
A Framework for Design Patterns in TROPOS

T. Tung Do, Manuel Kolp, T. T. Hang Hoang, and Alain Pirotte
Information Systems Research Unit, University of Louvain

Place des Doyens, 1, 1348, Louvain-la-Neuve, Belgium
{do,kolp,hoang}@isys.ucl.ac.be,pirotte@info.ucl.ac.be

Abstract

Multi-Agent Systems (MAS) architectures are gaining popularity over traditional ones for
building open, distributed, and evolving software. Since the fundamental concepts of multi-
agent systems are social and intentional rather than object, functional, or implementation-
oriented, the design of MAS architectures should be eased by using what we call social
patterns rather than object-oriented design patterns. Social patterns are idioms inspired by
social and intentional characteristics used to design the details of a system architecture. The
paper presents a framework called SKWYRL used to gain insight into social patterns and help
design a MAS architecture in terms of these new idioms. The framework is integrated in the
TROPOS agent methodology. It is developed according to the five modeling dimensions
provided by TROPOS: social, intentional, structural, communicational, and dynamic. We
consider the Broker social pattern as a combination of patterns and use it to illustrate the
modeling dimensions of SKWYRL. A framework for code generation is also presented as well
as an e-business broker module.

Key-words: Design Patterns, Multi Agent Systems, Tropos Methodology, Social Structures

1. Introduction
The explosive growth of application areas such as electronic commerce, knowledge
management, peer-to-peer and mobile computing has profoundly changed our views on
information systems engineering. Systems must now be based on open architectures that
continuously evolve to accommodate new components and meet new requirements. These
new requirements call, in turn, for new concepts and techniques for engineering and
managing information systems. Therefore, Multi-Agent System (MAS) architectures are
gaining popularity over traditional systems, including object-oriented ones.

Developing organizational information systems with a MAS architecture permits a
better match between system architectures and their operational environment. A MAS can be
seen as a social organization of autonomous software entities (agents) that can flexibly
achieve agreed-upon intentions through their interactions. MASs support dynamic and
evolving structures which can change at run-time to benefit from the capabilities of new
system entities or replace obsolete ones.

Design patterns (see, e.g., [6]) have significantly contributed to the reuse of design
experience and knowledge. Each pattern identifies a type of problem commonly encountered
in software design, and it describes a reusable and flexible solution for it.

This paper focuses on social patterns. Taking real-world social behaviors as a
metaphor, social patterns describe MAS as composed of autonomous agents that interact and
coordinate to achieve their intentions, like actors as in human organizations.

This work continues the research in progress in the TROPOS project, whose aim is to
construct and validate a software-development methodology for agent-based software
systems. The TROPOS methodology [3] adopts ideas from MAS technologies and concepts

from requirements engineering, where agents and goals have been used heavily for
organizational modeling. The key premise of TROPOS is that agents and goals can be used as
fundamental concepts for analysis and design during all the phases of the software
development life cycle, and not just requirements analysis.

TROPOS spans four phases of software development:

• Early requirements, concerned with the understanding of a problem by
studying an organizational setting; the output is an organizational model which
includes relevant actors, their goals and their interdependencies.

• Late requirements, where the system-to-be is described within its operational
environment, along with relevant functions and qualities.

• Architectural design, where the system architecture is defined in terms of
subsystems, interconnected through data, control, and dependencies.

• Detailed design, where the behavior of each architectural component is defined
in further detail.

TROPOS also includes techniques for generating an agent implementation from a

detailed design. Using an agent-oriented programming platform for the implementation is
intuitive, given that the detailed design is defined in terms of (system) actors, goals and
interdependencies among them.

We have overviewed in [10] a social ontology for TROPOS that considers software as
(built of) social and intentional structures all along the development life cycle. The ontology
considers organizational styles for architectural design and social patterns for detailed design.
Organizational architectural styles for TROPOS have been further detailed in [9].

The present paper details the notion of social patterns for TROPOS. It focuses on the
conceptualization of a framework called SKWYRL1 that we have integrated in TROPOS. To do
so, SKWYRL models the social patterns according to the five complementary dimensions
proposed by TROPOS: social, intentional, structural, communicational, and dynamic. The
framework facilitates the design of MAS architectures during the detailed design phase of
TROPOS as well as the generation of code for agent implementation.

