A Theory of Aspects for
Aspect-Oriented Software Development

Christina von Flach G. Chavéz Carlos J. P. de Lucerfa

lUFBA, Computer Science Department
Av. Adhemar de Barros, s/a 40170-110 Salvador, BA, Brazil
flach@ufba.br
2pPUC-RI0, Computer Science Department, SoC+Agents Group
R. Margwes de @o Vicente, 225 — 22453-90Rio de Janeiro, RJ, Brazil
lucena@inf.puc-rio.br

Abstract

Aspect-Oriented Software Development (AOSD) is an emergirea with the
goal of promoting advanced separation of concerns thraugihe software devel-
opment lifecycle. However, since there are many differgaqreaches to Aspect-
Oriented Programming (AOP), it is very difficult to identifje essential concepts
and properties for supporting the design of aspect-onefdaguages and tools,
and effectively promote advances in the field of AOSD. Irsthontext, this pa-
per presents ¢heory of aspects a conceptual framework for AOP that provides
consistent terminology and basic semantics for thinkinguala problem in terms
of the core concepts and properties that characterize gexasriented style as an
emerging paradigm to software development. This theorypbas used for evaluat-
ing existing aspect-oriented languages and tools and,daia it has been used to
characterizeaSi de, an aspect-oriented modeling language.

Keywords: Aspect-oriented software development, aspect-orierdaaduage, as-
pect model, conceptual framework, separation of concerns.

1 Introduction

The evolution of a new software engineering paradigm ofteg@sses from programming to-
wards design and analysis, to provide a complete path attreseftware development lifecycle.
Aspect-Oriented Programmin@OP) is reaching maturity after almost a decade of research
[14, 20, 24, 16, 15] and a growing number of applications)st@nd users. In this context,
Aspect-Oriented Software Development (AOSD) naturallgrgas to foster the goal of promot-
ing advanced separation of concerns from implementatioel te other stages of the software
development process, including requirements specificaéinoalysis and design.

AOP considers acknowledged improvements to separatioorafezns provided by previous
technologies (mainly object-oriented programming, butaganstrained to it), while supporting
new mechanisms to deal withhosscutting concernshat is, special concerns that are not properly
modularized by these technologies. AOP introdwassectas a new modularization mechanism
for separating crosscutting concerns and provides a newasition mechanism foweaving
aspects back into components at well-defif@d points

The use of separate linguistic mechanisms to modularizeamgose crosscutting concerns
has been reified by some other approaches, not just AOP. Relatd includesAdaptive Pro-
gramming(AP) [19], Composition FilterdCF) [4], Subject-Oriented Programmin&OP) [12]
andMulti-Dimensional Separation of Concer(l8IDSoC) [27]. AOP and these approaches be-
long to a research area known Advanced Separation of Concer(sSoC). However, AOP
and related ASoC approaches propose distinct and varytagpgabstractions and composition
mechanisms, with specific terminology, properties anduagg constructs.

Recently, AOP has been regarded as a possible convergenbesef independent ASoC
research paths [9], but the definition of an unifying cortoep framework for AOP that can
also be used across other approaches is still missing. Téytiad of an unifying conceptual
framework for AOP is an important step for characterizing tlesign space of aspect-oriented
languages and providing support for aspect-oriented sof\development.

This paper presents a disciplined, yet still inforntakory of aspects a conceptual frame-
work for aspect-oriented programming that provides caestserminology and basic semantics
for thinking about a problem in terms of tlwenceptsandpropertiesthat characterize the AOP
style as an emerging paradigm to software development. eTb@scepts and properties have
already been described informally by their authors [16, 1], Our goal is not to present a
survey of existing concepts used by different approaches&oC but, instead, to present the
defiinition of an ontology that, according to our point ofwjesubsumes the essential concepts
and properties for supporting the design of aspect-ornielaeguages and the development of
aspect-oriented software systems. In such informal ggttiar theory of aspects consists of a
description in natural language of categories of core qotiscgroperties and rules that these
concepts must satisfy, as well as a set of entity-relatipnsbnceptual models [7] — following
the approach proposed by the Theory-Model paradigm [29 tlhbory of aspects can be used
for evaluating existingandidateaspect-oriented languages and tools as well as for driviag t
design of new aspect-oriented languages.

The rest of the paper is organized as follows. In Section 2 ieegnt our theory of aspects,
that for historical reasons, we call thspect modelIn Section 3, we use thaspect modelo
present a definition for aspect-oriented languages (Se8tib) and to characterize some repre-
sentative approaches to advanced separation of concexasof$3.2). We also provide a brief
description of how theaspect modetan be used to support the design of an aspect-oriented
language. In the last Section, we present our conclusiefeged and future work.

