. A framelet is a small white-box

framework, comprising a set of logically related components and design patterns and

interfaces. In ArchMatE, the object-oriented structures resulting from the materialization of

each style can be seen actually as framelets, because they capture a cluster of related

architectural requirements by means of framework mechanisms. Other object-oriented

perspectives of this issue have been also explored in [7, 31].

Besides, our approach bears similarities with domain-specific software architectures (DSSA)

[29], and with model-driven architectures (MDA) [26]. A DSSA provides, basically, a

software architecture with reference requirements and a domain model, an infrastructure to

support it, and a process to instantiate and refine this infrastructure. The main difference with

the materialization approach is that we aim to capture architectural abstractions mostly

domain-independent and their relationships with quality attributes. In the case of MDA, the

work is concerned with the definition of open standards and supporting tools for system

modeling and transformation (often using UML profiles), rather that with architectural issues,

which seem to be implicit into these models.

More recently, there has been a proposal to generate adaptable software architectures for

embedded systems, using the NFR Framework in combination with a base of design

knowledge [27]. With this purpose, quality attributes are seen as potentially synergistic or

conflicting goals to be achieved during the process of software development. Then, goal

graphs with different kind of links are constructed, and design alternatives are linked to

graphs according to their partial contributions for or against certain goals. An evaluation

procedure calculates the effect of each design decision on the graph. After that, by means of a

tool equipped with correlation rules, the developer can select different alternatives from the

knowledge base (in this case, regarding adaptability). In our opinion, goal graphs result very

useful as modeling instruments, although the codification of knowledge and experience

relating tradeoffs with design decisions using methods and correlation rules still needs more

elaboration. Besides, the distinction between architectural and object alternatives is not

always made clear in the approach.

6. Conclusions and Future Work

In this paper, we have described a tool approach to explore alternative ways of transforming

architectural models into object-oriented structures. The contributions of the proposed

approach are twofold: i) it considers those quality-attribute settings more relevant to the

developer as drivers of the process, ii) it lessens the cognitive complexity of the process

(especially in the case of novice or inexperienced developers). Essentially, the mapping

process is accomplished by means of materialization strategies, which help the derived object

structures retain to some extent the characteristics prescribed by the original architectural

model. Furthermore, as the developer is supported with design assistance, he/she is less likely

to overlook the various options, variants and details associated with the object-oriented

materialization.

Consequently, ArchMatE has been developed as a prototypical design engine to automate the

exploration of materialization alternatives. In order to incorporate design knowledge into this

engine, it was implemented following a multi-paradigm schema in Javalog. Using Javalog, it

270

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

270270270270270

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

270270

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

270

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

is possible to take advantage of both logical inference mechanisms and conventional object-

oriented mechanisms when capturing different kinds of materialization strategies. Given this

flexibility, the exploratory parts of the materialization, such as relationships between quality

attributes, architectural-style variants and mapping strategies, were expressed in Prolog, while

those parts known beforehand, such as implementation of mapping strategies, were expressed

in Java.

Currently, ArchMatE has been tested with two architectural styles (pipes-and-filters and

blackboard), a few case-studies, and a small sample of quality-attribute concerns. The results

of this evaluation have certainly demonstrated the potentialities of the approach, however,

some problems and open issues still remain. The composition of partial solutions, either at the

architectural or at the object levels, is still little understood, so the engine has to deal with it in

an “ad-hoc” manner. Second, this shortcoming also affects the engine’s control over the

quality-attribute tradeoffs of different generated solutions. Third, the developer cannot make

yet decisions in the middle of the generation process, loosing opportunities to incorporate his

judgement as the tool is running, in order to early reject inferior solutions in favor of the

refinement of more promising alternatives.

Despite the investigation of techniques to cope with the above problems, other interesting

lines of work include: the analysis of more architectural styles and associated materialization

strategies, the definition of other implementation techniques for each strategy (e.g., AOP

[17]), and the topic of code generators. Finally, a long-term goal of this research is the

improvement of the assistive capabilities of ArchMatE, and its further integration within the

proto-framework design approach.

References

1. Acme Homepage http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html

2. Architectural Reasoning in ArchJava. J. Aldrich, C. Chambers, and D. Notkin.

Proceedings of the European Conference on Object-Oriented Programming, June 2002.

3. JavaLog: A framework-based integration of Java and Prolog for agent-oriented

programming. A. Amandi, M. Campo, A. Zunino . Computer Languages, Systems and

Structures. Elsevier Science. ISSN: 0096-0551. Ed.: R. S. Ledley. 2004.

4. Software Architecture in Practice. L. Bass, P. Clement, and R. Kazman. 2
nd

 Edition.

Published by Addison-Wesley. 2003.

5. Identifying Quality-Requirements Conflicts. B. Boehm and H. In. IEEE Software, March,

1996.

6. Software Architecture Design: Evaluation and Transformation. J. Bosch and P Molin.

Proc. 1999 IEEE Engineering of Computer Based Systems Symp. (ECBS99), 1999.

