
Adapting the NFR Framework to
Aspect-Oriented Requirements Engineering

Geórgia Maria C. de Sousa, Ismênia G. L. da Silva, Jaelson Brelaz de Castro

Centro de Informática – Universidade Federal de Pernambuco (UFPE)

Caixa Postal 7851, CEP: 50.732-970, Recife – PE – Brasil

{gmcs,igls,jbc}@cin.ufpe.br

Abstract. One of the most important principles in Software Engineering is
separation of concerns. At first, the research towards applying that principle
throughout the software development process has provided structured and object-
oriented methods. However, when using those methods it is difficult to achieve
separation of concerns such as security, performance, reliability, persistence,
distribution, etc., the so-called crosscutting concerns. Hence, Aspect-Oriented
Paradigm has emerged to address those issues. Similar to what happened with
structured and object-oriented paradigms, in the last years, the Software
Engineering community has been interested in propagating the Aspect-Oriented
Paradigm to early stages of the software life cycle. The purpose of this paper is to
give a contribution to Aspect-Oriented Requirements Engineering, adapting the
NFR-Framework in order to improve the mapping of crosscutting non-functional
requirements onto artifacts at later development stages and to make better the
composition of those requirements with non-crosscutting ones.

Key-words: aspect-oriented requirements engineering, NFR Framework, non-
functional requirements

1. Introduction
In Software Engineering, there are some central principles that should be applied
throughout the software development process, from requirements to implementation:
modularity, abstraction, separation of concerns, anticipation of change, etc.

Separation of concerns (SOC) allows us to deal with different issues of a problem
individually so that we concentrate on each one separately. The main advantages of
applying that principle are: (i) to decrease the complexity of the software development by
concentrating on different issues separately; (ii) to support division of efforts and
separation of responsibilities [Ghezzi et al., 1991] and (iii) to improve the modularity of
software systems artifacts.

The software engineer should be equipped with appropriate methods and specific
techniques that help him/her to apply the separation of concerns throughout the software
development process. Those techniques are usually based on the adopted programming
paradigm. In object-oriented methods, for example, the separated concerns are modeled as
objects and classes; in structural methods, they are represented as procedures [Aksit et al.,
2001]. Those approaches are well suited to most types of concerns related to a system's
primary functionality, but they fail when dealing with concerns such as security,
performance, reliability, persistence, distribution, etc., typically high-level non-functional
requirements. The specification for those concerns cannot be clearly captured into one of
the available building blocks and, thus, is spread throughout or tangled with the

specification for the primary functionality; therefore, those concerns are so-called
crosscutting concerns.

In short, when using either the procedural or object-oriented programming
paradigm, it is not possible to achieve the separation of crosscutting concerns in the design
and implementation levels [Feng et al., 2001]. This fact makes the software difficult to
understand, develop, evolve and maintain [Baniassad et al., 2002].

Similar to what happened with others approaches for separation of concerns, the
first initiatives on separation of crosscutting concerns, also called of Advanced Separation
of Concerns (ASOC), have focused on implementation-oriented phases of the life cycle,
including Subject-Oriented Programming and Design [Harrison and Ossher, 1993; Clarke
et al., 1999], Composition Filters [Bergmans and Aksit, 2001], Multidimensional
Separation of Concerns [Ossher and Tarr, 2001] and Aspect-Oriented Programming (AOP)
[Kiczales et al., 1997].

In particular, AOP employs special abstractions known as aspects to encapsulate
(and thereby separate) crosscutting concerns. Any separation of concerns mechanism must
also include powerful integration mechanisms, to permit the integration of separate concerns
[Ossher and Tarr, 2001]. Thus, it is necessary to determine, in the aspect specification, in
which points and how the crosscutting concern should be integrated (composed) with the
components it affects1.

In the last years, the Software Engineering community has been interested in
propagating the Aspect-Oriented Paradigm to early stages of the software life cycle to
facilitate the modeling of aspects in the design and implementation phases by means of:
(i) the determination of the mapping of crosscutting requirements onto artifacts at later
development stages and (ii) the understanding about how a crosscutting concern affects
others requirements.