2 The Aspect Model

Aspectscomponentsjoin points crosscuttingandweavingare concepts that have been intro-
duced by Kiczales et al. in their seminal papepect-Oriented Programmir{d6] and collec-
tively constitute the heart of the aspect-oriented paradigdditionally, two propertiegjuantifi-
cationandobliviousnesshave been proposed as necessary properties for AOP [1l¢wiray
the idea of adopting AOP as a possible convergence of indepemSoC research paths [9],
we consider these concepts and properties, as well as tieseparation between aspects and
components [17] — which we call thespect-base dichotomyas fundamental elements of the
aspect-oriented paradigm. We adopt them as the core caratdrmework that characterizes
everything that imspect-orientedWe have organized these elements into four interrelatae co
ceptual models: (i) theomponent modg(ii) the join point model (iii) the weaving modeland
(iv) the core model Following this pattern, we call the resulting composited@iothe aspect
model(see Figure 1). As a first approach, we define thaaspect-oriented languags a lan-
guage that supports tlespect model

aspect language

*

specifies supports refers to

adopts

weaving model adopts

aspect model adopts component model

adopts

defines core model

1.7

aspect rule | . constrains =

1.7

aspect core concept

P

aspect crosscutting

Figure 1: The aspect model

In the following Sections, we describe the conceptual mo(eéctions 2.1 to 2.4) and dis-
cuss AOP properties (Section 2.5). We use entity-relatipndiagrams to illustrate each concep-
tual model in terms of entity sets and relations over thetse §@r each core concept, we present
existing definition(s) as a starting point to provide our adefinition and terminology, followed
by a succinct discussion and some examples.

2.1 The Component Model

Thecomponent modekpresents a conceptual framework used for thinking abptalaem and
decomposing it in terms of a certain kind of component. Ttaswework consists of categories of
core conceptscpmponentandcomposition mechanismsules that constrain elements of those
categories and a set of general principles.

Definition. A componenis an unit of the system’s functional decomposition, a prgper
concern that can be cleanly encapsulated in a generalinegqure (i.e. object, method, pro-
cedure, API) [16]. We use the tercomponento denote a nameable entity that modularizes a
functional partof a software system, more or less independent from othé¢s,@ard that can be
naturally composed with other components using the praovaenposition mechanisms.

Discussion. The component model is a fundamental part of éspect modelThe state of
being a crosscutting concern is relative to a particulad kahdecomposition. The component
model defines the primary kind of decomposition and a corepblanguage is used to express
non-crosscutting concerns effectively. The componentahaldo constrains the design space of
the join point model (see Section 2.2).

A component model may be supported by one or nmmponent languagesFigure 2
presents a data model for the component model.

component Ianuael
-

specifies supports

component model

defines

1.7 1

| component core concept I/ constrains ponent rule |

relates composition mechanism I

Figure 2: The component model

Example. Components can be reified by functions, procedures or clags@snon composi-
tion mechanisms are function calls, procedure calls, artiadenvocations. Thebject model
i.e., the conceptual framework for all things object-otéeh[5], is a component model, where
the main concepts are objects, classes and inheritance A3®pical rule' is that every object

is an instance of some class. General principles are abstraencapsulation, modularity and
hierarchy [5]. Java and C++ are object-oriented programranguages since their conceptual
framework is the object model, that is, both support theabjedel. Nevertheless, Java supports
single inheritance while C++ supports multiple inheritaram@ong other differences.

2.2 The Join Point Model

The join point modelrepresents a conceptual framework used for describingitids lof join
points of interest and the associated restrictions for thge. The join point model is highly
dependent on the adopted component model. Figure 3 preselats model for the join point
model.

* affects *
thmamic context | lexical context

located in located in
BxXposes BXpOses

thmamic join point I ‘ static join point |

1.*
join point specification

* denates *

Figure 3: The join point model

Ifor class-based models

Definition. Join pointsare elements of the component language semantics thatsspec-
dinate with [16]. We use the terjoin pointto denote an element related to the structure or the
execution of a component program that is referenced andhipas#fected by an aspect. static

join pointis a location in the structure of a component wheredgreamic join poinis a location

in the execution of a component program.

Discussion. The concept ojoin pointrefers to some location related to a component, under
the aspect’s perspective. Components “own” the actualitmtstwhile aspects describe them
as join points of interest and use them to affect componeittitstiaeir crosscutting functionality.
Join points may expose additional information related sodbntext where they show up — we
call it the crosscutting contextThe nature of the available context information dependthen
kind of join point: it may bestatic (available from program text) atynamic(available from
program execution). The aspect weaver combines aspectsocamgonents at the join points
specified by the aspect (see Section 2.4).