7. Odyssey: A Reuse Environment based on Domain Models. R. Braga, C. Werner, and M.

Mattoso. Proc. IEEE Symposium on Application-Specific Systems and Software Eng.

Technology (ASSET'99), IEEE CS Press, Texas, March 24-27, pp. 50-57, 1999.

8. Reasoning with Design Rationale. J. Burge. D. Brown. In Artificial Intelligence in

Design'00, (Ed.) J. S. Gero, Kluwer, Dordrecht. 2000.

9. Pattern-Oriented Software Architecture. A System of Patterns. F. Buschmann, R.

Meunier, H. Rohnert, P. Sommerlad and M. Stal John Wiley & Sons. 1996.

10. Developing Object-oriented Enterprise Quality Frameworks using Proto-frameworks. M.

Campo, A. Díaz Pace, M. Zito. Software: Practice and Experience,Vol 32 No. 8, Pp. 837-

843. Wiley. 2002.

11. Generative Programming: Methods, Techniques, and Applications. K. Czarnecki. ICSR

2002: 351-352

271

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

271271271271271

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

271271

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

271

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

12. Architecting the Design of Multi-Agent Organizations with Proto-frameworks. A. Díaz

Pace, M. Campo, A. Soria. Software Engineering for Multi-Agent Systems II - LNCS

2940. Springer, 2004.

13. Building Application Frameworks: Object-Oriented Foundations of Framework Design.

M. Fayad, D. Schmidt, R. Johnson.Wiley Eds., 1999.

14. Design Patterns, Elements of Reusable Object-Oriented Software. E. Gamma, R. Helm, R.

Johnson, and J. Vlissides. Addison-Wesley. Massachussetts, 1994.

15. ACME: Architectural Description of Component-based Systems. D. Garlan, R. Monroe,

D. Wile. Foundations of Component-based Systems. Cambridge Univ. Press, 2000.

16. Structural Analysis for Java. http://www.alphaworks.ibm.com/tech/sa4j

17. Aspect-Oriented Programming. G. Kiczales, J. Lamping, J. Mendhekar, C. Maeda, C.

Videira Lopes, J. Loingtier, J. Irwin. Proc. of the European Conference on Object-

Oriented Programming (ECOOP), Finlad. Springer-Verlag LNCS 1241. June 1997.

18. A Classification and Comparison Framework for Software Architecture Description

Languages. N. Medvidovic, R. Taylor. IEEE Trans. on Soft. Eng., vol.26 no.1, 2000.

19. A Family of Software Architecture Implementation Frameworks. N. Medvidovic, N.

Mehta, M. Mikic-Rakic. Proceedings 3rd IFIP WICSA, 2002.

20. Capturing Design Expertise in Customized Software Architecture Design Environments.

R. Monroe. Proc. 2nd Int. Software Architecture Workshop, 1996.

21. Architectural Styles, Design Patterns, and Objects. R. Monroe, A. Kompanek, R. Melton,

D. Garlan. IEEE Software 14(1): 43-52, 1997.

22. On the Criteria To Be Used in Decomposing Systems into Modules. D. Parnas.

Commununications of the ACM 15(12): 1053-1058, 1972.

23. Framelets - Small is Beautiful. W. Pree, K. Koskimies. In: Building Application

Frameworks (M.E. Fayad, D.C. Schmidt, R.E. Johnson, ed.), Wiley 1999, 411-414.

24. Software Architecture, Perspectives on an Emerging Discipline. M. Shaw and D. Garlan.

Published by Prentice-Hall. 1996.

25. A Field Guide to Boxology: Preliminary Classification of Architectural Styles for

Software Systems. M. Shaw and P. Clements. Proc. COMPSAC97, 1997.

26. [Soley00] Model Driven Architecture. R. Soley.OMG. White paper Draft 3.2. 2000

27. Semi-Automatic Generation of Adaptable Architectures. N. Subramanian, L.Chung.

Software Engineering Research and Practice 2003: 149-154. 2003

28. Synthesis-Based Software Architecture Design. B. Tekinerdogan and M. Aksit. In

Software Architectures and Component Technology: The State of the Art in Research and

Practice, M. Aksit (Ed.), Kluwer Academic Publishers, pp. 143 - 173, 2001.

29. Domain Analysis, Domain Modeling, and Domain-Specific Software Architectures. W.

Tracz. Proc. of the 4th Int. Conf. on Software Reuse, pp 232-233. Orlando, FL. 1996.

30. UML Homepage http://www.omg.org/technology/uml/

31. Uma Abordagem para a Seleção de Padrões Arquiteturais Baseada em Características de

Qualidade. J. Xavier, C. Werner and G. Travassos. Anais XVI Simp. Brasileiro de

Engenharia de Software. Porto Alegre: Editora Evangraf Ltda, 2002. v.1. p.52 - 67

272

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

272272272272272

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

272272

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

272

18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software18º Simpósio Brasileiro de Engenharia de Software

