

Detailing Architectural Design in Requirements Driven Software
Development: The Tropos Case

Carla T. L. L. Silva1, Jaelson F. B. Castro1, John Mylopoulos2

1 Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N,
Recife PE, Brazil 50732-970, + 55 81 32718430

{ ctlls, jbc} @cin.ufpe.br
2 Dept. of Computer Science University of Toronto, 10 King’s College Road Toronto

M5S3G4, Canada, +1 416 978 5180
jm@cs.toronto.edu

Abstract. Software systems development happens within a context which organ-
izational processes are well-established. Hence, software needs to be built with
flexible architectures based in social and intentional concepts to enable software to
evolve consistently with its operational environment, as well as, to accommodate
new components and meet new requirements. This paper proposes to accommo-
date within UML-RT the concepts and features used for representing organiza-
tional architectures styles defined by the Tropos requirements driven development
methodology. In doing so, it allows to provide a detailed representation of both the
structure and behaviour of software architectural design using these styles. An e-
commerce software system case study is used to illustrate the approach.

Keywords: software architecture, requirements engineering, goal-oriented meth-
ods.

1 Introduction

A flexible architecture with loosely coupled components is much more likely to accommodate
new feature requirements than one that has been highly optimized for just its initial set of re-
quirements. In this sense, the Tropos requirements driven development methodology, has de-
fined a number of organizational architectural styles [6],[7],[8] focusing on both software or-
ganizational processes and non-functional requirements. These styles are suitable to agent,
cooperative, dynamic and distributed applications and based on concepts and design alterna-
tives coming from research in organization management, used to model coordination of busi-
ness stakeholders – individuals, physical or social systems.

Tropos relies on the i* notation [4] to describe both requirements and architectural design.
However, the use of i* as an architectural description language is not suitable, since it presents
some limitations to describe the detailed behaviour required for architectural design.

Recognizing the Unified Modeling Language (UML) can be extended to act as an architec-
tural description language, we present in this work a set of extensions based on UML Real

Time especially tailored for the representation of organizational architectural styles [16]. This
will enable software engineer to insert more detail to the system architectural design. In order
to validate this proposal, we applied it to an e-commerce software system.

The rest of this paper is organized as follows: Section 2 presents the Tropos methodology.
Section 3 describes how software architecture can be modeled using UML. In Section 4, we
define how organizational architectures can be modeled using UML-RT. Section 5, we de-
scribe an organizational architectural style in UML-RT. Section 6 depicts the application of
the proposal to a case study. In section 7, we discuss related work, while the section 8 points
to some future work and discusses the contribution of this proposal.

2 The Tropos Methodology

Tropos proposes a software development methodology and a development framework which
are founded on concepts used to model early requirements and complements proposals for
agent-oriented programming platforms [1]. This methodology is based on the premise that in
order to build software that operates within a dynamic environment, one needs to analyze and
model explicitly that environment in terms of “actors” , their goals and dependencies on other
actors. Tropos supports five phases of software development:

− Early requirements, concerned with the understanding of a problem by studying an organ-
izational setting; the output is an organizational model which includes relevant actors, their
goals and dependencies.

− Late requirements, in which the system-to-be is described within its operational environ-
ment, along with relevant functions and qualities.

− Architectural design, in which the system's global architecture is defined in terms of subsys-
tems, interconnected through data, control and dependencies.

− Detailed design, in which behaviour of each architectural component is defined in further
detail.

In this work, our focus in on architectural design phase. Software architecture is more than

just structure, it includes rules on how system functionality is achieved across the structure.
Unfortunately, the classical architectural styles [11] and the styles for e-business applications
[12],[13] do not focus on business processes nor on non-functional requirements of the appli-
cation. As a result, the organizational architecture styles are not described nor the conceptual
high-level perspective of the e-business application.

Tropos has defined organizational architectural styles [6],[7],[8] for agent, cooperative, dy-
namic and distributed applications to guide the design of the system architecture. These archi-
tectural styles (pyramid, joint venture (Fig. 1), structure in 5, takeover, arm’s length, vertical
integration, co-optation, bidding, …) are based on concepts and design alternatives coming
from research on organization management. From this perspective, software system is like a
social organization of coordinated autonomous components that interact in order to achieve
specific and possibly common goals. The purpose is to reduce as much as possible the imped-
ance mismatch between the system and its environment.