There are many locations in a component or component progracution that can be used
as join points, but in practice, only a subset is regardedafil[26]. Aspect-oriented languages
must define their set of join points taking into account tleeirresponding component language.
The selected subset will influence the range of quantibcaallowed in those aspect-oriented
languages (see Section 2.5).

Example. If we consider the object model as a component model, somalpesdynamic
join points are method calls, method executions, instaotia, constructor executions, field ref-
erences and handler executions; some static join pointéeyiist are classes, interfaces, methods
and attributes. For an aspect-oriented language thatsdtmr component model, the join point
model will certainly be different.

2.3 The Core Model

The goal of AOP is to support the programmer in cleanly seépgyaomponentand aspects
from each other, by providinghechanismghat make it possible to (Bbstractand (ii) compose
them to produce the overall system [16].

Thecore modeltepresents a conceptual framework used for descrimpgctss an abstrac-
tion mechanism, androsscuttingas a composition mechanism.

2.3.1 Aspects

Definition. Aspectsare defined asystem properties that cross-cut compongatsd, more
specifically, agproperties that affect the performance or semantics of amapts in systemic
ways[16]. We also use the terraspectto denote a first-class, nameable entity that provides
modular representation foraosscutting concern

Discussion. The modularization of a crosscutting concern involves tfevigion of an ab-
straction mechanism — the aspect — that localizes both:

¢ the specification of a particular set of join points, and

¢ enhancementgo be combined at the specified join points.

2The termenhancemerit used here to denote any modification to components, regtssarily in a monotonic
way: aspects can also delete behavior.

To establish a language-independent terminology, we wesé&etimcrosscutting interfacéo
denote the set of join points specified inside the aspedt,the termcrosscutting featuréo
denote any structural or behavioral enhancement speaifsade the aspect to affect one or more
components at the specified join points (see Figure 4).

. | ! . . !
crosscutting feature | aspect ! crosscutting interface !
I | I

+ | join point specification

enhancement

?

behavioral enhancement structural enhancement

Figure 4: Aspect

Crosscutting Interfaces. Crosscutting interfacesomprisejoin point specificationsi.e.,
they describe the kinds of join points of interest for theeaspconstrained by the adopted join
point model.

Crosscutting Features. Crosscutting featureare attributes and operations that describe

enhancements to the structure and behavior of componenéseTenhancements magd new

structure and behavior to one or more componeais)e or evenredefineexisting behavior.
Whenever necessary, we use the tstractural crosscutting featur® denote structural en-

hancements and the tebmehavioral crosscutting featute denote behavioral enhancements. We

further distinguish betweestatic crosscutting featuremnd dynamic crosscutting featurethat

IS, crosscutting features that use static and dynamic paiimits, respectively.

Static Crosscutting Dynamic Crosscutting
Structural attributes
Behavioral operations operations

Table 1: Crosscutting Features

Example. Theloggi ng aspect is not only the code that actually logs some particdta.
The crosscutting concern — and therefore, the aspect —tistparticular set of points should
log some particular data The Aspectd language [15] supports this view: aspects efreed
as first-class implementation elements that compmiatcut declarationgo express join point
specifications, anddvicdintroduction declarationso express crosscutting features.

2.3.2 Crosscutting

Definition. Crosscuttings defined as a phenomena that is observed whenever tworpespe
being programmed must compose differently and yet be coateld [16]. We use the term
crosscuttingto denote the composition mechanism used to compose agpetisomponents.

Aspects may crosscut one or more components, possiblytiaffebeir structure and behavior.
Furthermore, we broaden the usage of the term to also denetatmnshipfrom an aspect to
one or more components.

Discussion. From the first definition given above [16], it follows thatpgsts can crosscut
other aspects. Nevertheless, in this core theory we resuirselves to crosscutting as a com-
position mechanism among aspects and components. Fuditenwe distinguish the following
issues when regarding crosscutting as a composition merhan

Direction of Crosscutting. The direction of crosscutting is always from aspects to ammp
nents. The ternneverse inheritancé@as been used elsewhere to denote the composition mecha-
nism that relates aspects and classes, since the dire€tomposition is the opposite of conven-
tional inheritance. Although the object model is often theice for the component model, we
prefer to use the termrosscuttingnstead ofeverse inheritancéo preserve the independence of
the aspect modefelative to its sub-models.