However, current works in Aspect-Oriented Requirements Engineering research
area [Rashid et al., 2002; Araujo et al., 2002; Rashid et al., 2003; Brito and Moreira, 2003]
express non-functional requirements (NFRs) in such a way that makes it difficult to
compose and to map crosscutting concerns onto artifacts at later development stages. They
are expressed as abstracts attributes that cannot be objectively verified such as security,
performance, availability, etc. In this manner, the mapping and composition of these
abstract crosscutting NFRs do not take in consideration the real modeling of aspects at later
development stages since, in fact, those NFRs will need to be “operationalized”2 in the
design and implementation phases to ensure they are verifiable [Sommerville, 1995].
Hence, we advocate that dealing with NFR operationalizations instead of abstract NFRs is
more adequate to make the mapping from crosscutting requirements and to elaborate the
composition of these requirements with non-crosscutting ones.

It is worth mentioning that the NFR Framework [Mylopoulos et al., 1992; Chung et
al., 2000] provides, among other features, a way to model the operationalization(s) of
abstract non-functional requirements. In this context, we propose an adaptation of the NFR

1 In this paper, to affect denotes how a crosscutting concern is related with other artifact, i.e., it means to say
that the crosscutting concern need to be applied in some point of another artifact’s implementation.
2 To “operationalize” a requirement means providing more concrete and precise mechanisms (e.g. operations,
processes, data representations, constraints) to solve a problem [Chung et al., 2000].

Framework in order to that framework can be used in the Aspect-Oriented Requirements
Engineering (AORE) process. The objectives of this work are: (i) to improve the mapping
and composition of crosscutting non-functional requirements, so that they can reflect and
contribute to the modeling of aspects at later development stages; (ii) to indicate that, with
few adaptations, existing techniques, like NFR Framework, can be used in association with
the Aspect-Oriented Software Development.

This work is organized as follows. In Section 2 we briefly present the background
of our approach, describing the main concepts used in Aspect-Oriented Software
Development (Section 2.1) and also providing a review the NFR Framework (Section 2.2).
In Section 3 we review related works. Section 4, in turn, presents the proposed adaptation
of NFR Framework that will be illustrated by a case study in Section 5. Lastly, in Section 6
we present our conclusions and future works.

2. Background
This section presents the bases for our proposal by defining some key concepts used in
Aspect-Oriented Software Development and by providing a brief overview of the NFR
Framework.

2.1 Concepts used in Aspect-Oriented Software Development
The research in Aspect-Oriented Software Development is still at the beginning and there
is no consensus about key concepts commonly used. For this reason, it is important to
determine the ontology considered in this work. It is the following:

• Concern: vague declaration, generally corresponding to high-level strategic goal for
the system being developed [Kotonya and Sommerville, 1998];

• Crosscutting concern: feature that in common paradigms cannot be cleanly
encapsulated in one development artifact and hence it is spread throughout or
tangled with other(s) entities [Rashid, 2001].

• Component: represents a concern that in common paradigms can be cleanly
encapsulated in an entity (i.e. class, method, procedure, API). Components tend to
be units of the system's functional decomposition, such as image filters, bank
accounts, data converter and Graphical User Interface (GUI) units [Kiczales et al.,
1997];

• Aspect: abstraction that encapsulates the specification of a crosscutting concern and
where the match points and the composition rules of a crosscutting concern are
defined;

• Match Point: is where the crosscutting concern should join its behaviour with the
components it cuts across [Brito and Moreira, 2003];

• Composition Rule: expresses the sequential order in which each aspect must be
composed with other(s) component(s), i.e., a composition rule specifies how a
crosscutting concern needs to be applied in the match point. To make this
composition, three operators are provided [Moreira et al., 2002]:

i. Overlap: indicates that the aspect is applied before or after the
component(s) it transverses.

ii. Override: indicates that the aspect superposes the component it
transverses. This means that the behaviour described by the aspect
substitutes the behaviour defined by the component.

iii. Wrap: the aspect “encapsulates” the component it transverses. This
means that the behaviour described by the component(s) affected are
enveloped by the behaviour described by the aspect.

