
A Theory of Aspects for
Aspect-Oriented Software Development

Christina von Flach G. Chavez1,2 Carlos J. P. de Lucena2

1UFBA, Computer Science Department

Av. Adhemar de Barros, s/n− 40170-110, Salvador, BA, Brazil

flach@ufba.br
2PUC-Rio, Computer Science Department, SoC+Agents Group

R. Marqûes de S̃ao Vicente, 225 – 22453-900, Rio de Janeiro, RJ, Brazil

lucena@inf.puc-rio.br

Abstract

Aspect-Oriented Software Development (AOSD) is an emerging area with the
goal of promoting advanced separation of concerns throughout the software devel-
opment lifecycle. However, since there are many different approaches to Aspect-
Oriented Programming (AOP), it is very difficult to identifythe essential concepts
and properties for supporting the design of aspect-oriented languages and tools,
and effectively promote advances in the field of AOSD. In this context, this pa-
per presents atheory of aspects– a conceptual framework for AOP that provides
consistent terminology and basic semantics for thinking about a problem in terms
of the core concepts and properties that characterize the aspect-oriented style as an
emerging paradigm to software development. This theory hasbeen used for evaluat-
ing existing aspect-oriented languages and tools and, in special, it has been used to
characterizeaSide, an aspect-oriented modeling language.

Keywords: Aspect-oriented software development, aspect-oriented language, as-
pect model, conceptual framework, separation of concerns.

1 Introduction

The evolution of a new software engineering paradigm often progresses from programming to-
wards design and analysis, to provide a complete path acrossthe software development lifecycle.
Aspect-Oriented Programming(AOP) is reaching maturity after almost a decade of research
[14, 20, 24, 16, 15] and a growing number of applications, tools and users. In this context,
Aspect-Oriented Software Development (AOSD) naturally emerges to foster the goal of promot-
ing advanced separation of concerns from implementation level to other stages of the software
development process, including requirements specification, analysis and design.

AOP considers acknowledged improvements to separation of concerns provided by previous
technologies (mainly object-oriented programming, but not constrained to it), while supporting
new mechanisms to deal withcrosscutting concerns, that is, special concerns that are not properly
modularized by these technologies. AOP introducesaspectsas a new modularization mechanism
for separating crosscutting concerns and provides a new composition mechanism forweaving
aspects back into components at well-definedjoin points.



The use of separate linguistic mechanisms to modularize andcompose crosscutting concerns
has been reified by some other approaches, not just AOP. Related work includesAdaptive Pro-
gramming(AP) [19], Composition Filters(CF) [4], Subject-Oriented Programming(SOP) [12]
andMulti-Dimensional Separation of Concerns(MDSoC) [27]. AOP and these approaches be-
long to a research area known asAdvanced Separation of Concerns(ASoC). However, AOP
and related ASoC approaches propose distinct and varying sets of abstractions and composition
mechanisms, with specific terminology, properties and language constructs.

Recently, AOP has been regarded as a possible convergence of these independent ASoC
research paths [9], but the definition of an unifying conceptual framework for AOP that can
also be used across other approaches is still missing. The adoption of an unifying conceptual
framework for AOP is an important step for characterizing the design space of aspect-oriented
languages and providing support for aspect-oriented software development.

This paper presents a disciplined, yet still informal,theory of aspects– a conceptual frame-
work for aspect-oriented programming that provides consistent terminology and basic semantics
for thinking about a problem in terms of theconceptsandpropertiesthat characterize the AOP
style as an emerging paradigm to software development. These concepts and properties have
already been described informally by their authors [16, 11,10]. Our goal is not to present a
survey of existing concepts used by different approaches for ASoC but, instead, to present the
defiinition of an ontology that, according to our point of view, subsumes the essential concepts
and properties for supporting the design of aspect-oriented languages and the development of
aspect-oriented software systems. In such informal setting, our theory of aspects consists of a
description in natural language of categories of core concepts, properties and rules that these
concepts must satisfy, as well as a set of entity-relationship conceptual models [7] – following
the approach proposed by the Theory-Model paradigm [29]. The theory of aspects can be used
for evaluating existingcandidateaspect-oriented languages and tools as well as for driving the
design of new aspect-oriented languages.

The rest of the paper is organized as follows. In Section 2 we present our theory of aspects,
that for historical reasons, we call theaspect model. In Section 3, we use theaspect modelto
present a definition for aspect-oriented languages (Section 3.1) and to characterize some repre-
sentative approaches to advanced separation of concerns (Section 3.2). We also provide a brief
description of how theaspect modelcan be used to support the design of an aspect-oriented
language. In the last Section, we present our conclusions, related and future work.

