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Abstract 
Aspect-oriented software development (AOSD) is gaining wide attention both in research 
environments and in industry. Aspect-oriented systems encompass new software engineering 
abstractions and different complexity dimensions. As a consequence, AOSD poses new 
problems to empirical software engineering. It requires new assessment frameworks 
specifically tailored to measure the reusability and maintainability degrees of aspect-oriented 
systems. This paper presents an assessment framework for AOSD, which is composed of two 
components: a suite of metrics and a quality model. These components are based on well-
known principles and existing metrics in order to avoid the reinvention of well-tested 
solutions. The proposed framework has been evaluated in the context of two different 
empirical studies with different characteristics, diverse domains, varying control levels and 
different complexity degrees. Based on empirical and quantitative analysis, the advantages 
and drawbacks of the framework components are discussed. 
Keywords: Aspect-oriented software development, software metrics, quality model, 
empirical software engineering. 
 
1. Introduction  
Object-oriented abstractions currently are recognized as being unable to capture all concerns 
of interest in a software system [23, 32]. Many important concerns often crosscut several 
objects and classes of object-oriented systems. Aspect-oriented software development 
(AOSD) is a promising paradigm to promote improved separation of concerns, leading to the 
production of software systems that are easier to maintain and reuse. AOSD is centered on the 
aspect notion as an abstraction aimed to modularize such crosscutting concerns and improve 
the system maintainability and reusability. However, since the aspect-oriented paradigm is 
still in its infancy, it is very difficult to determine what are good design and implementation 
decisions for AOSD. There is only a small consensus that classical and obvious crosscutting 
concerns should be modularized within aspects, such as logging and exception handling. 
There is no rationale to assist the design of other important and more domain-dependent 
crosscutting concerns. It is difficult to understand when to use aspects such as architectural 
and design solutions. As a consequence, aspects currently are being applied in an ad hoc 
manner.   

The usefulness of new development paradigms and associated design practices can be 
evaluated through empirical studies. Software metrics are used in empirical studies as 
indicators of the strengths and weaknesses of the studied approach. Many software metrics 
have been proposed [12, 15], used and, sometimes, empirically validated [3, 25], e.g. number 
of lines of code [15], McCabe complexity metric [15], CK metrics [12], etc. Many companies 
have built their own quality models based on product metrics [4, 27].  Moreover, a number of 



development environments have incorporated support for metrics, such as Together [6]. 
However, the available metrics are not dedicated to AOSD. As a result, most empirical studies 
involving the application of aspect technology have been based on qualitative assessment [17, 
20, 22]. These studies do not rely on a structured quality model and well-accepted software 
engineering principles. Experimenters often use poorly understood concepts to investigate the 
quality of aspect-oriented solutions, such as pluggability and composability.  Although the 
goal of these concepts is to capture several facets of software reuse and maintenance, their 
definitions are largely vague and widely founded on the intuition of their proponents. Our 
viewpoint is that the maintainability and reusability degrees of aspect-oriented systems should 
be assessed in terms of well-established software engineering principles and well-tested 
metrics.  
 In this context, this paper presents a framework for assessing reusability and 
maintainability of aspect-oriented software. The definition of the framework is centered on 
the separation of concerns principle and other software attributes that are well known and 
explored in empirical software engineering, such as coupling, cohesion and size. Our 
assessment framework encompasses two main components: a metrics suite and a quality 
model. The quality model defines precisely how to measure reusability and maintainability 
based on a set of proposed metrics. The model also assists software engineers in the 
interpretation of the data gathered from the measurement process. Software engineers can use 
the proposed framework both to assess design decisions in AOSD, and compare aspect-
oriented solutions and object-oriented solutions. The metrics and the model have been 
evaluated in the context of two different empirical studies with different characteristics, 
diverse domains, varying control levels and different complexity degrees. Based on empirical 
and quantitative analysis, the advantages and drawbacks of these metrics are discussed. 
 The remainder of this paper is organized as follows. Section 2 introduces basic 
concepts for AOSD and the requirements for the proposed suite of metrics. Section 3 presents 
the proposed metrics and Section 4 shows how these metrics are related to other components 
of our assessment framework. Section 5 presents the empirical evaluation of our assessment 
framework and an analysis of its usefulness. Section 6 discusses our proposal and related 
work in terms of usability issues. Section 7 presents some concluding remarks and directions 
for future work. 
 
2. AOSD: Background and Measurement Requirements 
2.1. Basic Concepts 
Separation of concerns is a well-established principle in software engineering. A concern is 
some part of the problem that we want to treat as a single conceptual unit [32]. Concerns are 
modularized throughout software development using different abstractions provided by 
languages, methods and tools. The basic abstractions of object-oriented software development 
(OOSD) are classes, objects, methods and attributes. However, these abstractions may not be 
sufficient for separating some special concerns found in most complex systems. These 
concerns have been called crosscutting concerns since they naturally cut across the 
modularity of other concerns. Without proper means for separation and modularization, 
crosscutting concerns tend to be scattered and tangled up with other concerns. The natural 
consequences are reduced comprehensibility, ease of evolution and reusability of software 
artifacts. 

Aspect-oriented software development (AOSD) [23, 32] has been proposed as a 
technique for improving separation of concerns in the construction of OO software and 
supporting improved reusability and ease of evolution. AOSD supports the modularization of 
crosscutting concerns by providing abstractions that make it possible to separate and compose 



them to produce the overall system. AOSD uses aspects as a new abstraction and provides a 
new mechanism for composing aspects and components (classes, methods, etc.) at specific 
join points. 