2.2 Review of the NFR Framework
Non-functional requirements are requirements that impose restrictions on the product being
developed (product requirements), on the development process (process requirements), or
they specify external constrains that the product/process must meet (external requirements)
[Kotonya and Sommerville, 1998]

The main objective of the NFR Framework [Mylopoulos et al., 1992; Chung et al.,
2000] is to represent, organize and analyze non-functional requirements (NFRs). This
framework is process-oriented in the sense of providing techniques for justifying design
decisions during the software development process. It is goal-driven since it treats non-
functional requirements as goals to be achieved. However, different from traditional goal-
oriented approaches [Dardenne et al., 1993; Anton, 1996], this framework uses the notion
of softgoal, which represents a goal that has no clear-cut criteria to determine whether
they’ve been satisfied or not. A softgoal is considered satisficed3 when there is sufficient
positive evidence and little negative evidence against it [Mylopoulos et al., 2001].

The NFR Framework deals with the following key concepts:

• Softgoal: basic unit for representing non-functional requirements. There are three
kinds of softgoals: NFR softgoals (or NFRs), operationalizing softgoals and claim
softgoals. The first one represents high-level non-functional requirements to be
satisficed. Operationalizing softgoals are possible solutions (operations, processes,
data representations, etc.) or design alternatives which help to achieve the NFR
softgoal. Lastly, claim softgoals justify the rationale and explain the context for a
softgoal or interdependency link. Each softgoal has an associated NFR type and one
or more topics to indicate, respectively, the meaning and the information item of the
softgoal (e.g. Security [CardData], Authenticate [Account]). In the case of claim
softgoals, the type is always Claim and the topic is a statement. Figure 1 presents
the softgoals graphical representations adopted by NFR Framework.

Figure 1. Softgoals Graphical Representations

• Interdependencies: indicate refinements of softgoals and the contributions of
offspring softgoals towards the achievement of its parent. There are basically two
types of contributions describing how the offspring contributes to satisfice its

3 A softgoal rarely can be completely satisfied. From here on, we will use the term to satisfice [Chung et al.,
2000] to indicate that the goal satisfying is accomplished within acceptable limits.

parent. The first one decomposes a softgoal in a group of offspring by means of
AND/OR contribution. The other type of contribution relates a single offspring to a
parent and it can assume the following values: surely negative (“--" or BREAK),
surely positive (“++” or MAKE), partially negative (“-” or HURT) and partially
positive (“+” or HELP). This last type of contribution can be related to different
softgoals hierarchies (implicit interdependency or correlation). Figure 2 shows the
graphical representations of interdependencies adopted by NFR Framework;

Figure 2. Interdependencies Graphical Representations
• Softgoal Interdependency Graph (SIG): graph where softgoals and their

interdependencies are represented. An example of a SIG for performance NFR in a
credit card system is illustrated in Figure 3.

• Catalogues: group an organized body of design knowledge about NFRs (types,
development techniques and correlations among operationalizing and NFR
softgoals) that can be used in different application domains to compose the SIG.

Figure 3. An Example of a SIG (adapted from [Chung et al., 2000])

The process of dealing with the NFR Framework (see Figure 4) starts with an
identification of functional requirements and high-level non-functional requirements that
the system should meet. Non-functional requirements should be represented as NFRs
softgoals in the top of the SIG and they should be iteratively refined into more specific
ones. At some point, when the NFRs softgoals have been sufficiently refined, it will be
possible to operationalize these non-functional requirements and then choose specific
solutions for the system. During refinement and operationalization steps, contributions and

possible conflicts should be established, defining the impact of softgoals to each other and
identifying priorities (indicated by “!” or “!!”).

An important consideration of the NFR Framework is that design decisions should
be supported by well-justified arguments (design rationale) by means of claim softgoals.

Figure 4. Process of NFR Framework (adapted from [Chung and Nixon,
1995] and [Chung et al., 2000])

Last but not least, it is possible to relate graphically in a SIG functional
requirements to design specification of NFRs operationalizations. In order to do that, first
it is necessary to link the chosen operationalizations to a description of the target system
(represented in a rectangle) and then link this description to the functional requirements
(represented in an oval). This mechanism is generally little explored since the most part of
requirements techniques handle functional and non-functional requirements separately. The
graphical representation of the components used in this step is exhibited in Figure 5.