As an illustration, the paper studies a social pattern called Broker. We also introduce
the generation of code from given social patterns into JACK [8], a JAVA agent-oriented
development environment.

The paper is organized as follows. Section 2 introduces some major social patterns
used in TROPOS. Section 3 proposes the SKWYRL framework, illustrates it through the Broker
pattern, and overviews the code generation as well as an e-business broker example. Finally,
Section 4 summarizes the results and points to further work.

2. Social Patterns
Considerable work has been done in software engineering on defining software patterns (see
e.g., [6]). Still, little emphasis has been put on social and intentional aspects. Moreover, the
proposals of agent patterns that address those aspects (see e.g., [1,4]) are not aimed at the
design level, but rather at the implementation of lower-level issues like agent communication,
information gathering, or connection setup.

In the following, we present patterns focusing on social and intentional aspects that are

1Socio-Intentional ArChitecture for Knowledge Systems and Requirements ELicitation
(http://www.isys.ucl.ac.be/skwyrl/)

recurrent in multi-agent and cooperative systems. In particular, the structures are inspired by
the federated patterns introduced in [7,9] and used in TROPOS . We have classified them in
two categories. The Pair patterns describe direct interactions between negotiating agents. The
Mediation patterns feature intermediate agents that help other agents reach agreement about
an exchange of services.

2.1. Pair Patterns

The Booking pattern involves a client and a number of service providers. The client issues a
request to book some resource from a service provider. The provider can accept the request,
deny it, or propose to place the client on a waiting list, until the requested resource becomes
available when some other client cancels a reservation.

The Subscription pattern involves a yellow-page agent and a number of service providers.
The providers advertise their services by subscribing to the yellow pages. A provider that no
longer wishes to be advertised can request to be unsubscribed.

The Call-For-Proposals pattern involves an initiator and a number of participants. The
initiator issues a call for proposals for a service to all participants and then accepts proposals
that offer the service for a specified cost. The initiator selects one participant to supply the
service.

The Bidding pattern involves an initiator and a number of participants. The initiator organizes
and leads the bidding process, and receives proposals. At every iteration, the initiator
publishes the current bid; it can accept an offer, raise the bid, or cancel the process.

2.2. Mediation Patterns

In the Monitor pattern, subscribers register for receiving, from a monitor agent, notifications
of changes of state in some subjects of their interest. The monitor accepts subscriptions,
requests information from the subjects of interest, and alerts subscribers accordingly.

In the Broker pattern, the broker agent is an arbiter and intermediary that requests services
from providers to satisfy the request of clients. The rest of the paper details latter the pattern
to illustrate SKWYRL.

In the Matchmaker pattern, a matchmaker agent locates a provider for a given service
requested by a client, and then lets the client interact directly with the provider, unlike
brokers, who handle all interactions between clients and providers.

In the Mediator pattern, a mediator agent coordinates the cooperation of performer agents to
satisfy the request of an initiator agent. While a matchmaker simply matches providers with
clients, a mediator encapsulates interactions and maintains models of the capabilities of
initiators and performers over time.

In the Embassy pattern, an embassy agent routes a service requested by an external agent to a
local agent. If the request is granted, the external agent can submit messages to the embassy
for translation in accordance with a standard ontology. Translated messages are forwarded to
the requested local agent and the result of the query is passed back out through the embassy to
the external agent.

The Wrapper pattern incorporates a legacy system into a multi-agent system. A wrapper
agent interfaces system agents with the legacy system by acting as a translator. This ensures
that communication protocols are respected and the legacy system remains decoupled from
the rest of the agent system.

3. SKWYRL: A Social Patterns Framework
This section describes SKWYRL, a conceptual framework based on the five complementary
modeling dimensions of TROPOS, to investigate social patterns. Each dimension reflects a
particular aspect of a MAS architecture, as follows.

• The social dimension identifies the relevant agents in the system and their
intentional interdependencies.

• The intentional dimension identifies and formalizes services provided by
agents to realize the intentions identified by the social dimension,
independently of the plans that implement those services. This dimension
answers the question: "What does each service do?"