2 The Aspect Model

Aspects, components, join points, crosscuttingandweavingare concepts that have been intro-
duced by Kiczales et al. in their seminal paperAspect-Oriented Programming[16] and collec-
tively constitute the heart of the aspect-oriented paradigm. Additionally, two properties,quantifi-
cationandobliviousness, have been proposed as necessary properties for AOP [11]. Following
the idea of adopting AOP as a possible convergence of independent ASoC research paths [9],
we consider these concepts and properties, as well as the clear separation between aspects and
components [17] – which we call theaspect-base dichotomy– as fundamental elements of the
aspect-oriented paradigm. We adopt them as the core conceptual framework that characterizes
everything that isaspect-oriented. We have organized these elements into four interrelated con-
ceptual models: (i) thecomponent model, (ii) the join point model, (iii) the weaving model, and
(iv) the core model. Following this pattern, we call the resulting composite model theaspect
model(see Figure 1). As a first approach, we define that anaspect-oriented languageis a lan-
guage that supports theaspect model.



Figure 1: The aspect model

In the following Sections, we describe the conceptual models (Sections 2.1 to 2.4) and dis-
cuss AOP properties (Section 2.5). We use entity-relationship diagrams to illustrate each concep-
tual model in terms of entity sets and relations over these sets. For each core concept, we present
existing definition(s) as a starting point to provide our owndefinition and terminology, followed
by a succinct discussion and some examples.

2.1 The Component Model

Thecomponent modelrepresents a conceptual framework used for thinking about aproblem and
decomposing it in terms of a certain kind of component. This framework consists of categories of
core concepts (componentsandcomposition mechanisms), rules that constrain elements of those
categories and a set of general principles.

Definition. A componentis an unit of the system’s functional decomposition, a property or
concern that can be cleanly encapsulated in a generalized procedure (i.e. object, method, pro-
cedure, API) [16]. We use the termcomponentto denote a nameable entity that modularizes a
functional partof a software system, more or less independent from other parts, and that can be
naturally composed with other components using the provided composition mechanisms.

Discussion. The component model is a fundamental part of theaspect model. The state of
being a crosscutting concern is relative to a particular kind of decomposition. The component
model defines the primary kind of decomposition and a component language is used to express
non-crosscutting concerns effectively. The component model also constrains the design space of
the join point model (see Section 2.2).

A component model may be supported by one or morecomponent languages. Figure 2
presents a data model for the component model.



Figure 2: The component model

Example. Components can be reified by functions, procedures or classes; common composi-
tion mechanisms are function calls, procedure calls, and method invocations. Theobject model,
i.e., the conceptual framework for all things object-oriented [5], is a component model, where
the main concepts are objects, classes and inheritance [32]. A typical rule1 is that every object
is an instance of some class. General principles are abstraction, encapsulation, modularity and
hierarchy [5]. Java and C++ are object-oriented programminglanguages since their conceptual
framework is the object model, that is, both support the object model. Nevertheless, Java supports
single inheritance while C++ supports multiple inheritance, among other differences.

2.2 The Join Point Model

The join point modelrepresents a conceptual framework used for describing the kinds of join
points of interest and the associated restrictions for their use. The join point model is highly
dependent on the adopted component model. Figure 3 presentsa data model for the join point
model.

Figure 3: The join point model

1for class-based models



Definition. Join pointsare elements of the component language semantics that aspects coor-
dinate with [16]. We use the termjoin point to denote an element related to the structure or the
execution of a component program that is referenced and possibly affected by an aspect. Astatic
join point is a location in the structure of a component whereas adynamic join pointis a location
in the execution of a component program.

Discussion. The concept ofjoin point refers to some location related to a component, under
the aspect’s perspective. Components “own” the actual locations, while aspects describe them
as join points of interest and use them to affect components with their crosscutting functionality.
Join points may expose additional information related to the context where they show up – we
call it thecrosscutting context. The nature of the available context information depends onthe
kind of join point: it may bestatic (available from program text) ordynamic(available from
program execution). The aspect weaver combines aspects andcomponents at the join points
specified by the aspect (see Section 2.4).

There are many locations in a component or component programexecution that can be used
as join points, but in practice, only a subset is regarded as useful [26]. Aspect-oriented languages
must define their set of join points taking into account their corresponding component language.
The selected subset will influence the range of quantification allowed in those aspect-oriented
languages (see Section 2.5).