Figure 5. Relating Decisions to Functional Requirements

3. Related Work
One of the first publications that took Aspect-Oriented Programming into consideration to
Requirements Engineering was [Grundy, 1999]. In that work, it was presented an Aspect-
Oriented Component Engineering methodology in which after analyzing the system
requirements, aspects are identified for each component. Those aspects determine the
provided/required services by the component, and thus allow a better understanding and
reasoning about component data, functionality, constraints and inter-relationships.

Later, Rashid et al. (2002) proposed a generic model for Aspect-Oriented
Requirements Engineering (AORE). It is composed of the following activities: (i) identify
and specify concerns and requirements; (ii) identify candidate aspects; (iii) specify and
prioritize aspects; and (iv) specify aspect dimensions, i.e., determine the aspect influence
on later development stages and identify its mapping onto a function, decision or aspect.
The objective of that model was to accomplish the separation of crosscutting properties
since the early stages of the development process in order to identify the mapping and
influence of requirement level aspects onto artifacts at later development stages.

A refinement of the generic AORE model has been presented in [Rashid et al.,
2003], including two new activities: aspect composition and conflict handling (its general
diagram is represented in Figure 6). This new AORE model intends to compose (by means
of composition rules) and modularize crosscutting concerns. The main argument of the
authors is that the modularization of crosscutting concerns makes it possible to establish
initial trade-offs between the candidate aspects. Therefore, it will be possible to give a
better support for negotiation and subsequent decision-making among stakeholders, as well
as facilitate the analysis of the impact of the crosscutting concerns on the artifacts produced
at the next stages of the development process.

Figure 6. AORE Generic Model [Rashid et al., 2003]

In [Moreira et al., 2002] a simplified model is presented to support the general
AORE process described in [Rashid et al., 2002]. The functional requirements are
represented using UML diagrams and the quality attributes are described through
templates. The composition of quality attributes with the functional requirements is
accomplished using extensions of the use case and sequence diagrams.

An extension of the UML notation adopted by [Moreira et al., 2002], including the
composition rule operators described in Section 2.1, was proposed in [Araujo et al., 2002]
to make the composition of crosscutting quality attributes with functional requirements.
Moreover, crosscutting concerns are specified using templates and an activity responsible
for identifying and resolving conflicts is added to the process.

The main contributions given by [Brito and Moreira, 2003] were: (i) introduction of
the match point concept and (ii) use of composition rules. That work presents an extension

of the process proposed in [Moreira et al., 2002], giving emphasis for the composition of
functional requirements and candidate aspects.

We believe that it is more adequate to deal with NFR operationalizations in the
context of Aspect-Oriented Requirements Engineering because they better reflect how the
crosscutting concern will be implemented and therefore improving the composition and the
mapping of crosscutting requirements onto artifacts at later development stages.
Nevertheless, those previous AORE models proposed in literature [Rashid et al., 2002;
Araujo et al., 2002; Brito and Moreira, 2003; Rashid et al., 2003] fail to address the issue
of non-functional requirements, especially because they deal with abstract NFRs instead of
NFR operationalizations.

4. Adaptation of NFR Framework
Our work modifies and extends the NFR Framework to Aspect-Oriented Requirements
Engineering (AORE) in order to improve the composition and the mapping of crosscutting
non-functional requirements onto artifacts at later development stages. We propose a novel
approach, based in AORE generic models [Rashid et al., 2002; Rashid et al., 2003] (see
Table 1), but we stress the following differences:

(i) We explicitly deal with NFR operationalizations in the mapping and
composition activities instead of abstract declarations of NFRs;

(ii) We consider that each NFR softgoal is a concern;

(iii) Although there can be functional crosscutting concerns, in this paper
crosscutting concerns will be limited to non-functional ones;

(iv) We decided that the activity Identify Crosscutting Concerns (or Identify
Candidate Aspects), presents in the most part of previous AORE models, is not
necessary to be performed in the context of non-functional concerns. The
reason for this decision is that non-functional concerns are naturally
crosscutting, since they place restrictions on how the user requirements are to
be met and, thus, they are always tied up with functional requirements
[Cysneiros et al., 2001];