• The structural dimension operationalizes the services identified by the
intentional dimension in terms of agent-oriented concepts like beliefs, events,
plans, and their relationships. This dimension answers the question: "How is
each service operationalized?"

• The communicational dimension models the temporal exchange of events
between agents.

• The dynamic dimension models the synchronization mechanisms between
events and plans.

The social and the intentional dimensions are specific to MAS. The last three

dimensions (structural, communicational, and dynamic) of the architecture are also relevant
for traditional (non-agent) systems, but we have adapted and extended them with agent-
oriented concepts.

The rest of this section details the dimensions and illustrates them with the Broker
pattern.

3.1. Social Dimension

The social dimension specifies a number of agents and their intentional interdependencies
using the i* model [13]. Figure 1 shows a social-dimension diagram for the Broker pattern.
Agents are drawn as circles and their intentional dependencies as ovals. An agent (the
depender) depends upon another agent (the dependee) for an intention to be fulfilled (the
dependum).

Figure 1. Social diagram for the Broker pattern

The Broker pattern can be considered as a combination of (1) a Subscription pattern
(shown enclosed within dashed boundary (a)), that allows service providers to subscribe their
services to the Broker agent and where the Broker agent plays the role of yellow-page agent,
(2) one of the other pair patterns - Booking, Call-for-Proposals, or Bidding - whereby the
Broker agent requests and receives services from service providers (in Figure 1, it is a Call-
for-Proposals pattern, shown enclosed within dotted boundary (b)), and (3) interaction
between broker and the client: the Broker agent depends on the client for sending a service
request and the client depends on the Broker agent to forward the service.

To formalize intentional interdependencies, we use Formal Tropos [5], a first-order
temporal-logic language that provides a textual notation for i* models and allows to describe
dynamic constraints. A forward service dependency can be defined in Formal Tropos as
follows.

Dependum Forward Service
Mode: Achieve
Depender: Client cl
Dependee: Broker br
Fulfillment:

(∀ sr: ServiceRequest, st: ServiceType)
request(cl, br, sr) ∧ provide(br, st) ∧ ofType(sr, st)
→ ◊ received(cl, br, st)

[Broker br successfully provides its service to client cl if all requests sr from cl to br,
that are of a type st that br can handle, are eventually satisfied]

3.2. Intentional Dimension

While the social dimension focuses on interdependencies between agents, the intentional view
aims at modeling agent rationale. It is concerned with the identification of services provided
by agents and made available to achieve the intentions identified in the social dimension.
Each service belongs to one agent. Service definitions can be formalized as intentions that
describe the fulfillment condition of the service. The collection of services of an agent defines
its behavior.

Table 1 lists several services of the Broker pattern with an informal definition. With
the FindBroker service, a client finds a broker that can handle a given service request. The
request is then sent to the broker through the SendServiceRequest service. The broker

can query its belief knowledge with the QuerySPAvailability service and answer the
client through the SendServiceRequestDecision service. If the answer is negative,
the client records it with its RecordBRRefusal service. If the answer is positive, the
broker records the request (RecordClientServiceRequest service) and then
broadcasts a call (CallForProposals service) to potential service providers. The client
records acceptance by the broker with the RecordBRAcceptance service.

The Call-For-Proposals pattern could be used here, but this presentation omits it for
brevity.

The broker then selects one of the service providers among those that offer the
requested service. If the selected provider successfully returns the requested service, it
informs the broker, that records the information and forwards it to the client
(RecordAndSendSPInformDone service).

Service Name Informal Definition Agent
FindBroker Find a broker that can provide a service Client
SendServiceRequest Send a service request to a broker Client
QuerySPAvailability Query the knowledge for information about the

availability of the requested service
Broker

SendService
RequestDecision

Send an answer to the client Broker

RecordBRRefusal Record a negative answer from a broker Client
RecordBRAcceptance Record a positive answer from a broker Client
RecordClient
ServiceRequest

Record a service request received from a
client

Broker

CallForProposals Send a call for proposals to service providers Broker
RecordAndSend
SPInformDone

Record a service received from a service
provider

Broker

Table 1. Some services of the Broker pattern

Services can be formalized in Formal Tropos as illustrated below for the FindBroker
service.