AspectJ [24] is a practical aspect-oriented extension to the Java programming 
language. Aspects are AspectJ's unit of modularity for crosscutting concerns. They are defined 
in terms of pointcuts, advice and introduction. In AspectJ, join points are well-defined points 
in the program flow, such as method calls, field sets, etc. Pointcuts describe join points and 
values at those points. Advice is a method-like abstraction that defines code to be executed 
when a join point is reached; pointcuts are used in the definition of advice. Introduction 
defines how AspectJ modifies a program's static structure — namely, the members of its 
classes and the relationship between classes. Pointcuts and advice dynamically affect program 
flow, and introduction statically affects a program's class hierarchy. 

In this work, we are interested in the following abstractions related to AOSD: two 
basic types of components1, classes and aspects, and two basic types of operations, methods 
and advices (crosscutting operations). 
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Figure 1. Coupling Dimensions on AOSD. 

 
2.2. Measurement Requirements 
The central purpose of using aspects is to achieve improved separation of concerns, but it can 
affect other software attributes, such as coupling, cohesion and size. Aspects are effective to 
modularize crosscutting concerns, minimize replication of code and, as a consequence, reduce 
the size of the system. However, the inappropriate use of aspects can affect negatively these 
software attributes and increase the complexity of the system. Software metrics are the most 
effective way to supply empirical evidence that may improve our understanding of the 
different dimensions of the software complexity [7]. Metrics evaluate the use of abstractions 
during software development in terms of software attributes, such as coupling and cohesion. 
The metrics are more effective when they are associated with some assessment framework so 
that software engineers can understand and interpret the meanings of the collected data. 
 The literature contains several sets of traditional metrics and others for OO systems. 
Most existing metrics cannot be applied straightforwardly to aspect-oriented software [32, 33, 
34], since AOSD introduces new abstractions to software engineering (Section 2.1). The 
system components (classes and aspects) are composed in different ways and, as a 
consequence, aspect-oriented abstractions encompass different dimensions of coupling and 

                                                
1 In general, the AOSD community adopts a clear distinction between components (or base components) and 
aspects; however, in this work,  the term  component  is used to denote classes and aspects. 



cohesion [33, 34]. In addition, as stated previously, AOSD has direct impact on the system 
size and on the separation of the system concerns. For instance, Figure 1 illustrates the 
different ways of combining classes and aspects, which are the potential sources of coupling 
in an aspect-oriented system. In this way, the definition of adequate metrics for aspect-
oriented software should satisfy the following requirements: 
Requirement #1 – measure well-known software attributes such as separation of concerns, 
coupling, cohesion and size. 
Requirement #2 – rely as much as possible on traditional metrics and on the extension of OO 
metrics to AOSD, since aspect-oriented abstractions extend the set of OO abstractions. 
Requirement #3 – capture different dimensions of coupling and cohesion of aspect-oriented 
software. 
Requirement #4 - support the identification of benefits and drawbacks in the use of aspects 
into a software project when compared with an object-oriented solution for the same problem. 
 
3. The Metrics Suite  
The proposed suite of metrics captures information about the design and code in terms of 
fundamental software attributes such as separation of concerns, coupling, cohesion and size. 
This suite reuses and refines classical metrics - e.g. LOC - and OO metrics - e.g. Chidamber 
and Kemerer (CK) metrics [12] - for coupling, cohesion and size [12, 15]. We have tailored 
the definition of these metrics to reflect the new abstractions introduced by aspects in terms of 
these software attributes. The criteria for the selection of these metrics were based on 
theoretical and practical demands. For example, the CK metrics are based on a sound 
measurement theory and have been widely used and empirically validated [3]. Furthermore, 
we proposed some metrics for separation of concerns that refine Lopes’ metrics [26]. 

Our suite is composed of five design metrics and five code metrics. In the following 
subsections, these metrics are grouped according to the attributes they measure: (i) separation 
of concerns (SoC), (ii) coupling, (iii) cohesion and (iv) size. The description of each metric 
emphasizes how it satisfies our measurement requirements (Section 2.2). The relevance of 
these metrics for reuse and maintenance is described in our assessment framework (Section 
4). The metrics suite is presented apart from the framework description because it can be 
reused by others assessment frameworks (e.g. frameworks intended to measure other quality 
attributes, such as reliability and testability). 
 
3.1. SoC Metrics 
Separation of concerns refers to the ability to identify, encapsulate and manipulate those parts 
of software that are relevant to a particular concern [32]. We defined the following metrics of 
SoC: 
Concern Diffusion over Components (CDC). CDC is a design metric that counts the number 
of primary components whose main purpose is to contribute to the implementation of a 
concern. Furthermore, it counts the number of components that access the primary 
components by using them in attribute declarations, formal parameters, return types, throws 
declarations and local variables, or call their methods. 
Concern Diffusion over Operations (CDO). CDO counts the number of primary operations 
whose main purpose is to contribute to the implementation of a concern. In addition, it counts 
the number of methods and advices that access any primary component by calling their 
methods or using them in formal parameters, return types, throws declarations and local 
variables. Constructors also are counted as operations. 