For example, the joint venture architectural style (Figure 1) allows a decentralized architec-
ture [6],[7],[8]. The main feature of this style is that it involves an agreement between two or

more principal partners/components in order to obtain the benefits derived from operating at a
large scale, such as partial investment and lower maintenance costs, as well as reusing the
experience and knowledge of the partners/components, since they pursue joint objectives.

Figure 1. Joint Venture

To support modeling and analysis during the initial phases, Tropos adopts the concepts of-
fered by i* [4], a modeling framework offering concepts such as actor (actors can be agents,
positions or roles), as well as social dependencies among actors, including goal, softgoal, task
and resource dependencies. This means that both the system’s environment and the system
itself are seen as organizations of actors, each having goals to be fulfilled and each relying on
other actors to help them with goal fulfillment.

As shown in Figure 1, actors are represented as circles; dependums -- goals, softgoals, tasks
and resources -- are respectively represented as ovals, clouds, hexagons and rectangles; and
dependencies have the form depender�dependum�dependee. Hence, in Tropos we have the
following concepts:

− Actor: An actor is an active entity that carries out actions to achieve goals by exercising its
know-how.

− Dependency: A dependency describes an intentional relationship between two actors, i.e.,
an “agreement” (called dependum) between two actors: the depender and the dependee,
where one actor (depender) depends on another actor (dependee) on something (dependum).

− Depender: The depender is the depending actor.
− Dependee: The dependee is the actor who is depended upon.
− Dependum: The dependum is the type of the dependency and describes the nature of the

agreement.
− Goal: A goal is a condition or state of affairs in the world that the stakeholders would like

to achieve. How the goal is to be achieved is not specified, allowing alternatives to be con-
sidered.

− Softgoal: A softgoal is a condition or state of affairs in the world that the actor would like to
achieve, but unlike in the concept of (hard) goal, there are no clear-cut criteria for whether
the condition is achieved, and it is up to subjective judgment and interpretation of the de-
veloper to judge whether a particular state of affairs in fact achieves sufficiently the stated
softgoal.

− Resource: A resource is an (physical or informational) entity, with which the main concern
is whether it is available.

− Task: A task specifies a particular way of doing something. Tasks can also be seen as the
solutions in the target system, which will satisfy the softgoals (operationalizations). These
solutions provide operations, processes, data representations, structuring, constraints and
agents in the target system to meet the needs stated in the goals and softgoals.

The first task during architectural design is to select among alternative architectural styles

using as criteria the desired qualities identified in the previous phase (Late Requirements). To
this end, the NFR framework [5] can be used to conduct the selection of the most suitable
organizational architectural style. More details about the selection and non-functional re-
quirements decomposition process can be found in [6],[7].

In the next section, we introduce an extension of UML wich can be used as an architec-
tural description language. Later we expose our proposal for representing architectural design
in the Tropos methodology using this extension of UML.

3 Architectural Representation in UML

UML-RT [9],[10] can be used as an architectural modeling language. Some specific architec-
tural modeling concepts are defined as specializations of generic UML concepts. These spe-
cializations, usually expressed as stereotypes, conform to the generic semantics of the corre-
sponding UML concepts, but provide additional semantics specified by constraints [9]:

− Capsules: A capsule is a stereotype of the UML class concept with some specific features.

A capsule uses its ports for all interactions with its environment. The communication with
others capsule is done by one or more ports. The interconnection with other capsules is via
connectors using signals. A capsule is a specialized active class and is used for modeling a
self contained component of a system. For instance, a capsule may be used to capture an en-
tire subsystem, or even a complete system.

− Ports: A port represents an interaction point between a capsule and its environment. They
convey signals between the environment and the capsule. The type of signals and the order
in which they may appear is defined by the protocol associated with the port. The port nota-
tion is shown as a small hollow square symbol. If the port symbol is placed overlapping the

boundary of the rectangle symbol denotes a public visibility. If the port is shown inside the
rectangle symbol, then the port is hidden and its visibility is private. When viewed from
within the capsule, ports can be of two kinds: relay ports and end ports. Relay ports are
ports that simply pass all signals through and end ports are the ultimate sources and sinks of
all signals sent by capsules. These signals are generated by the state machines of capsules
(Figure 8).