Example. If we consider the object model as a component model, some possible dynamic
join points are method calls, method executions, instantiations, constructor executions, field ref-
erences and handler executions; some static join points of interest are classes, interfaces, methods
and attributes. For an aspect-oriented language that adopts other component model, the join point
model will certainly be different.

2.3 The Core Model

The goal of AOP is to support the programmer in cleanly separating componentsandaspects
from each other, by providingmechanismsthat make it possible to (i)abstractand (ii) compose
them to produce the overall system [16].

Thecore modelrepresents a conceptual framework used for describingaspectsas an abstrac-
tion mechanism, andcrosscuttingas a composition mechanism.

2.3.1 Aspects

Definition. Aspectsare defined assystem properties that cross-cut components, and, more
specifically, asproperties that affect the performance or semantics of components in systemic
ways[16]. We also use the termaspectto denote a first-class, nameable entity that provides
modular representation for acrosscutting concern.

Discussion. The modularization of a crosscutting concern involves the provision of an ab-
straction mechanism – the aspect – that localizes both:

• the specification of a particular set of join points, and

• enhancements2 to be combined at the specified join points.
2The termenhancementis used here to denote any modification to components, not necessarily in a monotonic

way: aspects can also delete behavior.



To establish a language-independent terminology, we use the termcrosscutting interfaceto
denote the set of join points specified inside the aspect, and the termcrosscutting featureto
denote any structural or behavioral enhancement specifiedinside the aspect to affect one or more
components at the specified join points (see Figure 4).

Figure 4: Aspect

Crosscutting Interfaces. Crosscutting interfacescomprisejoin point specifications, i.e.,
they describe the kinds of join points of interest for the aspect, constrained by the adopted join
point model.

Crosscutting Features. Crosscutting featuresare attributes and operations that describe
enhancements to the structure and behavior of components. These enhancements mayaddnew
structure and behavior to one or more components,refineor evenredefineexisting behavior.

Whenever necessary, we use the termstructural crosscutting featureto denote structural en-
hancements and the termbehavioral crosscutting featureto denote behavioral enhancements. We
further distinguish betweenstatic crosscutting featuresanddynamic crosscutting features, that
is, crosscutting features that use static and dynamic jointpoints, respectively.

Static Crosscutting Dynamic Crosscutting
Structural attributes
Behavioral operations operations

Table 1: Crosscutting Features

Example. TheLogging aspect is not only the code that actually logs some particular data.
The crosscutting concern – and therefore, the aspect – is that a particular set of points should
log some particular data. The AspectJ language [15] supports this view: aspects are defined
as first-class implementation elements that comprisepointcut declarationsto express join point
specifications, andadvice/introduction declarationsto express crosscutting features.

2.3.2 Crosscutting

Definition. Crosscuttingis defined as a phenomena that is observed whenever two properties
being programmed must compose differently and yet be coordinated [16]. We use the term
crosscuttingto denote the composition mechanism used to compose aspectsand components.



Aspects may crosscut one or more components, possibly affecting their structure and behavior.
Furthermore, we broaden the usage of the term to also denote arelationshipfrom an aspect to
one or more components.

Discussion. From the first definition given above [16], it follows that aspects can crosscut
other aspects. Nevertheless, in this core theory we restrict ourselves to crosscutting as a com-
position mechanism among aspects and components. Furthermore, we distinguish the following
issues when regarding crosscutting as a composition mechanism.

Direction of Crosscutting. The direction of crosscutting is always from aspects to compo-
nents. The termreverse inheritancehas been used elsewhere to denote the composition mecha-
nism that relates aspects and classes, since the direction of composition is the opposite of conven-
tional inheritance. Although the object model is often the choice for the component model, we
prefer to use the termcrosscuttinginstead ofreverse inheritanceto preserve the independence of
theaspect modelrelative to its sub-models.

Dimensions of Crosscutting. Crosscutting can be appliedhomogeneously, by providing
exactly the same set of enhancements to one or more components, or heterogeneously, where
subsets of the enhancements are applied simultaneously to different kinds of components. We
call the first one,vertical crosscuttingand the latter,horizontal crosscutting.

Cardinality of Crosscutting. Aspects may crosscut one or more components, simultane-
ously. Components may be crosscut by one or more aspects, simultaneously.