Concern Diffusion over LOC (CDLOC). CDLOC counts the number of transition points for 
each concern through the lines of code. The use of this metric requires a shadowing process 
that partitions the code into shadowed areas and non-shadowed areas [18]. The shadowed 
areas are lines of code that implement a given concern. Transition points are the points in the 
code where there is a transition from a non-shadowed area to a shadowed area and vice-versa. 
The intuition behind it is that they are points in the program text where there is a “concern 
switch.” For each concern, the program text is analyzed line by line in order to count 
transition points. The higher the CDLOC, the more intermingled is the concern code within 
the implementation of the components; the lower the CDLOC, the more localized is the 
concern code. An extensive set of guidelines to assist the shadowing process is reported 
elsewhere [18]. 
 
3.2. Coupling Metrics  
Coupling is an indication of the strength of interconnections between the components in a 
system. Highly coupled systems have strong interconnections, with program units dependent 
on each other [31]. CBC and DIT are the coupling metrics of our suite. 
Coupling between Components (CBC). CBC is defined for a component (class or aspect) as a 
tally of the number of other components to which it is coupled. It counts the number of 
classes that are used in attribute declarations; i.e., it captures the couplings C2 and C3 
depicted in Figure 1. It also counts the number of components declared in formal parameters, 
return types, throws declarations and local variables, and classes and aspects from which 
attribute and method selections are made. If a component A is coupled to a component B in an 
arbitrary number of forms, CBC counts only once. This metric is an extension of the CK 
metric for coupling between objects (CBO). In order to define CBC, we change the definition 
of CBO to deal with new coupling dimensions in AOSD: accesses to aspect methods and 
attributes defined by introduction (couplings C4, C5, C7, C8, C10), and the relationships 
between aspects and classes or other aspects defined in the pointcuts (couplings C6, C9). This 
metric encompasses nine coupling dimensions described in Figure 1 (from C2 to C10).  
Depth of Inheritance Tree (DIT). DIT is defined as the maximum length from a node to the 
root of the tree. It counts how far down the inheritance hierarchy a class or aspect is declared. 
DIT is an extension of a CK metric with the same name that considers the inheritance 
between aspects.  This metric encompasses the coupling dimensions C1 and C11 illustrated in 
Figure 1. 
 
3.3. Cohesion Metric 
The cohesion of a component is a measure of the closeness of the relationship between its 
internal components [31]. In the following, we describe the cohesion metric of our suite.  
Lack of Cohesion in Operations (LCOO). This metric measures the lack of cohesion of a 
component. If a component C1 has n operations (methods and advices) O1,…, On then {Ij} is 
the set of instance variables used by operation Oj. Let |P| be the number of null intersections 
between instance variables sets. Let |Q| be the number of non-empty intersections between 
instance variables sets. Then: LCOO = |P| – |Q|, if |P| > |Q|, LCOO = 0 otherwise. LCOO 
measures the amount of method/advice pairs that do not access the same instance variable. As 
such, it is a measure of lack of cohesion. This metric extends the CK metric LCOM. We 
regard advices and methods of aspects in the same way that CK regards methods of classes. 
 
3.4. Size Metrics 
The software size physically measures the length of a software system’s design and code [15]. 
Our metric suite encompasses the following size metrics. 



Vocabulary Size (VS). VS counts the number of system components, i.e. the number of classes 
and aspects into the system. This metric measures the system vocabulary size. Each 
component name is counted as part of the system vocabulary. The component instances are 
not counted. 
Lines of Code (LOC). It counts the number of code lines. This is the traditional measure of 
size. Documentation and implementation comments as well as blank lines are not interpreted 
as code. Different programming styles usually bias the results of this metric application. In 
our empirical studies (Section 5), we have overcome this problem by ensuring the same 
programming style was used in both projects. 
Number of Attributes (NOA). This metric counts the internal vocabulary of each component, 
i.e. the number of attributes of each class or aspect. Inherited attributes are not included in the 
count. 
Weighted Operations per Component (WOC). This metric measures the complexity of a 
component in terms of its operations. Consider a component C1 with operations (methods or 
advices) O1 ,..., On. Let c1 ,…, cn be the complexity of the operations. Then: WOC = c1 + .... + 
cn. This metric originally does not specify the operation complexity measure, which should be 
tailored to the specific contexts. The operation complexity measure is obtained by counting 
the number of parameters of the operation, assuming that an operation with more parameters 
than another is likely to be more complex. This metric extends the CK’s WMC metric. We 
treat advices and methods of aspects in the same way that CK treats methods of classes. 
 
4. The Assessment Framework  
The measure of a particular internal attribute, such as coupling, is useful if it is related to a 
measure of some external attribute of the object of study (e.g. reusability). In software 
engineering measures of internal product attributes are artificial concepts and, in themselves, 
have no meaning [7]. In this context, we developed a framework to capture the understanding 
of the SoC, coupling, cohesion and size attributes in terms of their usefulness as predictors of 
the maintainability and reusability qualities. In fact, the goal of the assessment framework is 
to provide support for assessment of reusability and maintainability of aspect-oriented 
systems based on the proposed metrics (Section 3).  

The framework components help organize the assessment process and assist in data 
collection and interpretation (Figure 2). The basic components of the framework are: (i) the 
suite of metrics (Section 3), and (ii) the quality model. The quality model establishes the 
relationships between the external attributes, internal attributes and the metrics. The 
framework requires some artifacts as inputs to the measurement process. First, it requires the 
design documents and the system code for the use of the metrics. In addition, the assessment 
framework requires a description of the system concerns to guide the identification of the 
concerns when using the metrics of separation of concerns (shadowing process described in 
Section 3.1). 
 