Service FindBroker (sr: ServiceRequest)
Mode: Achieve
Agent: Client cl
Fulfillment:

(∃ br : Broker, st: ServiceType)
provide(br, st) ∧ ofType (sr, st)
→ ◊ known(cl, br)

[FindBroker is fulfilled when client cl has found (known predicate) Broker br that is
able to perform (provide predicate) the service requested.]

3.3. Structural Dimension

While the intentional dimension answers the question "What does each service do?", the
structural dimension answers the question "How is each service operationalized?". Services
are operationalized as plans, that is, sequences of actions.

The knowledge that an agent has (about itself or its environment) is stored in its

beliefs. An agent can act in response to the events that it handles through its plans. A plan, in
turn, is used by the agent to read or modify its beliefs, and send events to other agents or post
events to itself.

The structural dimension is modeled using a UML style class diagram extended for
MAS engineering.

The required agent concepts extending the class diagram model are defined below.
The structural dimension of the Broker pattern illustrates them.

3.3.1. Structural concepts

Figure 2 depicts concepts and their relationships to build the structural dimension. Each
concept defines a common template for classes of concrete MAS (for example, Agent in
Figure 2 is a template for the agent class Broker of Figure 3).

A Belief describes a piece of the knowledge that an agent has about itself and its
environment. Beliefs are represented as tuples composed of a key and value fields.

Events describe stimuli, emitted by agents or automatically generated, in response to
which the agents must take action. As shown in Figure 2, the structure of an event is
composed of three parts: declaration of the attributes of the event, declaration of the methods
to create the event, declaration of the beliefs and the condition used for an automatic event.
The third part only appears for automatic events. Events can be described along three
dimensions:

• External or internal event: external events are sent to other agents while

internal events are posted by an agent to itself. This property is captured by the
scope attribute.

• Normal or BDI event: an agent has a number of alternative plans to respond to
a BDI event and only one plan in response to a normal event. Whenever an
event occurs, the agent initiates a plan to handle it. If the plan execution fails
and if the event is a normal event, then the event is said to have failed. If the
event is a BDI event, a set of plans can be selected for execution and these are
attempted in turn. If all selected plans fail, the event is also said to have failed.
The event type is captured by the type attribute.

• Automatic or nonautomatic event: an automatic event is automatically created
when certain belief states arise. The create when statement specifies the logical
condition which must arise for the event to be automatically created. The states
of the beliefs that are defined by use belief are monitored to determine when to
automatically create events.

A Plan describes a sequence of actions that an agent can take when an event occurs.

As shown by Figure 2, plans are structured in three parts: the Event part, the Belief part, and
the Method part. The Event part declares events that the plan handles (i.e., events that
trigger the execution of the plan) and events that the plan produces. The latter can be either
posted (i.e., sent by an agent only to itself) or sent (i.e., sent to other agents). The Belief
part declares beliefs that the plan reads and those that it modifies. The Method part
describes the plan itself, that is, the actions performed when the plan is executed.

The Agent concept defines the behavior of an agent, as composed of five parts: the

declaration of its attributes, of the events that it can post or send explicitly (i.e., without using
its plans), of the plans that it uses to respond to events, of the beliefs that make up its
knowledge, and of its methods.

The beliefs of an agent can be of type private, agent, or global. A private access is
restricted to the agent to which the belief belongs. Agent access is shared with other agents of
the same class, while global access is unrestricted.

0 . .* 0 . .*

0 .. *

0 . .*

1

0 . .*

0 .. *

1

1

0 .. *

0 . .*

1 .. *0 .. *

0 . .*

Agent Event

Plan

Belief

Attribute

Event

Plan

Belief

Method

Attribute

Creating Method

Created Automatically

Event

Used Belief

Method

<plan>

has belief

handles

<belief>

<belief>

<belief>

<logical condition>

<belief>

posts / sends

plan
uses

uses
belief

uses belief

posts /
sends

<event>

<event>

<event>

<belief>

<belief>

key

value

private belief

agent belief

global belief

post

send <event>

<event>

Scope : <"Internal"> | <"External">

Type : <"Normal"> | <"BDI">

create when

use belief

handle

post

send

read

modify

main() {}

FieldType FieldName

FieldType FieldName

CreatingMethodName (param. list) {}

Attribute

Figure 2. Structural Diagram Template

3.3.2. Structural Model for the Broker Pattern

As an example, Figure 3 depicts the Broker pattern components. For brevity, each construct
described earlier is illustrated only through one component. Each component can be
considered as an instantiation of the (corresponding) template in Figure 2.