− Protocols: A protocol specifies a set of valid behaviors (signal exchanges) between two or
more collaborating capsules. However, to make such a dynamic pattern reusable, protocols
are decoupled from a particular context of collaborating capsules and are defined instead in
terms of abstract entities called protocol roles (stereotype of Classifier Role in UML) (Fig-
ure 9).

− Connectors: A connector is an abstraction of a message-passing channel that connects two
or more ports. Each connector is typed by a protocol that defines the possible interactions
that can take place across that connector (Figure 8).

4 Organizational Architectural Styles In UML

The organizational styles are generic structures defined at a metalevel that can be instantiated
to design a specific application architecture. They support non-functional requirements, repre-
sented in Tropos methodology such as softgoals, during architectural design phase. Unlike
functional requirements which define what a software is expected to do, non-functional re-
quirements specify global constraints on how the software operates or how the functionality is
exhibited. NFRs are as important as the functional ones. They are not simply desired quality
properties, but critical aspects of dynamic systems without which the applications cannot
work and evolve properly. The need to treat non-functional properties explicitly is a critical
issue when software architecture is built. Organizational architectures integrate NFR with ar-
chitectural project, since NFRs are composing part of these styles.

Tropos relies on the i* notation [4] to describe both requirements and represent organiza-
tional architectural styles. Unfortunately, this notation is not widely accepted by software
practitioners, since it is just beginning to be recognized as a suitable notation for representing
requirements and its tool support is also limited. On the other hand, the Unified Modeling
Language [3] has been used to represent the architecture of simple and complex systems. Us-
ing UML as an Architecture Design Language in the Tropos methodology allow us for repre-
senting detailed information which sometimes is required in architectural design, such as set
of signals that are exchanged between architectural components, which are not supported by
the i* notation. In the sequel we explain how the concepts of Tropos can be accommodated
within UML-RT, in order to represent organizational architectures in UML [16].

As explained in section 2, in Tropos actors are active entities that carries out actions to
achieve goals by exercising their know-how. In section 3, we explained that in UML-RT,
capsules are specialized active classes used for modeling self contained components of a
system. Hence, an actor in Tropos is mapped to a capsule in UML-RT (Figure 2). Note that
ports are physical parts of the implementation of a capsule that mediate the interaction of the
capsule with the outside world [9].

In Tropos a dependency describes an “agreement” (called dependum) between two actors
playing the roles of depender and dependee, respectively. The depender is the depending ac-

tor, and the dependee, the actor who is depended upon. Dependencies have the form de-
pender�dependum�dependee. In UML-RT, a protocol is an explicit specification of the con-
tractual agreement between its participants, which plays specific roles in the protocol. In other
words, a protocol captures the contractual obligations that exist between capsules. Hence, a
dependum is mapped to a protocol and the roles of depender and dependee are mapped to pro-
tocol roles that are comprised by the protocol (Figure 2).

Figure 2. Mapping a dependency between actors to UML

The type of the dependency between two actors (called dependum) describes the nature of
the agreement. Tropos defines four types of dependums: goals, softgoals, tasks and resources.
Each type of dependum defines different features in the protocol and therefore in ports that
realizes its protocol roles. As noted earlier, protocols are defined in terms of entities called
protocol roles. Since protocol roles are abstract classes and ports play a specific role in some
protocol, a protocol role defines the type of a port, which simply means that the port imple-
ments the behavior specified by that protocol role. As defined earlier, capsules are complex,
physical, possibly distributed architectural objects that interact with their surroundings
through ports. Note that a port is both a composite part of the structure of the capsule and a
constraint on its behavior [9].

Figure 3. Mapping a goal dependency to UML

The dependum of goal type will be mapped to an attribute present into the port that real-
izes the protocolRole dependee (Figure 3). In particular, this atribute is of boolean type to

indicate the goal satisfaction (true) or unsatisfaction (false). It represents a goal that a capsule
is responsible for fulfill by exchanging the signals defined in the protocolRole dependee.