The Nature of Crosscutting. We callstatic crosscuttingthe kind of crosscutting that uses
static join points. We calldynamic crosscuttingthe kind of crosscutting that uses dynamic joint
points.

Example. A characteristic feature of object-oriented programming is inheritance[30]. Among
other uses, inheritance is regarded as a mechanism for structural composition that allows new
class definitions to be based on existing ones. A new class inherits the existing properties from
its parents, and may add new properties, refine or redefine itsinherited properties.

A characteristic feature of aspect-oriented programming iscrosscutting, a composition mech-
anism that allows aspects to be combined to existing components at well-defined join points. An
aspect crosscuts one or more components, and may add new properties, refine or redefine existing
properties.

2.4 The Weaving Model

Theweaving modelrepresents a conceptual framework used for describing the kinds of weaving
mechanisms.

Definition. Weavingis the process of composing aspects and components related by cross-
cutting at the specified join points. The termaspect weaverdesignates the tool that composes
aspects and components [16].



Discussion. The weaving model is part of our conceptual framework since it can be useful
to render evident language characteristics and/or properties, as for example, it is often useful to
know that some component language is required to be interpreted or if it can also be compiled.
In the following paragraphs, we identify and present some relevant facets of weaving.

Weaver Inputs. An aspect weaver can work on source code, byte code, or objectcode.

Weaver Outputs. An aspect weaver can providein-place modificationor client migration
[28]. In-place modificationis destructive, that is, the original component code is no longer
available after weaving.Client migrationmeans that both the original component and the woven
versions are available. Instead of changing permanently the original component, new clients are
created that refer to a new woven component.

Weaving Time. Weaving can bestatic (compile or load time) ordynamic(run-time). Static
weavingis a weaving technology in which the component program and the aspect program are
merged into a new version of the sources, just before or during compilation.Load-time weaving
is a special kind of static weaving technology that does not require the source code. The aspect
program can be combined to the component program in binary format usingcode instrumenta-
tion. Dynamic weavingis a weaving technology that allows aspects to be weaved and unweaved
during execution.

Example. Most weaving tools for AOP are based on static weaving, either on the source or
directly on the object code. The AspectJ compiler (ajc) is anaspect weaver. In its previous incar-
nations, it worked by preprocessing a set of .java source files that contained aspect descriptions
and generating woven .java source files or Java .class files. Now, AspectJ also supportsbytecode
weaving, by allowing as input Java .class files.

AspectJ performs in-place modification, which invasively changes the original components,
while Hyper/J, a tool that supports multi-dimensional separation of concerns for Java [13], per-
forms client migration.

2.5 Properties

Aspect-oriented programming encompasses some well-knownprinciples and new properties.
The two main principles of AOP areseparation of concernsand modularity. Separation of
concerns is reified through the clear separation between aspects and components. Modularity
is reified through a new kind of modular unit for crosscuttingconcerns, the aspect. We discuss
both of them below under the labelaspect-base dichotomy.

Additionally, two properties,quantificationandobliviousnesswere proposed as the core char-
acteristic of AOP, and have been used to define whether a language is aspect-oriented or not [10].

2.5.1 Aspect-base dichotomy

Theaspect-base dichotomystands for the adoption of a clear distinction between components (or
base components) and aspects. When the aspect-base dichotomy holds, taking into account the
principles of separation of concerns and modularity, it follows that:

• Systems are decomposed into components and aspects

• Aspects modularize crosscutting concerns



• Components modularize non-crosscutting concerns

• Aspects must be explicitly represented apart from components and other aspects.

In our conceptual framework, the aspect-base dichotomy is considered an essential charac-
teristic of AOP.

2.5.2 Obliviousness

Obliviousnessis the act or effect of being oblivious, in the sense of being forgetful or unaware.
In the context of AOP, obliviousness is the idea that components do not have to be specifically
prepared to receive the enhancements provided by aspects [11]. When the obliviousness property
holds, it follows that:

• Components are not aware of the aspects that will eventually crosscut them

• Programmers do not have to spend additional effort while implementing the component’s
functionality to make AOP work and to realize its benefits [11].

In our conceptual framework, we adopt obliviousness as an essential property of AOP, to be
used as an informal measure that indicates the usefulness ofaspect-oriented systems.

Discussion. Obliviousness is considered the feature that makes AOP special [10]. The use of
aspects to modularize crosscutting concerns supported by the obliviousness property enhances
better separation of concerns in software development and simplifies the analysis, design and
implementation of components.