Dimensions of Crosscutting. Crosscutting can be appligtbmogeneoushyby providing
exactly the same set of enhancements to one or more compgeheterogeneousjywhere
subsets of the enhancements are applied simultaneousiifeieedt kinds of components. We
call the first oneyertical crosscuttingand the latterhorizontal crosscutting

Cardinality of Crosscutting. Aspects may crosscut one or more components, simultane-
ously. Components may be crosscut by one or more aspectdtasienusly.

The Nature of Crosscutting. We callstatic crosscuttinghe kind of crosscutting that uses
static join points. We calflynamic crosscuttinghe kind of crosscutting that uses dynamic joint
points.

Example. A characteristic feature of object-oriented programmsigheritance/30]. Among
other uses, inheritance is regarded as a mechanism fotwsalicomposition that allows new
class definitions to be based on existing ones. A new classiiatihe existing properties from
its parents, and may add new properties, refine or redefinghigsited properties.

A characteristic feature of aspect-oriented programnsiegosscuttinga composition mech-
anism that allows aspects to be combined to existing comps well-defined join points. An
aspect crosscuts one or more components, and may add nesvtsprefine or redefine existing
properties.

2.4 The Weaving Model
Theweaving modelepresents a conceptual framework used for describingitiuks lof weaving

mechanisms.

Definition. Weavingis the process of composing aspects and components rehatedss-
cutting at the specified join points. The teampect weavedesignates the tool that composes
aspects and components [16].

Discussion. The weaving model is part of our conceptual framework sihcam be useful
to render evident language characteristics and/or priegeds for example, it is often useful to
know that some component language is required to be intexpa if it can also be compiled.
In the following paragraphs, we identify and present sonevaat facets of weaving.

Weaver Inputs. An aspect weaver can work on source code, byte code, or algjdet

Weaver Outputs. An aspect weaver can providie-place modificationor client migration
[28]. In-place modificationis destructive, that is, the original component code is nmyéw
available after weavingClient migrationmeans that both the original component and the woven
versions are available. Instead of changing permanerglptiginal component, new clients are
created that refer to a new woven component.

Weaving Time. Weaving can bestatic (compile or load time) odynamic(run-time). Static
weavingis a weaving technology in which the component program aadaipect program are
merged into a new version of the sources, just before or gudmpilation.Load-time weaving

is a special kind of static weaving technology that does eqtire the source code. The aspect
program can be combined to the component program in binanyafousingcode instrumenta-
tion. Dynamic weavings a weaving technology that allows aspects to be weaved mndaved
during execution.

Example. Most weaving tools for AOP are based on static weaving, ehethe source or
directly on the object code. The AspectJ compiler (ajc) iagimect weaver. In its previous incar-
nations, it worked by preprocessing a set of .java soures that contained aspect descriptions
and generating woven .java source files or Java .class New, AspectJ also suppottytecode
weaving by allowing as input Java .class files.

AspectJ performs in-place modification, which invasivdiaeges the original components,
while Hyper/J, a tool that supports multi-dimensional sapan of concerns for Java [13], per-
forms client migration.

2.5 Properties

Aspect-oriented programming encompasses some well-krpmgiples and new properties.
The two main principles of AOP arseparation of concernand modularity Separation of
concerns is reified through the clear separation betweegctsspnd components. Modularity
is reified through a new kind of modular unit for crosscuttauncerns, the aspect. We discuss
both of them below under the lab&$pect-base dichotomy

Additionally, two propertiesquantificationandobliviousnessvere proposed as the core char-
acteristic of AOP, and have been used to define whether adaegs aspect-oriented or not [10].

2.5.1 Aspect-base dichotomy

Theaspect-base dichotonsyands for the adoption of a clear distinction between comapts (or
base componentand aspects. When the aspect-base dichotomy holds, takmggécount the
principles of separation of concerns and modularity, iolet that:

e Systems are decomposed into components and aspects

e Aspects modularize crosscutting concerns

e Components modularize non-crosscutting concerns

e Aspects must be explicitly represented apart from compisreamd other aspects.

In our conceptual framework, the aspect-base dichotomgnsidered an essential charac-
teristic of AOP.

2.5.2 Obliviousness

Obliviousnesss the act or effect of being oblivious, in the sense of bemgétful or unaware.
In the context of AOP, obliviousness is the idea that comptsdo not have to be specifically
prepared to receive the enhancements provided by asp&t$¥hen the obliviousness property
holds, it follows that:

¢ Components are not aware of the aspects that will eventualgscut them

e Programmers do not have to spend additional effort whildementing the component’s
functionality to make AOP work and to realize its benefits][11

In our conceptual framework, we adopt obliviousness as sangisl property of AOP, to be
used as an informal measure that indicates the usefulnespett-oriented systems.