Broker is one of the three agents composing the Broker pattern. It has plans such as
QuerySPAvailability, SendServiceRequestDecision, etc. When there is no
ambiguity, by convention, the plan name is the same as the as the name of the service that it
operationalizes. The private belief SPProvidedService stores the service type that each
service provider can provide. This belief is declared as private since the broker is the only
agent that can manipulate it. The ServiceType belief stores the information about types of
service provided by service providers and is declared as global since its must be known both
by the service provider and the broker agent.

The constructor method allows to give a name to a broker agent when created. This

method may call other methods, for example loadBR(), to initialize agent beliefs.

Event
handle

post

send

AvailabilityQueried

BRRefusalSent

Attribute

Event

Plan

String Name

........

Belief
private belief

Method
// Constructor

public Broker
 (String Broker Name)

// load data to the beliefs of Broker

........

Used Belief

Method
main()
{

Attribute
Scope : « Internal »
Type : « Normal »

Creating Method

.....
key

QuerySPAvailability

SPProvidedService
........

global belief
ServiceType

public void loadBR()

// String sPCode
// String serviceTypeCode

value

 // Quantity

// post and send events upon the

// the SP availability and

// the constaint provided by

}

Attribute

SendServiceRequestDecision
RecordServiceRequest

ServiceRequest

// client’s service request

// String ServiceRequestCode

createEvnt (String ServiceRequest)

<<Agent>> Broker <<Plan>> SendServiceRequestDecision

<<Belief>> SPProvidedService

BRAcceptancePosted

BRAcceptanceSent

<<Event>> BR AcceptanceSent

Figure 3. Structural Diagram - Some components of the Broker pattern

SendServiceRequestDecision is one of the plans that the broker uses to
answer the client: the BRRefusalSent event is sent when the answer is negative,
BRAcceptanceSent when the broker has found service provider(s) that may provide the
requested service. In the latter case, the plan also posts the BRAcceptancePosted event
to invoke the process of recording the service request and the ’call for proposals’ process
between the broker and services providers. The SendServiceRequestDecision plan is
executed when the AvailabilityQueried event (containing the information about the
availability of the service provider to realize the client’s request) occurs.

SPProvidedService is one of the broker’s beliefs used to store the services
provided by the service providers. The service provider code sPCode and the service type
code serviceTypeCode form the belief key. The corresponding quantity attribute is
declared as value field.

BRAcceptanceSent is an event that is sent to inform the client that its request is
accepted.

3.4. Communication Dimension

Agents interact with each other by exchanging events. The communicational dimension
models, in a temporal manner, events exchanged in the system. We adopt the sequence
diagram model proposed in AUML [2] and extend it: agent_name/role:pattern_name
expresses the role (role) of the agent (agent_name) in the pattern; the arrows are labeled with
the name of the exchanged events.

Figure 4 shows a sequence diagram for our Broker pattern. The client (customer1)
sends a service request (ServiceRequestSent) containing the characteristics of the
service it wishes to obtain from the broker. The broker may alternatively answer with a denial
(BRRefusalSent) or a acceptance (BRAcceptanceSent).

In the case of an acceptance, the broker sends a call for proposal to the registered
service providers (CallForProposalSent). The call for proposal (CFP) pattern is then
applied to model the interaction between the broker and the service providers. The service
provider either fails or achieves the requested service. The broker then informs the client
about this result by sending a InformFailureServiceRequestSent or a
ServiceForwarded, respectively.

The communication dimension of the subscription pattern (SB) is given at the top-
right and the communication dimension of the call-for- proposals pattern (CFP) is given at the
bottom-right part of Figure 4. The communication specific for the broker pattern is given in
the left part of the figure.