4.1. The Quality Model 
Our quality model defines a terminology and clarifies the relationships between the 
reusability, maintainability and the metrics suite. It is a useful tool for guiding software 
engineers in data interpretation. It was defined based on a set of assumptions. The definition 
of our quality model is based on: (i) an extensive review of a set of existing quality models 
[15, 18], (ii) classical definitions of quality attributes [28, 31] and traditional design theories, 
such as Parnas' theory [29], which are commonly accepted among researchers and 
practitioners and (iii) the software attributes impacted by the aspect-oriented abstractions 



(Section 2). The quality model has been built and refined using Basili’s GQM methodology 
[2] (Section 4.2).  

  
Quality models are constructed in a tree-like fashion since quality actually is a 

composite of many other qualities [15]. The notion of software quality is usually captured in a 
model that depicts other intermediary qualities, which we have called factors. Our quality 
model is composed of three different elements: (i) qualities, (ii) factors and (iii) internal 
attributes. In addition, the quality model connects the internal attributes to our suite of 
metrics. The qualities are the attributes that we want to primarily observe in the software 
system (reusability and maintainability). The factors are the secondary quality attributes that 
influence the defined primary qualities. The attributes are related to internal properties of 
software systems. These attributes are related to well-established software engineering 
principles, which in turn are essential to the achievement of the qualities and their respective 
factors [15]. Figure 3 presents the elements of our quality model. The upper branches contain 
important high-level qualities and factors that we wish to quantify. The internal attributes are 
easier to measure than the qualities and factors and, thus, actual metrics are connected to these 
attributes [15]. The following subsections describe the elements of our quality model. 
 
4.1.1. Qualities and Factors 
As stated previously, maintainability and reusability are the quality focus of our assessment 
framework. Reusability is the ability of software elements to serve for construction of 
different elements in the same software system or across different ones [28]. In our model, we 
are interested in evaluating the reusability of elements of design and code of aspect-oriented 
systems. Maintenance is the activity of modifying a software system after initial delivery. 
Software maintainability is the ease with which software components can be modified. 
Maintenance activities are classified into four categories [15, 31]: corrective maintenance, 
perfective maintenance, adaptive maintenance and evolution. Since the main goal of AOSD is 
to improve the evolution of OO systems (Section 2.1), our focus is on the evolution aspect of 
aspect-oriented systems. 

The quality model emphasizes that similar factors are useful for the promotion of 
maintainability as well as reusability. This similarity is related to the fact the reuse and 
maintenance activities encompass common cognitive tasks. Flexibility and understandability 
are the central factors for promoting reuse and maintainability [15, 28, 29, 31]. Both kinds of 
activities require software abstractions to support understandability and flexibility. 
Understandability indicates the level of difficulty for studying and understanding a system’s 
design and code [29]. Flexibility indicates the level of difficulty for making drastic changes to 
one component in a system without a need to change others [29]. An understandable system 
enhances its own maintainability and reusability; this is so because most maintenance and 
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reuse activities require that software engineers first try to understand the system’s components 
before making any subsequent system modifications or extensions. Furthermore, a software 
system must be flexible enough to support the addition and removal of functionalities and the 
reuse of its components with a minimum amount of effort. 

In our model, the understandability factor is related to the following internal attributes: 
(i) size, (ii) coupling, (iii) cohesion and (iv) separation of concerns. Coupling and cohesion 
affect understandability because a component of the system cannot be understood without 
reference to the other components to which it is related. The size of design and code may 
indicate the amount of effort needed for understanding the software components. The 
separation of concerns criterion is a predictor of understandability because the more localized 
are the concerns of the system, the easier it is to understand them. The flexibility factor is 
influenced by the following internal attributes: (i) coupling, (ii) cohesion and (iii) separation 
of concerns. High cohesion, low coupling and separation of concerns are desired 
characteristics because they mean that a component represents a single part of the system and 
the system components are independent or almost independent. Furthermore, the system’s 
concerns are not scattered and tangled. If it becomes necessary to add, remove or reuse 
functionality, it is localized in a single component and the maintenance and reuse activities 
are flexibly restricted to this isolated component. Note that the flexibility factor is not 
influenced by the principle of size. 
 
4.1.2. Internal Attributes and Metrics 
Each internal attribute is related to a set of the proposed metrics. In the following paragraphs, 
we state the relationships between the internal attributes, the metrics and the qualities and 
factors in terms of each internal attribute.  

Separation of Concerns. The metrics CDC, CDO and CDLOC measure the degree to which a 
single concern in the system maps to software elements in the software design and code. The 
more directly a concern maps to these elements, the easier it is for software engineers to 
understand it. The more directly a concern maps to the elements, the fewer number of 
components will be changed during maintainability activities, or a fewer number of 
components should be needed to understand and extend during reuse activities.   

Coupling. The metrics CBC and DIT measure coupling from different viewpoints. The 
component understanding involves the understanding of the components to which it is 
coupled. So the larger the number of couples of a component, the more difficult it is to 
understand the system. The larger the number of couples, the higher the sensitivity to changes 
in other parts of the design and, therefore, maintenance is more difficult. Excessive coupling 
between components is detrimental to modular design and prevents reuse. The more 
independent is a component, the easier it is to reuse it in another application. 

Cohesion. The LCOO metric detects the degree to which a component implements a single 
logical function. The higher the degree to which different actions performed by a component 
contribute towards distinct functions, the harder it is to reuse and maintain the component or 
one of its functionalities. 