The depedum of softgoal type is mapped to an atribute present into the port that realizes
the protocolRole dependee (Figure 4). In particular, this attribute is of enumerated type to
indicate the degree of satisfaction to this softgoal. It represents a quality goal that a capsule is
responsible for fulfill to a given extent by exchanging the signals defined in the protocolRole
dependee.

Figure 4. Mapping a softgoal dependency to UML

Resource type is mapped to the return type of an abstract method placed on protocolRole
dependee that will be realized by a port of a capsule (Figure 5). This return type represents a
resource that a capsule is required to provide by exchanging signals defined in the
protocolRole dependee.

Figure 5. Mapping a resource dependency to UML

Task type is mapped to an abstract method placed on protocolRole dependee that will be
realized by a port of a capsule (Figure 6). It represents an activity that a capsule is required to
perform by exchanging signals defined in the protocolRole dependee.

Figure 6. Mapping a task dependency to UML

A more compact form for describing capsules is illustrated in Figure 7, where the ports of
a capsule are listed in a special labeled list. The protocol role (type) of a port is normally
identified by a pathname since protocol role names are unique only within the scope of a
given protocol. However, ports are also depicted in the collaboration diagrams (Figure 8) that
describe the internal decomposition of a capsule. In these diagrams, ports are represented by
the appropriate classifier roles, i.e., the port roles. To reduce visual clutter, port roles are
generally shown in iconified form. For the case of binary protocols, an additional stereotype
icon can be used: the port playing the conjugate role (depender role) is indicated by a white-
filled (versus black-filled) square. In that case, the protocol name and the tilde suffix are
sufficient to identify the protocol role as the conjugate role; the protocol role name is
redundant and should be omitted. Similarly, the use of the protocol name alone on a black
square indicates the base role (dependee role) of the protocol. In Figure 8, we can see the
details of (inside) the capsule and the end port/relay port distinction is indicated graphically.

Figure 7. A capsule class diagram

In UML-RT, each connector is typed by a protocol that specifies the desired behavior that
can take place over that connector. A key feature of connectors is that they can only
interconnect ports that play complementary roles in the protocol associated with the
connector. In a class diagram, a connector is modeled by an association while in a capsule
collaboration diagram it is declared through an association role. Hence, a dependency
(depender� dependum�dependee) in Tropos is mapped to a connector in UML-RT (Figure 7
and Figure 8). In the sequel we show how the Joint Venture organizational architectural style
(Figure 1) is modeled using UML-RT.

5 Joint Venture Architectural Style In UML

The UML-RT notation of capsules, ports and connectors is used to model the architectural
actors and their dependencies. In Figure 8, each capsule is representing an actor of the joint

venture architecture. When an actor is a dependee of some dependency, its corresponding cap-
sule has an implementation port (end port) for each dependency (ex. Port1), which is used to
provide services for others capsules. When an actor is a depender of some dependency, its
corresponding capsule has an implementation port (relay port) to exchange messages (ex.
Port3).

The Joint Venture architectural style presents six capsules disposed according to Figure 8.
The capsule Joint Management is responsible for ensuring the strategic operation and
coordination of such a system and its partner capsules on a global dimension. Through the
delegation of authority it coordinates tasks and manages sharing of knowledge and resources.
The two secondary partners are capsules responsible for supplying services or for supporting
tasks for the organization core. The three principal partners are capsules responsible for
managing and controlling themselves on a local dimension. They can interact directly with
other principal partners to exchange, provide and receive services, data and knowledge.

Figure 8. Joint Venture Style in UML-RT’s capsule collaboration diagram

From Figure 1 you can recall the goal dependency Authority Delegation between Principal
Partner_n and Joint Management actors. Each actor present in Figure 1 is mapped to a cap-
sule in Figure 8. Each dependum, i.e., the “agreement” between these two actors is mapped to
the protocol (see Figure 9). A protocol is an explicit specification of the contractual agreement
between the participants in the protocol. In our study these participants are the two actors pre-
viously mapped to capsules. Each dependency is mapped to a connector in Figure 8. Each
connector is typed by the protocol that represents the dependum of its corresponding depend-
ency. The type of the dependency describes the nature of the agreement, i.e., the connector

type describes the nature of the protocol. The four types of dependums (Goal, Softgoal, Task
and Resource) are mapped to four types of protocols (Figures 9, 10, 11 and 12).