Customer1/
Client:BR

bk1/
Broker:BR ServiceProvider:BR

sp1/

Subscribe/ Unsubscribe

AcceptedSubscriptionSent

RefusedSubscriptionSent

BRRefusalSent

CallForProposalSent

RefusalSent

ProposalSent

RejectedProposalSent

AcceptedProposalSent

FailureServiceSent
InformFailure

InformDoneServiceSent

SB

pattern

CFP
pattern

rServiceForwarded

ServiceRequestSent

ServiceRequestSent

BRAcceptanceSent

Figure 4. Communication Diagram - Broker

3.5. Dynamic Dimension

As described earlier, a plan can be invoked by an event that it handles and it can create new
events. Relationships between plans and events can rapidly become complex. To cope with
this problem, we propose to model the synchronization and the relationships between plans
and events with activity diagrams extended for agent-oriented systems. These diagrams
specify the events that are created in parallel, the conditions under which events are created,
which plans handle which events, and so on.

An internal event is represented by a dashed arrow and an external event by a solid
arrow. As mentioned earlier, a BDI event may be handled by alternative plans. They are
enclosed in a round-corner box. Synchronization and branching are represented as usual.

We omit the dynamic dimension of the Subscription and the CFP patterns, and only
present in Figure 5 the activity diagram specific to the Broker pattern. It models the flow of
control from the emission of a service request sent by the client to the reception by the same
client of the realized service result sent by the broker. Three swimlanes, one for each agent of
the Broker pattern, compose the diagram. In this pattern, the FindBroker service described
in Section 3.2, is either operationalized by the FindBR or the FindBRWithMM plans (the
client finds a broker based on its own knowledge or via a matchmaker).

At a lower level, each plan could also be modeled by an activity diagram for further
detail if necessary.

Plan 1
(alternative 1)

Plan 2
(alternative 2)

Caption

Internal Event

Plan

External Event

Synchronization bar

Branch

RecordAndSendSPInformDone

......

......

......

FindBRWithMM

FindBR

RecordBRRefusal

RecordAndSendSPFailure

Proposal
Sent

For
Call

Inform
Done
Service
Sent

Client

AvailabilityQueried

Broker

QuerySPAvailability

SP not found or
constraints provided by

client can not be satisfied

CallForProposal

FailureServiceSent

Reservation

Started

BRRefusedExternal

Service Provider

InformeFailureRecordBRFailure

ServiceForwardedRecordBRForwardedService

BRFound

SendServiceRequest SendServiceRequestDecision

ServiceRequestSent

ServiceRequestSent

RecordClientServiceRequest
RecordBRAcceptance

BRAcceptanceSent

BRAcceptancePosted

Figure 5. Dynamic Diagram - Broker

4. Code Generation
The main motivation behind design patterns is the possibility of reusing them during system
detailed design and implementation. Numerous CASE tools such as Rational Rose [11] and
Together [12] include code generators for object-oriented design patterns. Programmers
identify and parameterize, during system detailed design, the patterns that they use in their
applications. The code skeleton for the patterns is then automatically generated and
programming is thus made easier.

SKWYRL proposes a code generator for the social patterns introduced in Section 2.
Figure 6 shows the main window of the tool. It was developed in Java and produces code for
JACK [8], an agent-oriented development environment built on top of Java. JACK extends
Java with specific capabilities to implement agent behaviors. On a conceptual point of view,
the relationship of JACK to Java is analogous to that between C++ and C. On a technical
point of view, JACK source code is first compiled into regular Java code before being
executed.

In SKWYRL’s code generator, the programmer first chooses which social pattern to
use, then the roles for each agent in the selected pattern (e.g. the E_Broker agent plays the
broker role for the Broker pattern but can also play the initiator role for the CallForProposals
pattern and the yellow page role for the Subscription pattern in the same application). The
process is repeated until all relevant patterns have been identified. The code generator then
produces the generic code for the patterns (.agent, .event, .plan, .bel JACK files).

Figure 6. JACK Code Generation

The programmer has to add the particular JACK code for each generated files and
implement the graphical interface if necessary.