Discussion. Obliviousness is considered the feature that makes AORadpE@]. The use of
aspects to modularize crosscutting concerns supportedebghiliviousness property enhances
better separation of concerns in software development empliBes the analysis, design and
implementation of components.

Better AOP systems are supposed to be more oblivious [11]ehexcomplete obliviousness
is a hard goal to be achieved. In this contéxtimacyis defined as the additional effort required
to prepare the components for aspects [9].

2.5.3 Quantification

Quantificationis defined as the ability to write unitary and separated statds that enhance
many non-local places in a programming system. Quantifingbrovides the capability for
stating things like: “in programs P, whenever condition (Ses, perform action A’ [10].

When the quantification property holds, it follows that:

e Aspects may crosscut an arbitrary number of componentdtsinaously.
In our conceptual framework, we adopt quantification as aergal property of AOP.

Discussion. The ability to quantify in AOP systems is related to the suppar declarative
reasoning about several kinds of elements pertaining tongpoaent program, for example,
fields, field sets, methods, method calls, etc. This suppouires some sort of quantification
language that allows the expression of quantified statesn@hiese statements may contain one
or morequantification variablezo be bound to values in some universe of discourse, and an
open statemerthat may be evaluated or applied in this context.

In our framework, we define as the universe of discourse eigibat belong to the structure
of a program (static elements) or to the execution of a pragidynamic elements); therefore,
guantification variables can be bound to static elemest&di¢ quantificatiop or dynamic ele-
ments ynamic quantification Open statements correspond to behavioral crosscudatgres
(see Section 2.3.1).

Example. In static quantification, quantification variables are lbtonelements such as classes,
fields, methods, etc. In dynamic quantification, quantifccavariables are bound to elements
such as method calls, object creation, etc.

Aspect] supports dynamic quantification throygsintcut designatorand quantification
variables match points in program execution.

3 Using the Aspect Model

The main benefit of having an conceptual framework such asa$ipect modeis to provide
support for assessing existing approaches as well as fetajgag new methods, languages and
tools based on unified terminology, concepts and propedieéised in the framework. Table 2
summarizes the concepts and properties that comprisasprect model

Component model | component, composition mechanism, component rule, component language

Join point model join point, static join point, dynamic join point, static context, dynamic context
Weaving Model aspect weaver, weaving, static weaving, dynamic weaving
Core model aspect crosscutting interface, crosscutting feature, structural crosscigtng

ture, behavioral crosscutting featucegsscutting static crosscutting, dynamic
crosscutting, horizontal crosscutting, vertical crosscutting
Properties aspect-base dichotomy, quantification, obliviousness

Table 2: Concepts and properties defined in theaspect model

In this Section, th@spect modek used to provide a definition faspect-oriented languages
(Section 3.1) and to characterize four representative Agnifoaches (Section 3.2). Moreover,
we illustrate how theaspect modehas been used to support the desigma8f de, an aspect-
oriented modeling language (Section 3.3).

3.1 Aspect-Oriented Languages

Definition. An aspect-oriented languag@OL) is a language that supports thspect model
and therefore satisfies the following requirements:

¢ it adopts a component model

e it adopts a join point model

e it adopts a weaving model

e it provides some nameable abstraction to modularize cuttgsg concerns

— it provides some means of specifying join points (crossaginterfaces)

— it provides some means of specifying enhancements to beinethht the join points
(crosscutting features)

e it supports the aspect-base dichotomy
e it supports some sort of quantification over the structuréhe behavior of components.

e it assumes that components are oblivious about aspects.

If we abstract out the component model (since the join poiotieh already depends on it)
and the weaving model, the above definition can be sumnthwzeh the following equation for

“aspect-orientedness”:

aspect-oriented= aspectst join point modekH- crosscuttingt
obliviousnesst- quantification+ aspect-base dichotomy

Discussion.

(1)

Aspect-oriented languages candmmain-specific languages general-purpose

languages In both cases, they should provide an interpretation feralements of thaspect

model

Example.

Aspectd [15] and AspectC [8] are general-purpose aspémtted programming

languages since their conceptual framework isabpect modelNevertheless, AspectJ adopts
the object model as its component model (Java as the complangnage) while AspectC adopts
the procedural model (C as the component language).