For example, in the Goal type, the protocol Authority Delegation (Figure 9) assures that
this goal will be fulfilled by using the signals described in the protocolRole dependee. The
goal will be mapped to a boolean attribute present in the port that implements the
protocolRole dependee. This attribute will be true if the goal has been fulfilled and false
otherwise. Hence, in the dependency between Principal Partner_n and Joint Management
capsules depicted in the second doted area of Figure 8, the goal dependency will be mapped to
a boolean attribute located in the port which composes the capsule Principal Partner_n and
implements the protocolRole dependee of the protocol that assures the fulfillment of this goal
(Figure 9).

Figure 9. Protocols and Ports representing the Joint Venture’s goal dependency
Author ity Delegation

Now examine the softgoal dependency Added Value between Principal Partner_2 and
Joint Management actors depicted in Figure 1. In this case, the protocol Added Value (Figure
10) assures that this softgoal will be satisfied in some extent by using the signals described in
the protocolRole dependee. The softgoal will be mapped to a enumerated attribute present in
the port that implements the protocolRole dependee. This attribute will represent different
degrees of softgoal fulfillment. Hence, in the dependency between Principal Partner_2 and
Joint Management capsules depicted in the third doted area of Figure 8, the softgoal
dependency will be mapped to a enumerated attribute located in the port which composes the
Joint Management capsule and implements the protocolRole dependee of the protocol that
assures some degree of fulfillment of this softgoal (Figure 10).

Figure 10. Protocols and Por ts representing the Joint Venture’s softgoal dependency
Added Value

In the sequence, examine the task dependency Coordination between Principal Partner_1
and Joint Management actors depicted in the Figure 1. Here, the protocol Coordination (Fig-

ure 11) assures that this task will be performed by using the signals described in the protocol-
Role dependee. The task itself will be mapped to a <<incoming>> signal in the protocolRole
dependee and the port that implements that protocolRole will be committed to realize their
signals. Hence, in the dependency between Principal Partner_1 and Joint Management cap-
sules depicted in the first doted area of Figure 8, the task dependency will be mapped to a
<<incoming>> signal placed in the protocolRole dependee of the protocol that assures the
performing of this task. The Joint Management capsule is composed by a port which imple-
ments this protocolRole dependee (Figure 11).

Figure 11. Protocols and Ports representing the Joint Venture’s task dependency Coor-
dination

Finally we have the resource dependency Resource Exchange between Principal Part-
ner_2 and Principal Partner_n depicted in the Figure 1. Again, the protocol Resource Ex-
change (Figure 12) assures that this resource will be provided by using the signals described
as <<incoming>> signals in the protocolRole dependee. The resource will be mapped to a
<<incoming>> signal that returns an information of type resource in the protocolRole de-
pendee and the port that implements that protocolRole will be committed to realize their sig-
nals.

Figure 12. Protocols and Por ts representing the Joint Venture’s resource dependency
Resource Exchange

Hence, in the dependency between Principal Partner_2 and Principal Partner_n capsules
depicted in the fourth doted area of Figure 8, the resource dependency will be mapped to an
<<incoming>> signal that returns an information of type resource and is placed in the
protocolRole dependee of the protocol that assures the providing of this resource. The
Principal Partner_2 capsule is composed by a port which implements this protocolRole
dependee (Figure 12).

Although we have only detailed the mapping of four dependencies in the Joint Venture
Style to their respective representation in UML-RT, the remaining ones are mapped analo-
gously, according to their types.

6 Case Study

We extracted a case study from [1] that describes a business organization (Media Shop)
selling media items (books, newspapers, CDs, etc.) that has decided to open up a B2C retail
sales front on the internet named Medi@.