Size. Size metrics are concerned with the different aspects of the system size. In general, the 
higher the size, the more difficult it is to understand the system. For example, the metric LOC 
measures the system size in terms of lines of code. The greater the number of code lines, the 
more difficult it is to understand the system. The more lines of code, the harder it is to find the 
lines that must be changed during evolution activities or understand the implementation of the 
required functionalities during reuse activities. 
 



4.2. GQM Goal and Questions 
In order to facilitate data interpretation, we believe that a measurement process must take 
place according to an explicit goal and a set of questions that represent an operational 
definition of it. So we use the Goal/Question/Metric approach [2] to define the goal of our 
measuring framework and derive from it the questions that must be answered to determine if 
the goal has been met. The GQM approach provides a three-step framework: (1) list the major 
goals of the empirical study; (2) derive from each goal the questions that must be answered to 
determine if the goals have been met; (3) decide what must be measured in order to be able to 
answer the questions adequately (definition of the metrics). The definition of these questions 
has helped us in the definition of the quality model (Section 4.1) and the proposed set of 
metrics (Section 3). The questions also associate the quality model with a more precise 
semantics for the qualities, factors and internal attributes. Moreover, such questions assist 
software engineers in the interpretation of the gathered data during the measurement process. 
Figure 4 presents the goal and questions generated. Questions 1 and 2 are derived directly 
from the stated goal and, therefore, refer to ease of evolution and reusability. These two 
questions are refined into questions about understandability and flexibility that are further 
refined into questions about separation of concerns, coupling and cohesion. Questions about 
understandability are also refined into questions related to the system size. Questions 1.1.2, 
1.2.1, 2.1.2, 2.2.1 can be refined into one or more questions, depending on the number of 
concerns (N) identified in the system to be assessed. 
 

 

Figure 4. GQM Goal and Questions 
 
 

Goal 
Assess aspect-oriented systems for the purpose of prediction with respect to maintainability and reusability from the viewpoint of the developer. 
Questions 

1. How easy is it to evolve the system?  

1.1. How easy is it to understand the system?  
1.1.1. How concise is the system? 

1.1.1.1. How many components are there? 
1.1.1.2. How many lines of code are there? 
1.1.1.3. How many attributes are there? 
1.1.1.4. How many methods and advices are there? 

1.1.2. How well are the concerns localized? 
1.1.2.1. How scattered and tangled is the 

<concern1 name> definition? 
1.1.2.N      How scattered and tangled is the 
                  <concernN name> definition? 

1.1.3. How high is the coupling of the system? 
1.1.3.1. How high is the coupling between 

components? 
1.1.4. How high is the cohesion of the system? 

1.1.4.1. How high is the cohesion of the system 
components?  

1.2. How flexible is the system?  
1.2.1. How well are the concerns localized? 

1.2.1.1. How scattered and tangled is the 
<concern1 name> definition? 

1.2.1.N.     How scattered and tangled is the 
                  <concernN name> definition? 

1.2.2. How high is the coupling of the system? 
1.2.2.1. How high is the coupling between 

components? 
1.2.3. How high is the cohesion of the system? 

1.2.3.1. How high is the cohesion of the system 
components? 

2. How easy is it to reuse the system elements? 

2.1. How easy is it to understand the system?  
2.1.1. How concise is the system? 

2.1.1.1. How many components are there? 
2.1.1.2. How many lines of code are there? 
2.1.1.3. How many attributes are there? 
2.1.1.4. How many methods and advices are there? 

2.1.2. How well are the concerns localized? 
2.1.2.1. How scattered and tangled is the 

<concern1 name> definition? 
2.1.2.N.    How scattered and tangled is the 
                 <concernN name> definition? 

2.1.3. How high is the coupling of the system? 
2.1.3.1. How high is the coupling between 

components? 
2.1.4. How high is the cohesion of the system? 

2.1.4.1. How high is the cohesion of the system 
components? 

2.2. How flexible is the system?  
2.2.1. How well are the concerns localized? 

2.2.1.1. How scattered and tangled is the 
<concern1 name> definition? 

2.2.1.N.    How scattered and tangled is the  
                 <concernN name> definition? 

2.2.2. How high is the coupling of the system? 
2.2.2.1. How high is the coupling between 

components? 
2.2.3. How high is the cohesion of the system? 

2.2.3.1. How high is the cohesion of the system 
components? 



5. Empirical Evaluation 
The metrics and the model have been evaluated in the context of two different empirical 
studies with different characteristics, diverse domains, varying control levels and different 
degrees of complexity. The first study was a semi-controlled experiment [19] to compare the 
use of an object-oriented approach (based on design patterns [16]) and an aspect-oriented 
approach to design and implement Portalware, a multi-agent system (MAS). The second study 
involved the application of the proposed framework to evaluate Hannemann’s Java 
implementations and AspectJ implementations of the GoF design patterns [20].  

This section reports the partial results of the first study; the goal is to present a 
substantive evaluation of our proposed framework. This experiment was designed to 
demonstrate the usefulness of the metrics suite and the quality model in order to predict the 
maintainability and reusability of software systems. We collected data on the development of 
two versions of the Portalware system: an aspect-oriented version and an object-oriented 
version. The selection of this study and the choice of the agent domain were based on the fact 
that it is not obvious which problem entities should be designed as classes and which should 
be designed as aspects. Furthermore, this case study was chosen for a number of other 
reasons: (i) it involves both domain-specific and application-dependent concerns; (ii) it is not 
focused only on traditional and trivial crosscutting concerns (such as logging and tracing); and 
(iii) it also encompasses concerns that have not been investigated in the AOSD community. 
We used our assessment framework to determine if we made good design choices.  
 