(v) Since aspects are only identified after the activity Specifying the Mapping and
Influence (Specify Aspects Dimensions) [Rashid et al., 2002; Rashid et al.,
2003], we recommend that, different from previous approaches, the activity of
aspects composition to be performed after the activity Analyze the Mapping;

(vi) NFR operationalization results from typical crosscutting concerns, hence if we
were to map a NFR operationalization onto a function or a procedure (as
proposed by [Rashid et al., 2002; Rashid et al., 2003]), the NFR
operationalization would be probably spread and/or tangled with others
components at later development stages. Therefore, to preserve the separation
of concerns principle we advocate that the NFR operationalizations should be
mapped or onto an architectural decision or onto an aspect;

(vii) It is not necessary to include an activity responsible for handling conflicts
because the NFR Framework has already dealt with that in the decisions
evaluation procedure by means of interdependencies, correlations and
priorities.

Table 1 - Correlation between the activities of the AORE generic model and
the activities of the NFR Framework adaptation

AORE GENERIC MODEL NFR FRAMEWORK ADAPTATION

Identify requirements

Decompose NFR requirements

Identify possible operationalizations
Identify and specify requirements

Select operationalizations

Identify candidate aspects - - Not necessary - -

Compose aspects and components Compose identified aspects with functional
requirements

Handle conflicts Identify correlations and priorities

Specify aspects dimensions Analyze the mapping of NFR operationalizations

As illustrated in Figure 7, the first five activities of the proposed adaptation of NFR
Framework correspond to the same first five steps of NFR Framework [Mylopoulos et al.,
1992; Chung et al., 2000]. After accomplishing them, we have the selected
operationalizations that meet the non-functional concerns initially identified.

Figure 7. Proposed adaptation of NFR Framework

The next activity, originated from the generic AORE Model [Rashid et al., 2002], is
responsible for analyzing what is the mapping of these operationalizations onto artifacts at
later development stages: architectural decision or aspect. If an operationalization is
related to the manner how the components are organized in the architecture, then it is
mapped onto an architectural decision (e.g., the operationalizing softgoal “Duplicate the
server” to meet the concern of availability); if not, they are mapped onto an aspect.

Last but not least, the composition of the identified aspects with the functional
requirements is performed. This activity is an extension of the NFR Framework activity

“Relate functional requirements to selected operationalizations”, but with a difference: the
composition rule operators overlap, override and wrap, described before (Section 2.2),
should be considered.

5. Applying the Approach to Case Study
We apply our approach to an Internet Banking System since non-functional requirements
are determinant for the success of this kind of system [Patricio et al., 2003]. The main
objective of an Internet Banking System is to allow bank clients to perform banking
transactions through the Internet. In the sequel, we follow the steps prescribed in Section 4.

IDENTIFY REQUIREMENTS

Having as input existing system information, stakeholder needs, organizational
patterns, regulations and domain information, and using any requirements elicitation
technique, the developer can specify the following high-level requirements for this kind of
system4:

• Functional Requirements: to allow (i) query transactions (account balance and
account statement) and (ii) financial transactions (transfers, bill payments, etc.);

• Non-Functional Requirements: security, availability, user-friendless;

DECOMPOSE NFR REQUIREMENTS

One important concern when building information systems to be used on the
Internet is information security, i.e., protecting information against unauthorized access.
According to NFR catalogues [Chung et al., 2000] and domain information, the developer
can decompose this concern in three others ones: Confidentiality, Integrity and Availability.

Confidentiality is a priority concern since the bank institutions have obligation to
guard client information against unauthorized divulgation. Avoiding interruption of service
(Availability) is other important concern because it contributes considerably for the client
satisfaction. Since site intrusions are common on Internet, Integrity, i.e., guarding
transactions against unauthorized update or falsification, is also an important concern.
Integrity can be subdivided in Completeness and Accuracy. The former means wholeness
of the data being maintained by the system; the latter is related to the correspondence
between values in the system and what they are supposed to represent.

Those decompositions can be visualized in Figure 8.