Figure 13. Medi@ system architecture in i*

Based on the joint venture architectural style, Figure 13 suggests a possible assignment of
system responsibilities, whose identification and further details can be found in [1]. Front
Store primarily interacts with Customer and provides her with a usable front-end web applica-
tion. Moreover, it is responsible for catalogue browsing, items search in database and supply-
ing on-line customers with information about media items. Back Store keeps track of all web
information about customers, products, sales, bills and other data of strategic importance to
Media Shop. Billing Processor is in charge of the secure management of orders and bills, and
other financial data. Joint Manager manages all of the controlling security gaps, availability

bottlenecks and adaptability issues, in order to ensure the software non-functional require-
ments. All four capsules need communicate and collaborate each other in the running system.
Figure 14 depicts the UML-RT version of the system architecture. Please note that the details
of its refinement have been omitted. The interested reader can find it in [18].

Figure 14. Medi@ system architecture in UML-RT

Moreover, we can use sequence diagrams (Figure 16) to depict the interaction between the
capsules which compose the system when realizing a particular scenario: the request for
ordering a media item.

Profile

<<incoming>> request custome profile() : customer profile

<<protocol>>

Figure 15. Profile Communication protocol between Front Store and Back Store
capsules

Observe that the message exchange between capsules happens in the context defined by
protocol implemented by ports that compose each capsule involved in the interaction. For ex-
ample, the communication protocol in Figure 15 shows a request from Back Store to Front
Store for producing the Customer Profile.

 : Customer

 : Front Store : Bill ing
Processor

 : Back Store : Joint
Manager

 : Bank Cpy

select item

add item

checkout

request identification

identification details
process order (cart information)

identify (customer)

validate (customer)

autenticate (customer)

carry out payment

process invoice

billing information

delivery information
processed order

carried out order
process customer profile

request customer profile

customer profile

selected items ratings

selected items rate
process statist ics

monitor components

Figure 16. Sequence diagram for Ordering Media Item context

Using UML-RT capsules enable us to refine the system architecture to lower-level
components (sub-capsules) which depend on each other to realize the whole system
responsibilities. Sequence diagrams insert details in architectural behaviour, since it shows the
exchanged signals in the interactions, as well as the valid sequence of these signals
(communication protocol between capsules). Detailing interactions between capsules helps to
analyse and validate the assignment of system responsibilities to capsules, seeking for the
most suitable one (i.e., which ensure non-functional requirements).

7 Related Work

Social concepts have always been a source of inspiration for multi-agent research, and re-
cently the agent community has been returning the favor by exploring the potential of agent-
based models for studying social phenomena. The result of this interaction has been the for-
malization of a number of social and psychological concepts with important applications in
engineering agent systems, concepts that are not directly supported in UML. Hence, Parunak
[14] presents a number of concepts, including “group” , “ role” , “dependency,” and “speech
acts,” into a coherent syntax for describing organizational structures, and proposes UML con-
ventions and AUML extensions [2] to support their use in the analysis, specification, and de-

sign of multi-agent systems. In the case of social structures, insights from AALAADIN [15], de-
pendency theory, and holonics can be fused into a single metamodel of groups as composed of
agents occupying roles (defined as patterns of dependency and interaction) in an environment.
Although this approach also deals with organizational structures, it was not tailored for archi-
tecture description.

8 Conclusions and Future Work

This work is an extended version of our previous research on architectural description of
multi-agent systems [16], since it includes a case study to validate our proposal. In this paper
we presented a set of extensions based on UML Real Time especially tailored for the
representation of organizational architectural styles in Tropos. This proposal has been applied
to multi-agent software system development for an e-commerce application. Our approach is
appropriate for:

− Obtaining an architectural model closer to organizational environment where the system
will eventually operate, mitigating the existent semantic gap between the software system
and its running environment.

− Modeling more detailed architectures both in structural and behavioural aspects.
− Designing software architectures with support of UML-RT CASE tools.
− Building a flexible architecture with loosely coupled components, which can evolve and

change continually to accommodate new components and meet new requirements, as well
as support non-functional requirements. Hence, it enables to realize stakeholders’ demand
for more flexible and complex systems.

− Making organizational architectures styles widely used in industry, namely by other agent-
oriented methodologies or those tuned to open, cooperative, dynamic and distributed
systems.

In Tropos [1], UML was only used in detailed design phase. However using UML-RT for

modeling architecture can also help Tropos store modeling information at one physical
location. It enables us to cross-reference that information. Cross-referencing is useful for
maintaining the traceability among artifacts from architectural design and detailed design
phases in Tropos.