5.1. The Experimental Setting 
The project upon which the MAS is based has been derived from a case study undertaken in 
the SoC+Agents/TecComm Group at PUC-Rio in Brazil. The Portalware system is a Web-
based environment that supports the development and management of Internet portals. As the 
needs of the Internet Portals market change ever more rapidly, the weaknesses in the software 
engineering techniques that are used become increasingly apparent. UML notations [5] and 
the Java language, respectively, were used to generate the object-oriented designs and 
implementation. A UML extension for aspect-oriented design [11] and the AspectJ 
programming language [24] were used to generate the aspect-oriented designs and 
implementation. The MAS concerns handled in this project are real-world reactive MASs, 
including agent types, roles, collaboration, adaptation, autonomy, and so on.  
 The experiment subjects developed two versions of the Portalware system based on 
both OOSD and AOSD (Section 2.1). Since these two approaches were not developed with 
MAS concerns (or agency concerns) in mind, we used two supporting methods [17] specially 
tailored to the MAS development. Each method is associated with each investigated approach 
and used by the experiment subjects to apply the respective approach and associated 
abstractions. Figure 5 represents, respectively, slices of the object-oriented and aspect-
oriented designs for the Portalware system. The left side shows a combination of different 
design patterns to address the MAS concerns. Each pattern is surrounded by a dotted line. On 
the right side, a diamond shape is used to express aspects. Each diamond may be related to 
one or more rectangles used to describe classes. This relationship is expressed as a line from 
the aspect to a class. These figures also illustrate some changes required in the maintenance 
and reuse scenarios for further clarification in the Section 5.3. 

The subjects have participated both in the development of the aspect-oriented (AO) 
system and in the development of the object-oriented (OO) system. Three of the subjects were 
PhD candidates and one was a Master’s degree student at PUC -Rio. All subjects had 
widespread experience in OO software analysis, design and programming and some 
experience in MAS development. The PhD candidates had already implemented large (•  10 



thousand lines of code) Java programs. Among them, two had considerable experience in 
aspect-oriented programming. The study was divided into two major phases: (1) the 
Construction phase (Section 5.2), and (2) the Reuse and Evolution phase (Section 5.3). In the 
Construction phase, the individuals were asked to develop the selected MAS using OOSD and 
AOSD. The OO and AO designs were based on the same requirements specification and the 
satisfying of the same set of functionalities.  
 

 

 
 

Figure 5. Slices of the OO Design and AO Design 
 
5.2 Data Collection and Interpretation: Predicting Reusability and 
Maintainability 
In the construction phase, the data was partially gathered by the CASE tool Together 6.0. This 
tool supports some metrics2: LOC, NOA, WOC, CBC, LCOO, and DIT. We also processed 

the shadowing of each system concern. 
Figure 6 presents an example of code 
shadowing for the Interaction concern in 
the PAgent class of the Portalware system. 
In general, the data collected demonstrated 
that the aspect-oriented system is easier to 
maintain and reuse than the OO system, as 
summarized below. The complete 
description of the data and a more detailed 
discussion of the results of this empirical 
study are beyond the scope of this paper 
and can be found in [19]. 
Size. The aspect-oriented project produced 
a more concise system according the 
number of lines of code. The LOC was 
1445 in the OO implementation and 1271 
in the AO implementation. The OO 
system was also more complex in terms of 
the number of components (VS metric) 
and the number of component attributes 

                                                
2 These metrics have different acronyms in the Together environment: WOC is termed WMPC2, CBC is CBO, 
LCOO is LOCOM1, and DIT is DOIH.    

public class PAgent { 
 
    private String agentName; 
   ... 
   ... 
    protected Interaction theInteraction; 
    protected Autonomy    theAutonomy; 
    protected Adaptation  theAdaptation; 
 
    public PAgent(String aName, Vector pl) { 
        init(); 
 agentName = aName; 
        theInteraction = new Interaction(this); 
        theAutonomy = new Autonomy(this); 
        theAdaptation = new Adaptation(this); 
        planList = pl;         
        System.out.println(" Name == " + agentName); 
   }   
   ... 
   ... 
/* Interface  for  Interaction */ 
   public void receiveMsg(Message msg)  
   { 
       theAutonomy.makeDecision(msg); 
       theAdaptation.adaptBeliefs(msg); 
   } 
 
   public void outcomingMsg(Message msg)  
   { 
       theInteraction.outcomingMsg(msg); 
   } 
} 

Figure 6. An example of code shadowing 



(NOA metric). For example, the amount of design and implementation components in the OO 
solution (VS = 60) was higher than in the AO solution (VS = 56). The main reason for this 
result is that the Role and Mediator patterns (Fig. 5) required additional classes to address the 
decomposition and composition of multiple agent roles and behavior properties, respectively. 
However, the use of aspects produced more complex operations, i.e. advices, than the use of 
the OO patterns (WOC metric). 
Coupling and Cohesion. The AO system incorporated components with higher coupling 
(CBC metric). The OO project has led to the abuse of the inheritance mechanism, which was 
fundamental for establishing high inheritance coupling (DIT metric). The LCOO metric 
detected some components of the OO system and produced better results in terms of cohesion 
than the components of the AO system. 
Separation of Concerns. The use of aspects clearly provided better support for separation of 
MAS concerns. This result is supported by all SoC metrics. The CDC measures detected that 
every MAS concern required more components for their implementation in the OO solution 
than in the AO solution. For example, all agent roles required more than five classes for their 
definition, while one single aspect is able to encapsulate each system role. In addition, all 
concerns required more operations (methods/advices) in the OO system than in the AO 
system (CDO metric). Finally, the CDLOC measures also pointed out that the AO solution 
was more effective in terms of modularizing the MAS concerns across the lines of code. 
 