Figure 8. Security Decomposition

4 We reduced the number of requirements to simplify the case study.

IDENTIFY POSSIBLE OPERATIONALIZATIONS

In this step, the developer should analyze possible operationalizations for each one
of the NFR softgoal offsprings (see Figure 9).

Beginning by the Confidentiality softgoal, two operationalizations can contribute
positively to its satisficing: Data Encryption and Access Authorization. The former ensures
that the information can only be deciphered by the system; the latter ensures that users are
in fact whom they claim to be. Access Authorization, in turn, can be decomposed in two
others operationalizing softgoals: Identification and Authentication (Single for query
transactions or Multiple for financial transaction). The Internet Password Request
satisfices the SingleAuthentication softgoal and in conjunction with OtherAuthentication
softgoal satisfices MultiAuthentication softgoal. Lastly, the OtherAuthentication softgoal
can be satisficed either by PersonalDataValidation or else by AdditionalPasswordRequest.
However, the OtherAuthentication satisficing contributes negatively for user-friendly
access concern.

Analyzing the Accuracy concern, two possible alternatives can help to decrease the
risk of frauds: (i) to limit the value of financial transactions and (ii) to install a firewall to
protect the database server of badly-intentioned intruders. There is also a positive
correlation between the Authentication operationalization and the Accuracy softgoal. In
similar fashion, Data Encryption operationalization helps to achieve the Accuracy
softgoal.

At last, possible solutions that contribute positively to satisficing the Availability
softgoal are Duplication of the Server and Mirroring the Database.

Figure 9. Representation of Operationalizing Softgoals for Security Concern

In Figure 9 all those operationalizing softgoals (in a gray color) can be visualized.

SELECT OPERATIONALIZATIONS

Considering that the possible solutions for the system are sufficiently detailed and
that no other alternatives need to be analyzed, it is appropriate to select among alternatives
(bottom nodes of a SIG), accepting (�) or rejecting (�) each of them.

In our case study, the only rejected operationalizing softgoal was Additional
Password Request. The reason for that is represented in a claim softgoal being related to
the client difficulty to memorize many passwords.

The decisions and their impact in the sense of satisficing or not the parent softgoals
are presented in Figure 9.

ANALYZE THE MAPPING OF NFR OPERATIONALIZATIONS

So far, graphs started with top abstract NFRs and they resulted in
operationalizations being selected. In this current activity we analyze the mapping of each
selected operationalizing softgoal with respect to artifacts to be generated in later stages.
Table 2 shows the outcome of that analysis.

Table 2. Mapping of NFR Operationalizations

NFR CONCERN NFROPERATIONALIZATION MAPPING

Limited Value Aspect
ACCURACY

Firewall Architectural Decision

Data Encryption Aspect

Identification Aspect

Internet Password Request Aspect
CONFIDENTIALITY

Personal Data Validation Aspect

Duplication Server Architectural Decision

SECURITY

AVAILABILITY
Mirroring Database Architectural Decision

It is important to emphasize that in previous AORE works this mapping is done
from abstract non-functional requirements or NFR concerns (first column) instead of NFR
operationalizations (second column). For instance, they make the mapping from a security
concern onto an aspect [Rashid et al., 2002; Rashid et al., 2003]. However, how we can
perceive in Table 2 all those operationalizations are related to a security concern and, even
so, there are some operationalizations mapped onto aspects and others mapped onto
architectural decisions. Furthermore, considering that the objective of the mapping is to
perform the aspect analysis earlier, our kind of mapping from operationalizations better
reflects how the aspects will be treated at later development stages.

Therefore, as shown in Table 2, our mapping is richer than if we were dealing only
with NFR concerns because it better reflects how the design and implementation of these
concerns will be addressed.

COMPOSE IDENTIFIED ASPECTS WITH FUNCTIONAL REQUIREMENTS

This is the last activity of our proposal. Now, we graphically relate the identified
aspects to functional requirements they affect. In doing so we use the composition rule
operators previously described (Section 2.1).

Figure 10 shows how the chosen operationalizations are linked to descriptions of
design specifications as well as the functional requirements affected by them.