To improve this proposal, future work is still required. In particular systematic guidelines
are necessary. Currently this processes happens in an ad hoc way based on software engineer
experience. Proper guidance will enable us to create instances from architectural metamodels,
defined by Tropos, from requirement models represented in i* notation. However, some work
in this sense has been produced, as we can see in [17].

So far, Tropos has been successfully applied in the development of some defense systems
in the United Kingdom as well as information systems in Italy and France. We are currently
developing some more real industrial case studies (telecommunication application) to validate
the approach. In particular we would like to model internal behaviour of capsules with state-
chart diagram. Moreover, we aim at proposing UML extensions for representing social pat-
terns involving agents, as well as both the structural and behavioural aspects and features
defining such a software agents, in the context of Tropos Methodology.

9 References

[1] Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. In Information Systems, Vol. 27. Elsevier, Amsterdam,
The Netherlands (2002) 365–389

[2] Bauer, B., Muller, J., Odell., J.: Agent UML: A formalism for specifying multiagent
interaction. In Proc. of the 1st Int. Workshop on Agent-Oriented Software Engineering.
AOSE’00, Limerick, Ireland (2001) 91–104

[3] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language – Reference
Manual. Addison Wesley (1999)

[4] Yu., E.: Modelling Strategic Relationships for Process Reengineering. Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada (1995)

[5] Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Publishing (2000)

[6] Kolp, M., Castro, J., Mylopoulos, J.: A social organization perspective on software
architectures. In Proc. of the 1st Int. Workshop From Software Requirements to
Architectures. STRAW’01, Toronto, Canada (2001) 5–12

[7] Kolp, M., Giorgini, P., Mylopoulos, J.: A goal-based organizational perspective on multi-
agents architectures. In Proc. of the 8th Int. Workshop on Intelligent Agents: Agent
Theories, Architectures, and Languages. ATAL’01, Seattle, USA (2001)

[8] Kolp, M., Mylopoulos, J.: Software architectures as organizational structures. In Proc.
ASERC Workshop on ”The Role of Software Architectures in the Construction, Evolution,
and Reuse of Software Systems”, Edmonton, Canada (2001)

[9] Selic, B., Rumbaugh, J.: Using UML for Modeling Complex Real-Time Systems. Rational
Whitepaper (www.rational.com) (1998)

[10] OMG: Unified Modeling Language 2.0. Initial submission to OMG RFP ad/00-09-01
(UML 2.0 Infrastructure RFP) and ad/00-09-02 (UML 2.0 Superstructure RFP).: Proposal
version 0.63 (draft). http://www.omg.org/.

[11] Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Upper Saddle River, N.J., Prentice Hall (1996)

[12] Conallen, J.: Building Web Applications with UML. Addison-Wesley (2000)
[13] IBM: Patterns for e-business. At http://www.ibm.com/developerworks/patterns (2001)
[14] Parunak, H.V.D., Odell., J.: Representing Social Structures in UML. Proc. of the Agent-

Oriented Soft. Engineering Workshop. Agents 2001 Conference, Montreal, Canada (2001)
[15] Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in

multi-agent systems. In Proceedings of Third International Conference on Multi-Agent Sys-
tems. ICMAS'98, IEEE Computer Society (1998) 128-135

[16] Castro, J. F. B., Silva, C. T. L. L., Mylopoulos, J.: Modeling Organizational Architectural
Styles In UML. 15th Int. Conf. on Advanced Information Systems Engineering - CAiSE’03.
Velden, Austria (2003)

[17] Bastos, L. R. D., Castro, J. F. B.: A Proposal for Integrating Organizational Requirements
and Socio-Intentional Architectural Styles in Tropos. STRAW03 - Second International
Workshop From SofTware Requirements to Architectures, Portland, Oregon, USA (2003)

[18] Silva, C. T. L. L.: “Detailing Architectural Design in Requirements Driven Software De-
velopment: The Tropos Case” (In Portuguese). Centro de Informática, Universidade Federal
de Pernambuco, Recife, Brazil, Master Thesis (March 2003)