Better AOP systems are supposed to be more oblivious [11]; however, complete obliviousness
is a hard goal to be achieved. In this context,intimacyis defined as the additional effort required
to prepare the components for aspects [9].

2.5.3 Quantification

Quantificationis defined as the ability to write unitary and separated statements that enhance
many non-local places in a programming system. Quantification provides the capability for
stating things like: “in programs P, whenever condition C arises, perform action A” [10].

When the quantification property holds, it follows that:

• Aspects may crosscut an arbitrary number of components simultaneously.

In our conceptual framework, we adopt quantification as an essential property of AOP.

Discussion. The ability to quantify in AOP systems is related to the support for declarative
reasoning about several kinds of elements pertaining to a component program, for example,
fields, field sets, methods, method calls, etc. This support requires some sort of quantification
language that allows the expression of quantified statements. These statements may contain one
or morequantification variablesto be bound to values in some universe of discourse, and an
open statementthat may be evaluated or applied in this context.

In our framework, we define as the universe of discourse elements that belong to the structure
of a program (static elements) or to the execution of a program (dynamic elements); therefore,
quantification variables can be bound to static elements (static quantification) or dynamic ele-
ments (dynamic quantification). Open statements correspond to behavioral crosscutting features
(see Section 2.3.1).



Example. In static quantification, quantification variables are bound to elements such as classes,
fields, methods, etc. In dynamic quantification, quantification variables are bound to elements
such as method calls, object creation, etc.

AspectJ supports dynamic quantification throughpointcut designatorsand quantification
variables match points in program execution.

3 Using the Aspect Model

The main benefit of having an conceptual framework such as theaspect modelis to provide
support for assessing existing approaches as well as for developing new methods, languages and
tools based on unified terminology, concepts and propertiesdefined in the framework. Table 2
summarizes the concepts and properties that comprise theaspect model.

Component model component, composition mechanism, component rule, component language
Join point model join point, static join point, dynamic join point, static context, dynamic context
Weaving Model aspect weaver, weaving, static weaving, dynamic weaving
Core model aspect, crosscutting interface, crosscutting feature, structural crosscuttingfea-

ture, behavioral crosscutting feature,crosscutting, static crosscutting, dynamic
crosscutting, horizontal crosscutting, vertical crosscutting

Properties aspect-base dichotomy, quantification, obliviousness

Table 2: Concepts and properties defined in theaspect model

In this Section, theaspect modelis used to provide a definition foraspect-oriented languages
(Section 3.1) and to characterize four representative ASoCapproaches (Section 3.2). Moreover,
we illustrate how theaspect modelhas been used to support the design ofaSide, an aspect-
oriented modeling language (Section 3.3).

3.1 Aspect-Oriented Languages

Definition. An aspect-oriented language(AOL) is a language that supports theaspect model
and therefore satisfies the following requirements:

• it adopts a component model

• it adopts a join point model

• it adopts a weaving model

• it provides some nameable abstraction to modularize crosscutting concerns

– it provides some means of specifying join points (crosscutting interfaces)

– it provides some means of specifying enhancements to be combined at the join points
(crosscutting features)

• it supports the aspect-base dichotomy

• it supports some sort of quantification over the structure or the behavior of components.

• it assumes that components are oblivious about aspects.



If we abstract out the component model (since the join point model already depends on it)
and the weaving model, the above definition can be summarized with the following equation for
“aspect-orientedness”:

aspect-oriented= aspects+ join point model+ crosscutting+ (1)

obliviousness+ quantification+ aspect-base dichotomy

Discussion. Aspect-oriented languages can bedomain-specific languagesorgeneral-purpose
languages. In both cases, they should provide an interpretation for the elements of theaspect
model.

Example. AspectJ [15] and AspectC [8] are general-purpose aspect-oriented programming
languages since their conceptual framework is theaspect model. Nevertheless, AspectJ adopts
the object model as its component model (Java as the component language) while AspectC adopts
the procedural model (C as the component language).

3.2 Assessing Language Features

In this Section, we use theaspect modelto review four ASoC approaches – AspectJ, Hyper/J,
Composition Filters and Demeter/DJ – in order to assess whether they are aspect-oriented or not.
Table 3 presents a summary of the resulting interpretations.