3.2 Assessing Language Features

In this Section, we use thaspect modelo review four ASoC approaches — AspectJ, Hyper/J,

Composition Filters and Demeter/DJ — in order to assess wh#thy are aspect-oriented or not.
Table 3 presents a summary of the resulting interpretations

=5

AspectJ Hyper/J Composition Filters | DJ

Component Model object model | object model | object model object model

Component object object object object

Component language | Java Java object-oriented Java

Join Point Model

Dynamic JPs points in sending and nodes in call graph
execution receiving messages

Static JPs classes classes, fields; ... nodes in class grap

methods

Core Model

Aspect aspect hyperslice? filter adaptive method

Crosscutting interface | pointcuts hypermodule | filter expressions traversal strategies

Crosscutting feature | introduction, | fields, methods| wrappers adaptive visitor
advice

Weaving Model static static static/dynamic static

Aspect-base dichotomy yes no yes yes

Quantification yes yes yes yes

Obliviousness yes yes yes yes

Table 3: Interpretations using the Aspect Model

3.2.1 Aspectd

AspectJ [15] is an aspect-oriented extension to Java thabsts general-purpose aspect-oriented

programming. AspectJ was developed by a Xerox PARC team thadlly proposed the AOP
paradigmatic ideas and most of the AOP terminology [16].t lyaar, Aspect] was transferred
from PARC to an openly-developed eclipse.org project [3].

Terminology. Aspect-oriented programming, aspect, join point, crodsay weaving, point-
cut, advice, inter-type declaration (introduction).

3.22 DJ

The DJ (Demeter/Java) library [19] is a Java package thaamstpAdaptive Programming (AP)
[18], one of the first approaches to ASoC. AP supports theraéipa of behavioral concerns
(methods, strategies) from structural concerns (clagshyran the context of object-oriented
software.

Terminology. Adaptive programming, class graph, adaptive method, tsavstrategy, adap-
tive visitor.

Discussion. AP is considered a special case of AOP, where componentxpressible in
terms of graphs and aspectléptive methodsrefer to and affect the graphs usitrgversal
strategiesandadaptive visitors According to our conceptual framework, the DJ library soqe
AOP.

3.2.3 Composition Filters

The Composition Filters (CFs) approach [2, 4] is a modular amldogonal extension to the
object model to cope with object-oriented modeling proldeand to increase adaptability and
reusability in object-oriented systems. In the CF approasbgects are expressedfdters. A
filter is defined as a function that manipulates messages recantedent by objects [4]. Filters
are language independent.

Terminology. Composition Filters, input filter, output filter, filter pe, filter interface, filter
element, internal class, condition, selector, superintipos dispatch filter.

Discussion. CFs is considered a special case of AOP, where filters are etagmound base
components to provide the crosscutting behavior. Accagrtiinour conceptual framework, the
CFs approach supports AOP.

3.2.4 Hyper/d

Hyper/J [13] is a tool developed at IBM Watson Research Centeupport Multi-Dimensional
Separation of Concerns (MDSoC) [31], an evolution on earlyknar Subject-Oriented Pro-
gramming [12]. Hyper/J allows the modularization and cosifan of concerns without re-
quiring special language extensions. Hyper/J Usgerslices- sets of Java packages, classes,
methods, fields, etc. — to modularize any kind of concern.

Terminology. Multi-dimensional separation of concerns, hyperspacpetslice, hypermod-
ule, concern map, corresponding unit, merge, override.

Discussion. Hyper/J allows the composition of multiple, separate diajeadels; it does not
require a distinguished base andldes notsupport the aspect-base dichotomy. Moreover, hy-
perslices areinableto modularize crosscutting concerns, that is, they do raalipe both cross-
cutting interfacesind crosscutting features. Therefore, according to our cane¢framework,
Hyper/J does not support AOP

3.3 Supporting Language Design

Theaspect modesubsumes essential concepts and properties for supptréinigsign of aspect-
oriented languages. These essential concepts can be vasaeahdidatdigher level abstrac-
tionsfor aspect-oriented languages.

As a conceptualramework the aspect modeheeds to be instantiated in order to be used.
This means that the designer of a new language must: (i) @adoptnponent model, (ii) adopt a
suitable joint point model, (iii) adopt a weaving model,)(provide suitable representations for
the elements of the adopted models, (v) provide a clear sredar crosscutting, (vi) provide
some means to support quantification, among other things.

The previous list of design tasks is not completepakbookfor using theaspect modelo
support language design will be the subject of future work.

Example. We are developingSi de, a modeling language for specifying and communicating
aspect-oriented desigiisat supports thaspect model/Some of the major decisions concerning
the design o&Si de are [6]:

e The component model is the UML [1] object model, that is, thdLUmetamodel.

e The join point model includestatic join points comprising some elements used in UML
structural models, andynamic join pointscomprising some elements used in UML be-
havioral models.

e The weaving model is static. Weaving diagrams are providearder to present a clear
higher level description of the system after weaving.

e The core model includes: (i) modeling elements that cooedpo its core concepts —
aspect(a parameterized modeling element) amdsscutting(a relationship) — and, (ii)
modeling elements that correspond to auxiliary concepth s1$,crosscutting interface
crosscutting featureetc.

e The core model is extended to proviggationships among aspedigrecedence, require-
ment, exclusion, etc.) that become evident after the compioeind join point models are
defined.