5.3 Reuse and Maintenance Scenarios: Evaluating the Predicted Data  
The Reuse and Evolution phase involved the same subjects. The goal of this phase was to 
confirm the results of the application of the proposed metrics as a useful mechanism to predict 
reusability and maintainability. We simulated simple and complex changes involving agency 
concerns to both the OO and AO solutions in order to measure how easy it was to evolve and 
reuse their components. We selected seven maintenance and reuse scenarios that are recurrent 
in large-scale MAS: change of the agent roles (S1), creation of an agent type (S2), reuse of the 
agenthood concern (S3), inclusion of collaboration in an agent type (S4), reuse of roles (S5), 
creation of a new agent instance (S6) and change of the agenthood definition (S7). For each 
scenario, the difficulty of maintainability and reusability was defined in terms of structural 
changes to the artifacts in the AO and OO systems, such as number of components 
(aspects/classes) added, number of components changed, number of relationships included, 
and so forth. Table 1 presents the complete list of the measures. Figure 5 illustrates some 
design changes required in the S2 and S4 scenarios.  

The results presented in Table 1 have confirmed the data predicted using our software 
metrics, which provides substantial evidence of the usefulness of our metrics. For instance, 
the inclusion of new roles (S1) required some additional lines in the change of the OO system. 
The reason is that the AO technique supports improved separation of concerns, as indicated in 
the SoC measures (Section 5.2).  The introduction of collaboration capabilities to a specific 
agent type (S4) was the scenario that resulted in more substantial differences between the 
changes in the OO solution and the AO solution: (1) the OO code required 20 lines more than 
the AO code, (2) more relationships were added in the OO design, and (3) eight lines were 
removed from the AO code while no line was changed in the OO code. These results 
confirmed that coupling (DIT and CBC metrics), number of components and attributes (VS 
and NOA metrics) and separation of concerns (SoC metrics) impact directly on the 
maintenance and reuse activities. This finding is confirmed in the scenarios S5 and S7. 
However, it was not possible to understand the interplay between cohesion (LCOO metric) 
and the reusability and maintainability of the produced systems. 

 



 EVOLUTION 
 REUSE 

Changed 
Entities 

Changed 
Operations  

Added 
Entities 

Added 
Operations 

Changed 
Relations.  

Added 
Relations. 

Added 
LOCs 

Changed 
LOCs 

Copied 
Entities 

Copied 
LOCs 

 

OO AO OO AO OO AO OO AO OO AO OO AO OO AO OO AO OO AO OO AO 
S1 1 1 3 3 5 5 2 3 0 0 15 15 101 98 1 1 - - - - 
S2 0 0 2 2 4 4 0 0 0 0 10 10 84 86 0 0 - - - - 
S3 0 0 2 2 4 4 0 0 0 0 10 10 84 86 0 0 0 0 0 0 
S4 0 0 2 3 8 8 0 0 0 0 29 25 188 167 0 8 0 0 0 0 
S5 1 1 2 1 0 0 1 1 0 0 4 2 16 14 0 0 0 0 6 6 
S6 0 0 0 0 0 0 0 0 0 0 0 0 15 15 0 0 - - - - 
S7 5 1 0 0 0 0 0 0 5 2 1 1 0 0 5 1 0 0 40 0 

Table 1. The Results of the Reuse and Maintenance Scenarios  
 
5.4 Threats to Validity 
The goal of this study was to evaluate the metrics as predictors of maintainability and 
reusability and serves as a first step of an empirical validation. In this context, this section 
discusses the constraints on the validity of this evaluation. 
Construct Validity. Maintainability, reusability, understandability and flexibility are difficult 
concepts to measure. The dependent variables used here (Section 5.3) are based on a previous 
study performed by Li et al. [25]. In their work, the concept “maintenance effort” was reified 
as the number of lines of code changed. In future work, we are planning to use other more 
representative measures, such as “time to understand, develop and implement modifications” 
[1]. The achievement of the construct validity for our independent variables (the metrics in 
Section 3) would be desirable but is beyond the scope of this paper. However, some of our 
metrics are extensions of CK metrics that have been theoretically validated in [8, 9, 10]. 
Internal Validity. Our empirical study cannot be considered a controlled experiment, since 
all subjects took part in the development of the two systems. However, we tried to minimize 
the bias, selecting two subjects who defended (before the study) the pattern-oriented approach 
and two others who defended the aspect-oriented approach. Despite the effect caused by the 
subjects learning as the study proceeded, the AO system, which was developed first, showed 
better results.  
External Validity. The limited size and complexity of the system and the use of student 
subjects may restrict the extrapolation of our results. However, while the results may not be 
directly generalized to professional developers and real-world systems, the academic setting 
allows us to make useful initial assessments of whether these metrics would be worth 
studying further. In spite of its limitations, the study constitutes an important initial empirical 
work on the AO metrics proposed and is complementary to qualitative work [17] that we 
performed previously.  
 