AspectJ Hyper/J Composition Filters DJ
Component Model object model object model object model object model
Component object object object object
Component language Java Java object-oriented Java
Join Point Model
Dynamic JPs points in

execution
. . . sending and

receiving messages
nodes in call graph

Static JPs classes classes, fields,
methods

. . . nodes in class graph

Core Model
Aspect aspect hyperslice? filter adaptive method
Crosscutting interface pointcuts hypermodule filter expressions traversal strategies
Crosscutting feature introduction,

advice
fields, methods wrappers adaptive visitor

Weaving Model static static static/dynamic static
Aspect-base dichotomy yes no yes yes
Quantification yes yes yes yes
Obliviousness yes yes yes yes

Table 3: Interpretations using the Aspect Model

3.2.1 AspectJ

AspectJ [15] is an aspect-oriented extension to Java that supports general-purpose aspect-oriented
programming. AspectJ was developed by a Xerox PARC team that actually proposed the AOP
paradigmatic ideas and most of the AOP terminology [16]. Last year, AspectJ was transferred
from PARC to an openly-developed eclipse.org project [3].



Terminology. Aspect-oriented programming, aspect, join point, crosscutting, weaving, point-
cut, advice, inter-type declaration (introduction).

3.2.2 DJ

The DJ (Demeter/Java) library [19] is a Java package that supports Adaptive Programming (AP)
[18], one of the first approaches to ASoC. AP supports the separation of behavioral concerns
(methods, strategies) from structural concerns (class graph), in the context of object-oriented
software.

Terminology. Adaptive programming, class graph, adaptive method, traversal strategy, adap-
tive visitor.

Discussion. AP is considered a special case of AOP, where components are expressible in
terms of graphs and aspects (adaptive methods) refer to and affect the graphs usingtraversal
strategiesandadaptive visitors. According to our conceptual framework, the DJ library supports
AOP.

3.2.3 Composition Filters

The Composition Filters (CFs) approach [2, 4] is a modular and orthogonal extension to the
object model to cope with object-oriented modeling problems and to increase adaptability and
reusability in object-oriented systems. In the CF approach,aspects are expressed asfilters. A
filter is defined as a function that manipulates messages receivedand sent by objects [4]. Filters
are language independent.

Terminology. Composition Filters, input filter, output filter, filter type, filter interface, filter
element, internal class, condition, selector, superimposition, dispatch filter.

Discussion. CFs is considered a special case of AOP, where filters are wrapped around base
components to provide the crosscutting behavior. According to our conceptual framework, the
CFs approach supports AOP.

3.2.4 Hyper/J

Hyper/J [13] is a tool developed at IBM Watson Research Center tosupport Multi-Dimensional
Separation of Concerns (MDSoC) [31], an evolution on early work on Subject-Oriented Pro-
gramming [12]. Hyper/J allows the modularization and composition of concerns without re-
quiring special language extensions. Hyper/J useshyperslices– sets of Java packages, classes,
methods, fields, etc. – to modularize any kind of concern.

Terminology. Multi-dimensional separation of concerns, hyperspace, hyperslice, hypermod-
ule, concern map, corresponding unit, merge, override.

Discussion. Hyper/J allows the composition of multiple, separate object models; it does not
require a distinguished base and itdoes notsupport the aspect-base dichotomy. Moreover, hy-
perslices areunableto modularize crosscutting concerns, that is, they do not localize both cross-
cutting interfacesandcrosscutting features. Therefore, according to our conceptual framework,
Hyper/J does not support AOP.



3.3 Supporting Language Design

Theaspect modelsubsumes essential concepts and properties for supportingthe design of aspect-
oriented languages. These essential concepts can be viewedas candidatehigher level abstrac-
tions for aspect-oriented languages.

As a conceptualframework, theaspect modelneeds to be instantiated in order to be used.
This means that the designer of a new language must: (i) adopta component model, (ii) adopt a
suitable joint point model, (iii) adopt a weaving model, (iv) provide suitable representations for
the elements of the adopted models, (v) provide a clear semantics for crosscutting, (vi) provide
some means to support quantification, among other things.

The previous list of design tasks is not complete; acookbookfor using theaspect modelto
support language design will be the subject of future work.

Example. We are developingaSide, a modeling language for specifying and communicating
aspect-oriented designsthat supports theaspect model. Some of the major decisions concerning
the design ofaSide are [6]:

• The component model is the UML [1] object model, that is, the UML metamodel.

• The join point model includesstatic join points, comprising some elements used in UML
structural models, anddynamic join points, comprising some elements used in UML be-
havioral models.

• The weaving model is static. Weaving diagrams are provided in order to present a clear
higher level description of the system after weaving.