A detailed description of the aSide modeling language velttie subject of future work.

4 Conclusions

In this paper, we present aaspect modefor AOSD, a software engineering paradigm that
emphasizes the principles of separation of concerns andlaritgt, the modularization of cross-
cutting concerns and the properties of quantification arviobsness. The proposesbkpect
modelstands for a theory of aspects, that is, a conceptual framkef@woAOP that provides con-
sistent terminology and basic semantics for thinking atzoptoblem in terms of theoncepts
and propertiesthat characterize the aspect-oriented style as an emepgiragligm to software
development.

Furthermore, we use thespect modeto present a definition for AOLs and also a character-
ization of some representative approaches to advancedasiepaof concerns using owaspect
model

4.1 Related Work

Masuhara and Kiczales are seeking to find common frameworksuilding models of AOSD
mechanisms. In [21], they provide a framework to model thee @emantics of five aspect-
oriented software development technologies. They try taratterize which properties of a
mechanism enable crosscutting modularity, as opposee@tarkhical and block structured mod-
ularity. One critical property of their framework is thahiiodels the join points as existing in the
result of the weaving process rather than being in eithenefriput programs.

At Lancaster, while discussing standard interface supjpontuntime inspection of aspect-
oriented programs [22], Mehner and Rashid argue that suclhraatd interface should be
grounded in a common foundation for AOP. In [23] they pregbrtcurrent state 0cGEMA
their generic model for AOP.

Nagy, Aksit and Bergmans argue that the aspect compositi@hamésms are an important
characteristic of AOLs; in [25] they prese@omposition Graphg¢CG), a generic model that
allows the uniform description and comparison of differaspect-oriented composition mecha-
nisms.

This work as well as the other mentioned above are just ingleort steps towards the goal
of an unifying conceptual framework for AOSD; as an inteérestemark, all of them are look-
ing specifically at programming approaches as these aré/edyawell-established compared to
design or requirement-level approaches.

4.2 Ongoing Work

The adoption of an unifying conceptual framework for AOP nisimportant step for character-
izing the design space of aspect-oriented languages andaljprg support for AOSD. The defi-
nition of the aspect modeis our first, small step in that direction. In this contextir@ngoing
work includes the following additional steps:

e The provision of a formal semantics for taspect modelThe definition of a sound com-
position semantics focrosscuttingis important to clarify the interplay between aspects
and components, and to manage the possible interferentvesdrecrosscuttingand con-
ventional composition mechanims.

e The complete specification of tlaeSi de modeling language in order to provide notation
and rules that enable the creation of structural and beravitodels in which aspects are
explicitly treated as first-class citizens.

e The use of thaspect modeio develop a case tool that supports: (i) aspect-orientedt mo
eling with aSide, (ii) a metrics suite for assessing aspeetited software, and (iii) code
generation from aSide models.

Acknowledgements.

We would like to thank the anonymous referees for making re¢wgiggestions that have im-
proved our paper. The authors are supported by the PRONBXdPtmder grant 7697102900,
by ESSMA under grant 552068/2002-0 and by the Art. 1st of Beoumber 3.800, of 04.20.2001.
This work is dedicated to the memory of Prof. Sergio Carvalho.

References

[1] Unified Modeling Language (UML) Specification, Version .41 2002.
http://www.omg.org/uml/.

[2] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawabstracting Object In-
teractions Using Composition Filters. In R. Guerraoui, O.rdlimsz, and M. Riveill, edi-
tors,Workshop on Object-Based Distributed Programming at ECAGRjages 152—-184.
Springer-Verlag, 1993.

[3] Aspectd project, 2003. http://www.eclipse.org/asjpec

[4] L. Bergmans and M. Aksit. Composing Crosscutting ConcerrisgJSomposition Filters.
Communications of the ACM4(10):51-57, October 2001.

[5] G. Booch.Object-Oriented Design with ApplicationBenjamin-Cummings, 1991.

[6] C. Chavez and C. Lucena. A Metamodel for Aspect-Oriented &llad. In Workshop on
Aspect-Oriented Modeling with the UML at AOSD, @pril 2002.

[7] P. Chen. The Entity Relationship Model - Towards a UnifiedWiof Data.ACM Transac-
tions on Database Systenig1):9-36, March 1976.