6. Discussion and Related Work  
Up to now, most empirical studies in the AOSD context rest on subjective criteria and 
qualitative investigation [13, 17, 20, 22]. For example, Hannemann and Kiczales compare 
Java implementations and AspectJ implementations of the GoF design patterns [20] in terms 
of weakly defined measurement criteria, such as composability and pluggability. Only a few 
papers propose software metrics for AOSD, such as Lopes’ work [26]. She has defined a set 
of different metrics for separation of concerns. In fact, our metrics CDC, CDO and CDLOC 
(Section 3) are somewhat inspired by her set of metrics. However, the Lopes’ metrics only 
capture different dimensions of separation of concerns. In addition, the definition of her 
metrics is quite strongly coupled to her empirical study and tailored to the distribution 
concern in Java code. Our suite of metrics generalizes her metrics to apply to different 



concerns of design and code. Moreover, our metrics are early prediction mechanisms for other 
stringent principles in the design of aspect-oriented software, such as coupling and cohesion. 
 Zhao has proposed a metrics suite for aspect-oriented software, which is specifically 
designed to quantify the information flows in an aspect-oriented program [34]. His metrics are 
based on a dependence model for aspect-oriented software that consists of a group of 
dependence graphs; each can be used to explicitly represent various dependence relations at 
different levels of an aspect-oriented program. Although Zhao’s metrics can be viewed as 
complementary to our set of proposed metrics, their application is cumbersome and time-
consuming due to different reasons. The use of such metrics requires that software engineers 
construct a number of dependence graphs for different levels of modularity, such as the 
method dependence graph (MDG), the advice dependence graph (ADG), the introduction 
dependence graph (IDG), and so on. As a consequence, such metrics are very complex to 
understand and use, and requires the implementation of a dependence analysis tool that is 
likely to differ from one language to another. In addition, Zhao’s metr ics are not derived from 
well-tested metrics, and the associated dependence model is not based on any well-known 
software engineering model. 
 Concerning the application of our assessment framework in different contexts and case 
studies (Section 5), there is one general type of criticism that could be applied to our software 
metrics. This refers to theoretical arguments leveled at the use of conventional size metrics, 
such as LOC and VS (Section 3), as they are applied to traditional (non-AO software) design 
and development. However, in spite of the well-known limitations of these metrics we have 
learned that their application cannot be analyzed in isolation and they have shown themselves 
to be extremely useful when analyzed in conjunction with the other metrics of the proposed 
suite (Section 5). Furthermore, our assessment framework provides some guidelines to 
interpret effectively the data generated by these metrics in the context of reusability and 
maintainability. In addition, some researchers (such as Henderson-Sellers [21]) have criticized 
the LCOM metric as being without solid theoretical bases and lacking empirical validation 
[3]. However, we understand this issue as a general research problem in terms of cohesion 
metrics. In the future, we intend to investigate another emerging cohesion metrics based on 
program dynamics to include them in our assessment framework. 
 Up to now, we have not implemented a tool to support our metrics. However, our 
metrics are easy to use because most of them are based on metrics that already are well known 
in the software engineering community. As a result, a number of SDEs support most of them. 
For example, we have used Together [6] in our empirical studies (Section 5) for the data-
gathering process of the size, coupling and cohesion metrics. Since our SoC metrics are 
innovative, there is no tool that directly supports their use. As a consequence, the 
identification of the concerns is currently imposed on the user of the SoC metrics since most 
concerns are clearly application-dependent. However, there are some tools, recently proposed 
in the AOSD community, which can assist software engineers in the identification of 
concerns. For instance, the FEAT tool [30] supports the location, description, and analysis of 
code implementing one or more concerns in a Java system.  
 
7. Conclusions and Ongoing Work 
Building quality systems has been the driving goal of all software engineering efforts over the 
last two decades. The lack of design and implementation guidance can lead to the misuse of 
the aspect-oriented abstractions, worsening the overall quality of the system. Important 
quality requirements, such as reusability and maintainability, are likely to be affected 
negatively due to the inadequate use of the aspect-oriented languages and respective 
abstractions. In this way, as AOSD moves forward, a significant research effort is required to 



define quality measures. Measuring the structural design properties of software artifacts, such 
as coupling, cohesion, and separation of concerns, is a promising approach towards early 
quality assessments. To use such metrics effectively, quality models are needed for 
quantitatively describing how these internal properties relate to relevant external qualities. 
However, AOSD research has focused mainly on implementation and design language 
constructs. Some empirical studies have been undertaken in the context of AOSD. However, 
the assessment in these studies is qualitative and not generally applicable to other contexts. 
 We have presented a framework, which is based on a suite of metrics and a quality 
model, to assist the assessment of aspect-oriented software in terms of reusability and 
maintainability. The proposed metrics satisfy important requirements in order to achieve 
successful measurements in the AOSD context (Section 2.2). Our metrics suite is founded on 
well-known attributes of software design and implementation. Most of them rely on 
traditional metrics and extensions of OO metrics. The expectations regarding the extended 
and new metrics are related to the need to deal with new abstractions and new dimensions of 
coupling and cohesion introduced by AOSD. We also have discussed the usefulness and 
usability of our assessment framework and associated metrics, thus facilitating the 
development of future empirical studies as well as the framework refinement. We are 
planning to implement an Eclipse [14] plug-in to support the use of our assessment 
framework.  
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