Figure 10. Composing Aspects Identified with Functional Requirements
Using Composition Rule Operators

The novelty here is the use of the operators: overlaps, overrides and wraps. They
are required in order to introduce the aspect semantics in the design decision links. We can
perceive in Figure 10 that, compared with previous approaches, this kind of composition
improves the AORE process because it reflects the real modeling and implementation of
non-functional aspects at later development stages.

For instance, making an analogy with the ontology presented in Section 2.1, we can
say that the Internet Password Request operationalization (non-functional aspect) affects
the functional requirements (components) View Account Balance, View Account Statement,
Transfer Funds and Bill Payment; and that aspect should be applied before (composition
rule) executing every transactions (match point). In similar fashion, the Data Encryption
operationaliozation (non-functional aspect) affects the functional requirements
(components) Send Data and Receive Data; and that aspect should change the data

(composition rule) during the execution of those functions (match point) by means of
cryptography.

Unfortunately, the choice about which operator will be used and which functional
requirement will be affected is based in the software engineer experience.

6. Conclusion and Future Work
Aspect-Oriented Paradigm (AOP) is an evolution, not a revolution, on previous software
development paradigms. For that reason, it is natural the attempt to adapt existing software
development methodologies and techniques to include AOP concepts. In this context, this
paper has proposed an adaptation of NFR Framework [Mylopoulos et al., 1992; Chung et
al., 2000] to Aspect-Oriented Requirements Engineering [Rashid et al., 2002; Araujo et al.,
2002; Rashid et al., 2003; Brito and Moreira, 2003] in order to improve the mapping and
the composition of crosscutting requirements onto artifacts at later development stages.

It was necessary to make two adaptations to the NFR Framework process: (i) to
include an activity responsible for analyzing the mapping from the operationalizations onto
later artifacts; and (ii) to modify the activity that links functional requirements to design
decisions in order to put aspects semantics in that relationship by means of the composition
rule operators.

Our proposal uses non-functional requirements (NFR) operationalizations [Chung
et al., 2000], instead of abstract declarations of NFRs, in the mapping and composition of
crosscutting NFRs. The presented case study indicates that our approach provides richer
mapping and composition than previous approaches since it better reflects how crosscutting
concerns will be manipulated in later stages. Of course the price to be paid is the inherent
complexity of our approach because besides the NFR Framework notation, we propose the
inclusion of composition rule operators in its graph so that this model can be used in
Aspect-Oriented Requirements Engineering.

This work focus on non-functional product requirements instead of non-functional
process requirements since there are not evidences in the literature that the last one can be
encapsulated on an aspect. Furthermore, we do not deal with non-functional requirements
like persistence and distribution because they are very dependent on implementation
characteristics; for that reason we believe that they should be better specified in the aspect-
oriented design.

Our future work will focus on evaluating the proposed approach and on improving
the composition between crosscutting requirements and non-crosscutting ones.

7. References
Aksit, M.; Tekinerdogan, B. and Bergmans, L. (2001), "The Six Concerns for Separation of

Concerns", in Proceedings of ECOOP 2001 Workshop on Advanced Separation of
Concerns, Budapest, Hungary, June 18-22.

Anton, A. (1996) “Goal-based Requirements Analysis,” Proc. 2nd IEEE Int’l Conf.
Requirements Engineering, CS Press, Los Alamitos, Calif., pp. 136–144.

Araújo, J.; Moreira, A.; Brito, I. and Rashid, A. (2002) "Aspect-Oriented Requirements with
UML", Workshop: Aspect-oriented Modeling with UML, UML 2002, Dresden, Germany.

Baniassad, E.; Murphy, G.; Schwanninger, C. and Kircher, M. (2002) ”Managing

Crosscutting Concerns During Software Evolution Tasks: an Inquisitive Study”,
Proceedings of the 1st international conference on Aspect-oriented software development,
April 22-26, Enschede, The Netherlands

Bergmans, L. and Aksit, M. (2001) “Composing Crosscutting Concerns Using Composition
Filters”. Commun. ACM, 44(10): 51–57, Oct.

Brito, I. and Moreira, A. (2003) “Towards a Composition Process for Aspect-Oriented
Requirements”. Workshop on Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design, March 17 - Boston, USA.