• The core model includes: (i) modeling elements that correspond to its core concepts –
aspect(a parameterized modeling element) andcrosscutting(a relationship) – and, (ii)
modeling elements that correspond to auxiliary concepts such as,crosscutting interface,
crosscutting feature, etc.

• The core model is extended to providerelationships among aspects(precedence, require-
ment, exclusion, etc.) that become evident after the component and join point models are
defined.

A detailed description of the aSide modeling language will be the subject of future work.

4 Conclusions

In this paper, we present anaspect modelfor AOSD, a software engineering paradigm that
emphasizes the principles of separation of concerns and modularity, the modularization of cross-
cutting concerns and the properties of quantification and obliviousness. The proposedaspect
modelstands for a theory of aspects, that is, a conceptual framework for AOP that provides con-
sistent terminology and basic semantics for thinking abouta problem in terms of theconcepts
andpropertiesthat characterize the aspect-oriented style as an emergingparadigm to software
development.

Furthermore, we use theaspect modelto present a definition for AOLs and also a character-
ization of some representative approaches to advanced separation of concerns using ouraspect
model.



4.1 Related Work

Masuhara and Kiczales are seeking to find common frameworksfor building models of AOSD
mechanisms. In [21], they provide a framework to model the core semantics of five aspect-
oriented software development technologies. They try to characterize which properties of a
mechanism enable crosscutting modularity, as opposed to hierarchical and block structured mod-
ularity. One critical property of their framework is that itmodels the join points as existing in the
result of the weaving process rather than being in either of the input programs.

At Lancaster, while discussing standard interface supportfor runtime inspection of aspect-
oriented programs [22], Mehner and Rashid argue that such a standard interface should be
grounded in a common foundation for AOP. In [23] they presentthe current state ofGEMA,
their generic model for AOP.

Nagy, Aksit and Bergmans argue that the aspect composition mechanisms are an important
characteristic of AOLs; in [25] they presentComposition Graphs(CG), a generic model that
allows the uniform description and comparison of differentaspect-oriented composition mecha-
nisms.

This work as well as the other mentioned above are just initial, short steps towards the goal
of an unifying conceptual framework for AOSD; as an interesting remark, all of them are look-
ing specifically at programming approaches as these are relatively well-established compared to
design or requirement-level approaches.

4.2 Ongoing Work

The adoption of an unifying conceptual framework for AOP is an important step for character-
izing the design space of aspect-oriented languages and providing support for AOSD. The defi-
nition of theaspect modelis our first, small step in that direction. In this context, our ongoing
work includes the following additional steps:

• The provision of a formal semantics for theaspect model. The definition of a sound com-
position semantics forcrosscuttingis important to clarify the interplay between aspects
and components, and to manage the possible interferences betweencrosscuttingand con-
ventional composition mechanims.

• The complete specification of theaSide modeling language in order to provide notation
and rules that enable the creation of structural and behavioral models in which aspects are
explicitly treated as first-class citizens.

• The use of theaspect modelto develop a case tool that supports: (i) aspect-oriented mod-
eling with aSide, (ii) a metrics suite for assessing aspect-oriented software, and (iii) code
generation from aSide models.

Acknowledgements.

We would like to thank the anonymous referees for making several suggestions that have im-
proved our paper. The authors are supported by the PRONEX Project under grant 7697102900,
by ESSMA under grant 552068/2002-0 and by the Art. 1st of Decree number 3.800, of 04.20.2001.
This work is dedicated to the memory of Prof. Sergio Carvalho.



References

[1] Unified Modeling Language (UML) Specification, Version 1.4, 2002.
http://www.omg.org/uml/.

[2] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa.Abstracting Object In-
teractions Using Composition Filters. In R. Guerraoui, O. Nierstrasz, and M. Riveill, edi-
tors,Workshop on Object-Based Distributed Programming at ECOOP’93, pages 152–184.
Springer-Verlag, 1993.

[3] AspectJ project, 2003. http://www.eclipse.org/aspectj/.

[4] L. Bergmans and M. Aksit. Composing Crosscutting Concerns Using Composition Filters.
Communications of the ACM, 44(10):51–57, October 2001.

[5] G. Booch.Object-Oriented Design with Applications. Benjamin-Cummings, 1991.

[6] C. Chavez and C. Lucena. A Metamodel for Aspect-Oriented Modeling. In Workshop on
Aspect-Oriented Modeling with the UML at AOSD’02, April 2002.

[7] P. Chen. The Entity Relationship Model - Towards a Unified View of Data.ACM Transac-
tions on Database Systems, 1(1):9–36, March 1976.