[8] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using Agfgo Improve the Modular-
ity of Path-specific Customization in Operating System CodeloInt European Software
Engineering Conference (ESEC) and 9th ACM SIGSOFT Int. Synthedfoundations of
Software Engineering (FSE-2001.

[9] T. Elrad, R. E. Filman, and A. Bader. Aspect-Oriented Pangming. Communications of
the ACM 44(10):29-32, October 2001.

[10] R. Filman. What Is Aspect-Oriented Programming, Rewuisiten Workshop on Advanced
Separation of Concerns at ECOOP’Qlune 2001.

[11] R. Filman and D. Friedman. Aspect-Oriented ProgramnmsnQuantification and Oblivi-
ousness. Iint'l Workshop on Advanced Separation of Concerns at OOP@3,2000.

[12] W. Harrison and H. Ossher. Subject-Oriented Programyrfh Critique of Pure Objects). In
7th Conf. on Object-Oriented Programming, Systems, Langgiagd Applications (OOP-
SLA93) pages 411-428, 1993.

[13] Hyper/J Web Page, 2001. http://www.research.ibm/bgperspace/HyperJ/HyperJ.htm.
[14] G. Kiczales. Aspect-Oriented ProgrammidgCM Computing Survey28(4es):154, 1996.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, JriRgnd W. Griswold. Getting started
with AspectJ.Communications of the ACM4(10):59-65, 2001.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Loged,oingtier, and J. lrwin.
Aspect-Oriented Programming. In M. Aksit and S. Matsuolk#toes, 11th Eur. Conf. on

Object-Oriented Programming/olume 1241 ofLNCS pages 220-242. Springer-Verlag,
1997.

[17] J. Lamping. The Role of Base in Aspect-oriented Programgmiln Int'l Workshop on
Aspect-Oriented Programming at ECOOP;94999.

[18] K. Lieberherr.Adaptive Object-Oriented Software: The Demeter Method witip&gation
Patterns PWS Publishing Company, Boston, 1996. ISBN 0-534-94602-X.

[19] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspectédted Programming with Adaptive
Methods.Communications of the ACM4(10):39-41, October 2001.

[20] C. Lopes and G. Kiczales. D: A Language Framework foriiigted Programming. Tech-
nical Report SPL-97-010, Palo Alto Research Center, 1997.

[21] H. Masuhara and G. Kiczales. A Framework for Modelingp@st-Oriented Mechanisms,
2003. Revised version to appear in ECOOP’03.

[22] K. Mehner and A. Rashid. Towards a Standard Interfacdiantime Inspection in AOP
Environments. In M. Chu-Carrol and G. Murphy, editovéorkshop on Tools for Aspect-
Oriented Software Development at OOPSLA'2Q02.

[23] K. Mehner and A. Rashid. GEMA: A Generic Model for AOP (Ewtled Abstract). In
Belgian and Dutch Workshop on Aspect-Oriented Programpni063.

[24] A. Mendhekar, G. Kiczales, and J. Lamping. RG: A Case-%tad Aspect-Oriented Pro-
gramming. Technical Report SPL-97-009, Palo Alto ResearcheCerd9o7.

[25] I. Nagy, M. Aksit, and L. Bergmans. Composition Graphs: cufdation for Reasoning
about Aspect-Oriented Composition. \Iforkshop on Foundations of Aspect-oriented Lan-
guages (FOAL) at AOSD’2002003.

[26] H. Ossher and P. Tarr. Operation-Level Composition: AeCas(Join) Point. Inint’l
Workshop on Aspect-Oriented Programming at ECOOPIS®S8.

[27] H. Ossher and P. Tarr. Using Multi-dimensional Sepamabf Concerns to (Re)Shape
Evolving Software.Communications of the ACM4(10):43-50, October 2001.

[28] K. Ostermann and G. Kniesel. Independent Extensybiiin Open Challange for AspectJ
and Hyper/J. Innt'l Work. on Aspects and Dimensional Computing at ECOOPZIDO.

[29] A. Ryman. The Theory-Model Paradigm in Software Desigechnical Report TR74.048,
IBM Tech. Report, IBM Toronto, Ont., October 1989.

[30] A. Taivalsaari. On the Notion of InheritancdACM Computing Survey28(3):438-479,
September 1996.

[31] P. Tarr, H. Ossher, W. Harrison, and S. S. Jr. N Degre&epfration: Multi-Dimensional
Separation of Concerns. [lst Int'l Conf. on Software Engineering (ICSE'9®ages
107-119, May 1999.

[32] P. Wegner. Dimensions of Object-based Language DebidgInd Conf. on Object-Oriented
Programming Systems, Languages, and Applications (OOB3%),Aages 168-182, Octo-
ber 1987.