Figure 7 shows an e-business broker developed with JACK. The code skeleton was
generated with our code generator using the Broker pattern explained in the paper. The

bottom half of the figure shows the interface between the customer and the broker. The
customer sends a service request to the broker asking for buying or sending DVDs. He
chooses which DVDs to sell or buy, selects the corresponding DVD titles, the quantity and
the deadline (the time-out before which the broker has to realizes the requested service).
When receiving the customer’s request, the broker interacts with the media shops to obtain
the DVDs. The interactions between the broker and the media shops are shown on the bottom-
right corner of this figure. The top half of the figure shows the items that are provided by each
media shop. This part is hidden for the customer. However, for the ease of visualization
reason of theses items, we show this interface in the figure 7.

Figure 7. An E-Business Broker

5. Conclusion

Patterns ease the task of developers describing system architectures. This paper has
introduced SKWYRL, a design framework, designed for the TROPOS agent methodology, to
formalize the code of ethics for social patterns – MAS design patterns inspired by social and
intentional characteristics –, answering questions like : “what can one expect from a broker,
mediator, or embassy?”. The framework is used to:

• define social patterns and answer the above question according to the five
modeling dimensions of TROPOS: social, intentional, structural,
communicational, and dynamic.

• drive the design of the details of a MAS architecture in terms of those social
patterns during the detailed design phase.

The paper has overviewed some social design patterns on which we are working. The

five dimensions of the framework have been illustrated through the Broker pattern.
Future research directions include the precise formalization of a catalog of social

design patterns for TROPOS, including the characterization of the sense in which a particular
MAS architecture is an instance of a configuration of patterns. We will also compare and
contrast social patterns with classical design patterns proposed in the literature, and relate
them to lower-level architectural components involving (software) components, ports,
connectors, interfaces, libraries and configurations.

References
[1] Y. Aridor and D. B. Lange. “Agent Design Patterns: Elements of Agent Application
Design", in Proc. of the 2nd Int. Conf. on Autonomous Agents (Agents’98), St Paul,
Minneapolis, USA, 1998.

[2] B. Bauer, J. P. Muller and J. Odell “Agent UML: A Formalism for Specifying Multiagent
Interaction". in Proc. of the 1st Int. Workshop on Agent-Oriented Software Engineering
(AOSE’00), Limerick, Ireland, 2001.

[3] J. Castro, M. Kolp and J. Mylopoulos. “Towards Requirements-Driven Information
Systems Engineering: The Tropos Project", in Information Systems (27), Elsevier,
Amsterdam, The Netherlands, 2002.

[4] D. Deugo, F. Oppacher, J. Kuester and I. V. Otte. “Patterns as a Means for Intelligent
Software Engineering", in Proc. of the Int. Conf. on Artificial Intelligence (IC-AI’99), Vol. II,
CSRA, 1999.

[5] A. Fuxman, M. Pistore, J. Mylopoulos and P. Traverso. “Model Checking Early
Requirements Specifications in Tropos", in Proc. of the 5th IEEE Int. Symposium on
Requirements Engineering (RE’01), Toronto, Canada, 2001.

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[7] S. Hayden, C. Carrick and Q. Yang. “Architectural Design Patterns for Multiagent
Coordination", in Proc. of the 3rd Int. Conf. on Agent Systems (Agents’99), Seattle, USA,
1999.

[8] JACK Intelligent Agents. http://www.agent-software.com/.

[9] M. Kolp, P. Giorgini and J. Mylopoulos. “A Goal-Based Organizational Perspective on
Multi-Agents Architectures", in Proc. of the 8th Int. Workshop on Intelligent Agents: Agent
Theories, Architectures, and Languages (ATAL’01), Seattle, USA, 2001.

[10] M. Kolp, P. Giorgini and J. Mylopoulos. “Information Systems Development through
Social Structures", in Proc. of the 14th Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE’02), Ishia, Italy, 2002.

[11] Rational Rose. http://www.rational.com/rose/.

[12] Together. http://www.togethersoft.com/.

[13] E. Yu. Modeling Strategic Relationships for Process Reengineering, PhD thesis,
University of Toronto, Department of Computer Science, Canada, 1995.