[8] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to Improve the Modular-
ity of Path-specific Customization in Operating System Code. In Joint European Software
Engineering Conference (ESEC) and 9th ACM SIGSOFT Int. Symp. onthe Foundations of
Software Engineering (FSE-9), 2001.

[9] T. Elrad, R. E. Filman, and A. Bader. Aspect-Oriented Programming.Communications of
the ACM, 44(10):29–32, October 2001.

[10] R. Filman. What Is Aspect-Oriented Programming, Revisited. In Workshop on Advanced
Separation of Concerns at ECOOP’01, June 2001.

[11] R. Filman and D. Friedman. Aspect-Oriented Programmingis Quantification and Oblivi-
ousness. InInt’l Workshop on Advanced Separation of Concerns at OOPSLA’00, 2000.

[12] W. Harrison and H. Ossher. Subject-Oriented Programming (A Critique of Pure Objects). In
7th Conf. on Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA93), pages 411–428, 1993.

[13] Hyper/J Web Page, 2001. http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm.

[14] G. Kiczales. Aspect-Oriented Programming.ACM Computing Surveys, 28(4es):154, 1996.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Getting started
with AspectJ.Communications of the ACM, 44(10):59–65, 2001.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,J. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Aksit and S. Matsuoka, editors,11th Eur. Conf. on
Object-Oriented Programming, volume 1241 ofLNCS, pages 220–242. Springer-Verlag,
1997.



[17] J. Lamping. The Role of Base in Aspect-oriented Programming. In Int’l Workshop on
Aspect-Oriented Programming at ECOOP’99, 1999.

[18] K. Lieberherr.Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns. PWS Publishing Company, Boston, 1996. ISBN 0-534-94602-X.

[19] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-Oriented Programming with Adaptive
Methods.Communications of the ACM, 44(10):39–41, October 2001.

[20] C. Lopes and G. Kiczales. D: A Language Framework for Distributed Programming. Tech-
nical Report SPL-97-010, Palo Alto Research Center, 1997.

[21] H. Masuhara and G. Kiczales. A Framework for Modeling Aspect-Oriented Mechanisms,
2003. Revised version to appear in ECOOP’03.

[22] K. Mehner and A. Rashid. Towards a Standard Interface forRuntime Inspection in AOP
Environments. In M. Chu-Carrol and G. Murphy, editors,Workshop on Tools for Aspect-
Oriented Software Development at OOPSLA’02, 2002.

[23] K. Mehner and A. Rashid. GEMA: A Generic Model for AOP (Extended Abstract). In
Belgian and Dutch Workshop on Aspect-Oriented Programming, 2003.

[24] A. Mendhekar, G. Kiczales, and J. Lamping. RG: A Case-Study for Aspect-Oriented Pro-
gramming. Technical Report SPL-97-009, Palo Alto Research Center, 1997.

[25] I. Nagy, M. Aksit, and L. Bergmans. Composition Graphs: a Foundation for Reasoning
about Aspect-Oriented Composition. InWorkshop on Foundations of Aspect-oriented Lan-
guages (FOAL) at AOSD’2003, 2003.

[26] H. Ossher and P. Tarr. Operation-Level Composition: A Case in (Join) Point. InInt’l
Workshop on Aspect-Oriented Programming at ECOOP’98, 1998.

[27] H. Ossher and P. Tarr. Using Multi-dimensional Separation of Concerns to (Re)Shape
Evolving Software.Communications of the ACM, 44(10):43–50, October 2001.

[28] K. Ostermann and G. Kniesel. Independent Extensibility—An Open Challange for AspectJ
and Hyper/J. InInt’l Work. on Aspects and Dimensional Computing at ECOOP’00, 2000.

[29] A. Ryman. The Theory-Model Paradigm in Software Design.Technical Report TR74.048,
IBM Tech. Report, IBM Toronto, Ont., October 1989.

[30] A. Taivalsaari. On the Notion of Inheritance.ACM Computing Surveys, 28(3):438–479,
September 1996.

[31] P. Tarr, H. Ossher, W. Harrison, and S. S. Jr. N Degrees ofSeparation: Multi-Dimensional
Separation of Concerns. In21st Int’l Conf. on Software Engineering (ICSE’99), pages
107–119, May 1999.

[32] P. Wegner. Dimensions of Object-based Language Design. In 2nd Conf. on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), pages 168–182, Octo-
ber 1987.