Chung, L. and Nixon, B. (1995) “Dealing with Non-Functional Requirements: Three
Experimental Studies of a Process-Oriented Approach”. In Proceedings of the IEEE 17th
International Conference on Software Engineering (ICSE), Seattle, April 24-28, pp. 25-37.

Chung, L; Nixon, B.; Yu, E. and Mylopoulos, J. (2000) “Non-Functional Requirements in
Software Engineering”,Boston: Kluwer Academic Publishers.ISBN 0-7923-8666-3.

Clarke, S.; Harrison, W.; Ossher, H. and Tart, P. (1999) “Towards Improved Alignment of
Requirements, Design, and Code”. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, Denver, Colorado. ACM SIGPLAN Notices, v. 34, n. 10,
pp. 325-339.

Cysneiros, L.; Leite, J. and Neto, J. (2001) “A Framework for Integrating Non-Functional
Requirements into Conceptual Models”. Requirements Engineering Journal – Vol 6, Issue
2 Apr., pp: 97-115.

Dardenne, A; Lamsweerde, A and Fickas, S. (1993) “Goal-Directed Requirements
Acquisition”, Science of Computer Programming, Vol. 20, 3-50.

Feng, L.; Marcus, A. and Schaffer, K. (2001) "An Overview of Aspect Oriented
Programming", Term Report, Kent State University, Department of Computer Science.

Ghezzi, C.; Jazayeri, M. and Mandrioli, D. (1991) “Fundamentals of Software Engineering”.
Prentice Hall, ISBN0-13-820432-2.

Grundy, J. (1999) "Aspect-Oriented Requirements Engineering for Component-based
Software Systems", 4th IEEE International Symposium on RE, IEEE Computer Society
Press, pp. 84-91.

Harrison, W. and Ossher, H. (1993) “Subject-Oriented Programming (a Critique of Pure
Objects). Conf. on Object Oriented Programming: Systems, Languages, and Applications.

Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J.-M. and Irwin,
J. (1997) “Aspect-Oriented Programming”. In Proceedings of ECOOP ‘97, Springer-
Verlag.

Kotonya, G. and Sommerville, I. (1998) “Requirements Engineering: Processes and
Techniques”. Wiley, ISBN 0-471-97208-8.

Moreira, A.; Araújo, J. and Brito, I. (2002) “Crosscutting Quality Attributes for Requirements
Engineering”, 14th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2002), ACM Press, Italy, July.

Mylopoulos, J.; Chung, L. and Nixon, B. (1992) “Representing and Using Non-Functional
Requirements: A Process-Oriented Approach”. IEEE Transactions on Software
Engineering, Vol. 18, No. 6, June, pp. 483-497.

Mylopoulos, J.; Chung, L.; Liao, S.; Wang, H. and Yu, E. (2001) “Exploring Alternatives
during Requirements Analysis”. IEEE Software Jan/Feb, pp. 2-6.

Ossher, H and Tarr, P. (2001) “Multi-Dimensional Separation of Concerns and the
Hyperspace Approach”. Proc. Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development. Kluwer Academic Publishers.

Patrício, L., Falcão e Cunha, J. and Fisk, R. (2003) “The Relevance of User Experience
Requirements in Interface: Design – a Study of Internet Banking”. 6th Ibero-american
Workshop on Requirements Engineering and Software Environments - IDEAS'2003,
Asunción, Paraguay, 30th April – 2nd May.

Rashid, A. (2001) “Editorial Aspect -Oriented and Component-Based Software Engineering”.
IEE Proc. Software: Special Issue on Aspect-Oriented and Component-Based Software
Engineering, 148(3)(June).

Rashid, A. Moreira, A. and Araujo, J. (2003). “Modularisation and Composition of Aspectual
Requirements”. 2nd International Conference on Aspect-Oriented Software Development,
ACM, pp. 11-20.

Rashid, A.; Sawyer, P.; Moreira, A. and Araújo, J. (2002) "Early Aspects: a Model for
Aspect-Oriented Requirements Engineering", IEEE Joint Conference on Requirements
Engineering, Essen, Germany, September.

Sommerville, I. (1995). “Software Engineering”, 5th Ed., Addison-Wesley, pg. 132.

